王明梁
摘要:華北克拉通破壞過(guò)程中,巖石圈地幔巖石類(lèi)型從方輝橄欖巖向二輝橄欖巖轉(zhuǎn)變。對(duì)于這一轉(zhuǎn)變過(guò)程,不同學(xué)者提出了不同的假說(shuō)。其中以拆沉作用和底侵作用最具代表性。本文從熔體——地幔巖石相互作用的角度,系統(tǒng)的總結(jié)了前人關(guān)于熔體——地幔巖石(橄欖巖)反應(yīng)的研究結(jié)果。為正確認(rèn)識(shí)這個(gè)過(guò)程提供有益的啟示。
關(guān)鍵詞:華北克拉通;熔體——地幔巖石反應(yīng);實(shí)驗(yàn)巖石學(xué)
1.前言
華北克拉通位于中國(guó)東部,如圖1所示,可以細(xì)分為東中西三個(gè)部分(吳福元等,2008),其中東西兩個(gè)塊體在1.8Ga以前通過(guò)中部造山帶拼合而成,完成了克拉通化,并且在漫長(zhǎng)的地質(zhì)歷史時(shí)期內(nèi)保持穩(wěn)定(翟明國(guó)等,2007;翟明國(guó),2008)?,F(xiàn)有證據(jù)表明,在古生代以前(含古生代),華北克拉通一直保持著以方輝橄欖巖為主的克拉通型巖石圈地幔(古生代地幔包體的巖石類(lèi)型以方輝橄欖巖為主,少量分布二輝橄欖巖),然而到了新生代,克拉通東部地塊的巖石圈地幔轉(zhuǎn)變?yōu)橐远x橄欖巖為主(新生代地幔包體的巖石類(lèi)型以二輝橄欖巖為主,有少量年齡古老的方輝橄欖巖殘留)的大洋型地幔(Fanetal.,2000;Gaoetal.,2008;Xu,2001;Zhangetal.,2007;高山等,2009;路鳳香,2010;吳福元等,2008;鄭建平等,2006;鄭建平等,2007;周新華,2006)。這說(shuō)明在中生代,華北地區(qū)的巖石圈地幔經(jīng)歷了強(qiáng)烈的改造作用,這種改造作用可能直接導(dǎo)致了華北克拉通的破壞。
2.華北克拉通破壞過(guò)程中的熔體——地幔巖石反應(yīng)
大量的研究已經(jīng)達(dá)成共識(shí):在中生代華北地區(qū)巖石圈地幔改造過(guò)程中,巖石圈地幔極有可能受到了來(lái)自軟流圈地幔的硅酸鹽熔體或來(lái)自地殼的硅酸鹽熔體的交代,這種交代作用被認(rèn)為是巖石圈地幔改造的重要原因之一(Zhangetal.,2007;徐義剛,1998,2006;張宏福,2005,2009;張宏福等,2005),因此華北地區(qū)巖石圈地幔在中生代經(jīng)歷的熔體——巖石交代反應(yīng)成為了一個(gè)重要的研究課題。
前人對(duì)中生代華北克拉通巖石圈地幔經(jīng)歷的硅酸鹽熔體——巖石交代作用進(jìn)行了大量的研究,重要的認(rèn)識(shí)可以歸納為以下幾點(diǎn):
(1)富硅熔體交代巖石圈地幔形成(斜方)輝石巖。富硅熔體可能是:①拆沉的地殼部分熔融產(chǎn)生的熔體(Gaoetal.,2004;Gaoetal.,2008;Xuetal.,2008a;高山等,2009;劉海泉等,2010);②深俯沖的地殼部分熔融產(chǎn)生的熔體(Chen,2005;Zheng,2012;Zhengetal.,2011)。富硅熔體產(chǎn)生后,在上升過(guò)程中與地幔巖石發(fā)生熔體——巖石交代反應(yīng),反應(yīng)的產(chǎn)物是輝石。大多數(shù)學(xué)者(Kelemenetal.,1998;Liuetal.,2005;高山等,2009)認(rèn)為富硅熔體與巖石圈地幔巖石反應(yīng)的產(chǎn)物主要是斜方輝石,但有實(shí)驗(yàn)表明這種交代反應(yīng)在低壓下(2.0GPa)可以形成單斜輝石和斜方輝石(王超等,2010),兩種認(rèn)識(shí)存在明顯的分歧,需要做進(jìn)一步研究。
(2)貧硅熔體交代巖石圈地幔形成(二輝)橄欖巖。貧硅熔體可能是:①來(lái)自軟流圈的玄武質(zhì)熔體(Xu,2001;Xuetal.,2008b;Zhengetal.,2007;路鳳香等,2006;徐義剛,1999,2006;鄭建平等,2006,2007);②受到富硅熔體交代的巖石圈地幔發(fā)生部分熔融產(chǎn)生的玄武質(zhì)熔體(Gaoetal.,2008;高山etal.,2009)。貧硅熔體產(chǎn)生后,在上升的過(guò)程中與巖石圈地幔發(fā)生交代反應(yīng)。一般認(rèn)為貧硅熔體與巖石圈地幔巖石反應(yīng)將形成橄欖石和輝石(張宏福,2005,2009),這種認(rèn)識(shí)的依據(jù)是低壓下貧硅熔體與橄欖巖反應(yīng)的實(shí)驗(yàn)結(jié)果(如Shawetal.,2007),缺乏高壓下(≥3.0GPa)貧硅熔體與地幔巖石反應(yīng)的實(shí)驗(yàn)支持。
圖中空心方形和菱形表示地幔包體產(chǎn)出位置,古生代地幔包體的巖石類(lèi)型以方輝橄欖巖為主,新生代在東部地塊產(chǎn)出的地幔包體巖石類(lèi)型以二輝橄欖巖為主,新生代在西部地塊產(chǎn)出的地幔包體巖石類(lèi)型以方輝橄欖巖為主。這些地幔包體是研究華北克拉通巖石圈地幔類(lèi)型轉(zhuǎn)變的關(guān)鍵樣品。
3. 硅酸鹽熔體與地幔巖石(礦物)反應(yīng)的實(shí)驗(yàn)研究現(xiàn)狀
硅酸鹽熔體與地幔巖石(礦物)反應(yīng)的實(shí)驗(yàn)研究最早可以追溯到Sekineetal(1982)的研究,他們的實(shí)驗(yàn)?zāi)康氖菫榱搜芯繊u弧地區(qū)高M(jìn)g#安山巖的成因。自那之后,大量的學(xué)者(如表1所示)經(jīng)過(guò)30多年的努力,在硅酸鹽熔體交代地幔巖石(礦物)的實(shí)驗(yàn)研究方面取得了一系列的成果,總結(jié)起來(lái)可以歸類(lèi)為以下兩個(gè)方面:
(1)富硅熔體(SiO2>52wt%的安山質(zhì)熔體、花崗質(zhì)熔體)與二輝橄欖巖的反應(yīng),反應(yīng)的產(chǎn)物主要為斜方輝石(Opx,下同),在壓力較高時(shí)有石榴子石(Grt,下同)生成,個(gè)別情況下(低溫或者富鈣)可以形成單斜輝石,即L+富硅熔體→Opx±Grt±Cpx(單斜輝石,下同);
(2)貧硅熔體(主要是SiO2≤52wt%的玄武質(zhì)熔體)與二輝橄欖巖反應(yīng),在壓力較低的情況下(≤2.0GPa)反應(yīng)產(chǎn)物的礦物組合是Opx±Ol(橄欖石,下同)±Cpx,即L+貧硅熔體→Opx±Ol±Cpx。另外,在時(shí)間較短(≤24h)的實(shí)驗(yàn)中,貧硅熔體與地幔巖石的反應(yīng)更多地表現(xiàn)出了溶解行為,即貧硅熔體溶解橄欖巖中的輝石,殘留下橄欖石(純橄巖帶)或者橄欖石+斜方輝石(方輝橄欖巖帶)。
表中代號(hào)的含義是:Ol-橄欖石、Opx-斜方輝石、Cpx-單斜輝石、Grt-石榴子石,Phl-金云母,Cc-方解石,L-熔體
4. 結(jié)論與展望
硅酸鹽熔體與地幔巖石反應(yīng)的實(shí)驗(yàn)研究才剛剛開(kāi)始,已經(jīng)得到的正確結(jié)論主要有:
(1)富硅熔體交代地幔主要形成斜方輝石。
(2)貧硅熔體低壓下交代地??梢孕纬砷蠙焓?/p>
但是關(guān)于高壓下的硅酸鹽熔體——巖石反應(yīng)的研究還比較少,特別是關(guān)于微量元素的研究更是缺乏。這進(jìn)一步限制了我們認(rèn)識(shí)華北克拉通破壞這一重要地質(zhì)過(guò)程。因此在今后的工作中,需要進(jìn)一步加強(qiáng)硅酸鹽熔體——地幔巖石反應(yīng)的實(shí)驗(yàn)研究。
參考文獻(xiàn):
[1] 吳福元, 徐義剛, 高山, 鄭建平, 2008. 華北巖石圈減薄與克拉通 破壞研究的主要學(xué)術(shù)爭(zhēng)論. 巖石學(xué)報(bào), v. 24, p. 1145-1174.
[2] 翟明國(guó), 彭澎, 2007. 華北克拉通古元古代構(gòu)造事件. 巖石學(xué)報(bào), v.23, p. 2665-2682.
[3] 翟明國(guó), 2008. 華北克拉通中生代破壞前的巖石圈地幔與下地殼. 巖石學(xué)報(bào), v. 24, p. 2185-2204.
[4] Fan, W.-M., Zhang, H.-F., Baker, J., Jarvis, K.E., Mason, R.P.D., and Menzies, M.A., 2000. On and Off the North China Craton: Where is the Archaean Keel? Journal of Petrology, v. 41, p. 933-950.
[5] Gao, S., Rudnick, R.L., Xu, W.-L., Yuan, H.-L., Liu, Y.-S., Walker, R.J., Puchtel, I.S., Liu, X., Huang, H., Wang, X.-R., and Yang, J., 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Plan etary Science Letters, v. 270, p. 41-53.
[6] Xu, Y.-G., 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china evidence, timing and mechanism. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, v. 26, p. 747-757.
[7] Zhang, H.-F., Nakamura, E., Sun, M., Kobayashi, K., Zhang, J., Ying, J.-F., Tang, Y.-J., and Liu, L.-F., 2007. Transformation of subcontinental lithospheric mantle through peridotite-melt reaction: evidence from a highly fertile mantle xenolith from the North China craton. International Geology Review, v. 49, p. 658-679.
[8] 高山, 章軍鋒, 許文良, 劉勇勝, 2009. 拆沉作用與華北克拉通破 壞. 科學(xué)通報(bào), v. 54, p. 1962-1973.
[9] 路鳳香, 2010. 華北克拉通古老巖石圈地幔的多次地質(zhì)事件:來(lái) 自金伯利巖中橄欖巖捕虜體的啟示. 巖石學(xué)報(bào), v. 26, p. 3177- 3188.
[10] 鄭建平, 路鳳香, Griffin, W.L., 余淳梅, 張瑞生, 袁曉萍, 吳秀玲, 2006. 華北東部橄欖巖與巖石圈減薄中的地幔伸展和侵蝕置換 作用. 地學(xué)前緣, v. 13, p. 76-86.
[11] 鄭建平, 路鳳香, 余淳梅, 湯華云, 張志海, 儲(chǔ)玲林, 2007. 華北克 拉通破壞的物理、化學(xué)過(guò)程:地幔橄欖巖證據(jù). 礦物巖石地球化 學(xué)通報(bào), v. 26, p. 327-335.
[12] 周新華, 2006. 中國(guó)東部、新生代巖石圈轉(zhuǎn)型與減薄研究若干問(wèn) 題. 地學(xué)前緣, v. 13, p. 50-64.
[13] 徐義剛, 1998. 上地幔熔體-巖石相互作用與大陸地幔演化. 地 學(xué)前緣, v. 5, p. 76-85.
[14] 徐義剛, 2006. 用玄武巖組成反演中—新生代華北巖石圈的演 化. 地學(xué)前緣, v. 13, p. 93-104.
[15] 張宏福, 2005. 橄欖巖-熔體的相互作用: 巖石圈地幔組成轉(zhuǎn)變 的重要方式. 地學(xué)前緣, v. 13, p. 65-75.
[16] 張宏福, 2009. 橄欖巖-熔體相互作用: 克拉通型巖石圈地幔能 夠被破壞之關(guān)鍵. 科學(xué)通報(bào), v. 54, p. 2008-2026.
[17] 張宏福, 英基豐, 徐平, 馬玉光, 2004. 華北中生代玄武巖中地幔 橄欖石捕虜晶: 對(duì)巖石圈地幔置換過(guò)程的啟示. 科學(xué)通報(bào), v. 49, p. 784-789.
[18] Gao, S., Rudnick, R.L., Yuan, H.-L., Liu, X.-M., Liu, Y.-S., Xu, W.-L., Ling, W.-L., Ayers, J., Wang, X.-C., and Wang, Q.- H., 2004. Recycling lower continental crust in the North China craton. Nature, v. 432, p. 892-897.
[19] Xu, W., Hergt, J.M., Gao, S., Pei, F., Wang, W., and Yang, D., 2008a. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters, v. 265, p. 123-137.
[20] 劉海泉, 閆峻, 趙建新, 安亞軍, 2010. 中國(guó)東部部分地區(qū)新生代 巖石圈地幔的成因:主量和微量元素制約. 巖石學(xué)報(bào), v. 26, p. 2850-2068.
[21] Chen, L.-H., and Zhou X.-H, 2005. Subduction-related metaso matism in the thinning lithosphere: Evidence from a composite du nite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high- Mg diorite, North China Craton. Geochemistry Geophysics Geo systems, v. 6, (online)
[22] Zheng, Y.-F., 2012. Metamorphic chemical geodynamics in conti nental subduction zones. Chemical Geology, v. 328, p. 5-48.
[23] Zheng, Y.-F., Xia, Q.-X., Chen, R.-X., and Gao, X.-Y., 2011. Partial melting, fluid supercriticality and element mobility in ultra high-pressure metamorphic rocks during continental collision. Earth-Science Reviews, v. 107, p. 342-374.
[24] Kelemen, P.B., Hart, S.R., and Bernstein, S., 1998. Silica enrich ment in the continental upper mantle via melt-rock reaction. Earth and Planetary Science Letters, v. 164, p. 387-406.
[25] Liu, Y., Gao, S., Lee, C., Hu, S., Liu, X., and Yuan, H., 2005. Melt–peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth and Planetary Sci ence Letters, v. 234, p. 39-57.
[26] 王超, 金振民, 高山, 章軍鋒, 鄭曙, 2010. 華北克拉通巖石圈破 壞的榴輝巖熔體-橄欖巖反應(yīng)機(jī)制: 實(shí)驗(yàn)約束. 中國(guó)科學(xué)(D 輯), v. 40, p. 541-555.
[27] Xu, Y.-G., Blusztajn, J., Ma, J.-L., Suzuki, K., Liu, J.F., and Hart, S.R., 2008b. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton: Sr–Nd–Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos, v. 102, p. 25-42.
[28] Zheng, J., Griffin, W., Oreilly, S., Yu, C., Zhang, H., Pearson, N., and Zhang, M., 2007. Mechanism and timing of lithospheric modi fication and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, v. 71, p. 5203-5225.
[29] Shaw, C.S.J., and Dingwell, D.B., 2007. Experimental peridotite– melt reaction at one atmosphere: a textural and chemical study. Contributions to Mineralogy and Petrology, v. 155, p. 199-214.
[30] Sekine, T., and Wyllie, P.J., 1982. The system granite-peridotite- H2O at 30 kbar, with applications to hybridization in subduction zone magmatism. Contributions to Mineralogy and Petrology, v. 81, p. 190-202. [33] Thibault, Y., Edgar, A.D., and Lloyd, F.E., 1992. Experimental investigation of melts from a carbonated phlog opite lherzoliteImplications for metasomatism in the continental lithospheric mantle. American Mineralogist, v. 77, p. 784-794.
[31] Johnston, A.D., and Wyllie, P.J., 1989. The system tonalite-peri dotite-H2O at 30 kbar, with applications to hybridization in sub duction zone magmatism. Contributions to Mineralogy and Petrol ogy, v. 102, p. 257-264.
[32] Kelemen, P.B., Joyce, D.B., Webster, J.D., and Holloway, J.R., 1990. Reaction between ultramafic rock and fractionating basaltic magma II. Experimetal investigation of reaction between olivine tholeiite and harzburgite at 1150-1050°C and 5 kb. Journal of Pe trology, v. 31, p. 99-134.
[33] Thibault, Y., Edgar, A.D., and Lloyd, F.E., 1992. Experimental in vestigation of melts from a carbonated phlogopite lherzoliteImplica tions for metasomatism in the continental lithospheric mantle. American Mineralogist, v. 77, p. 784-794.
[34] Sen, C., and Dunn, T., 1994. Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peri dotite. Contributions to Mineralogy and Petrology, v. 119, p. 422- 432.
[35] Rapp, R.P., Shimizu, N., Norman, M.D., and Applegate, G.S., 1999. Reaction between slab-derived melts and peridotite in the mantle wedge experimental constraints at 3.8 GPa. Chemical Geol ogy, v. 160, p. 335-356.
[36] Shaw, C.S.J., 1999. Dissolution of orthopyroxene in basanitic mag ma between 0.4 and 2 GPa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contributions to Mineralogy and Petrology, v. 135, p. 114-132
[37] Falloon, T.J., Danyushevsky, L.V., and Green, D.H., 2001. Perido tite melting at 1 GPa: reversal experiments on partial melt composi tions produced by peridotite–basalt sandwich experiments. Journal of Petrology, v. 42, p. 2363-2390.
[38] Morgan, Z., and Liang, Y., 2003. An experimental and numerical study of the kinetics of harzburgite reactive dissolution with appli cations to dunite dike formation. Earth and Planetary Science Let ters, v. 214, p. 59-74.
[39] Morgan, Z., and Liang, Y., 2005. An experimental study of the ki netics of lherzolite reactive dissolution with applications to melt channel formation. Contributions to Mineralogy and Petrology, v. 150, p. 369-385.
[40] 于洋, 許文良, 劉曉旸, 楊斌, 2009. 高溫高壓條件下角閃石榴輝 石巖-橄欖巖反應(yīng): 初步實(shí)驗(yàn)結(jié)果及其地質(zhì)意義. 自然科學(xué)進(jìn) 展, v. 19, p. 644-651.
[41] Mallik, A., and Dasgupta, R., 2012. Reaction between MORB- eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth and Planetary Science Letters, v. 329-330, p. 97-108.
[42] Wang, C., Liang, Y., Xu, W., and Dygert, N., 2013. Effect of melt composition on basalt and peridotite interaction: laboratory dissolu tion experiments with applications to mineral compositional varia tions in mantle xenoliths from the North China Craton. Contribu tions to Mineralogy and Petrology, v. 166, p. 1469-1488.