黃 彬,蘇燕青,林曉嵐,王穎崢
(福建中醫(yī)藥大學(xué)康復(fù)技術(shù)工程研究中心,福建福州350122)
?
色胺酮在食管癌化療耐藥過程中的作用
黃彬*,蘇燕青,林曉嵐,王穎崢
(福建中醫(yī)藥大學(xué)康復(fù)技術(shù)工程研究中心,福建福州350122)
摘要:為研究色胺酮對食管癌化療藥物順鉑耐藥性的抑制作用及其作用機制,設(shè)計食管癌Eca109細胞及其順鉑耐藥株Eca109/cDDP細胞的順鉑及色胺酮不同處理組,根據(jù)實驗?zāi)康倪x擇不同的處理方式.利用實時熒光定量PCR檢測Eca109和Eca109/cDDP細胞中多藥耐藥基因1(MDR1)及谷胱甘肽-巰基-轉(zhuǎn)移酶-pi基因(GST-pi)的mRNA表達水平;免疫印跡和免疫熒光技術(shù)檢測Eca109細胞和Eca109/cDDP細胞中MDR1和GST-pi蛋白的表達水平;細胞計數(shù)試劑盒(cell counting kit,CCK-8)法檢測細胞增殖以及基因敲降后的回補效果.結(jié)果表明:色胺酮不僅顯著抑制了食管癌細胞順鉑耐藥株Eca109/cDDP細胞中MDR1基因的表達,而且MDR1和GST-pi蛋白的表達也受到了顯著的抑制;色胺酮不但能抑制Eca109細胞的增殖能力,對耐藥株Eca109/cDDP細胞增殖也存在抑制作用;色胺酮逆轉(zhuǎn)耐藥性的能力依賴于對MDR1和GST-pi的表達抑制.綜上分析,色胺酮能夠通過抑制MDR1和GST-pi蛋白的表達來逆轉(zhuǎn)食管癌細胞順鉑耐藥株的耐藥性,是一種潛在的化療輔助藥物.
關(guān)鍵詞:色胺酮;聯(lián)合用藥;食管癌;順鉑;耐藥性
食管癌是常見的消化道腫瘤[1-2],手術(shù)治療是其主要治療手段,但是大多數(shù)患者會由于術(shù)后發(fā)生遠處轉(zhuǎn)移而死亡[3].手術(shù)和放療并不能解決遠處轉(zhuǎn)移的問題,所以化療成為術(shù)后治療的重要手段.順鉑(順氯氨鉑,cDDP)是第一代鉑類抗腫瘤藥物,是眾多食管癌化療藥物的一種,療效確切[4].研究發(fā)現(xiàn)在兩藥或者三藥聯(lián)合化療時,加與不加順鉑,在療效上存在著顯著差別[5].因此,順鉑成為食管癌后期化療的主要藥物.但是耐藥性的產(chǎn)生極大地影響了順鉑的化療效果.
MDR1(multidrugresistance1)基因編碼多藥耐藥蛋白,是定位于細胞膜上具有ATP依賴性的藥物外排泵[6].GST-pi(glutathione-s-transferase-pi)基因編碼多功能的二聚體蛋白,能通過增強藥物和谷胱甘肽的結(jié)合加大其水溶性,使之排出細胞[7].這二者的過度表達是導(dǎo)致腫瘤具有多藥耐藥性的重要原因,因此抑制MDR1及GST-pi蛋白表達是逆轉(zhuǎn)多藥耐藥性的有效途徑.
色胺酮(tryptanthrin)及其衍生物屬于吲哚喹唑啉類生物堿,具有抗炎、抗菌、抗白血病等生物活性[8-9],其成藥安全性良好,對生物體的毒副作用小[10].最近的研究表明色胺酮及其衍生物對多藥耐藥性的癌細胞有抑制作用,對乳腺癌細胞阿霉素的耐藥性有逆轉(zhuǎn)作用[11],表明其在抗癌藥方面將有廣泛的用途.但是,食管癌細胞對順鉑的耐藥性是否能通過色胺酮進行逆轉(zhuǎn)還沒有明確的研究.本研究通過分析MDR1基因與GST-pi基因及其表達蛋白的水平變化,來探討色胺酮在食管癌治療中的作用.
1材料和方法
1.1材料
1.1.1試劑
色胺酮和順鉑購自Sigma公司(貨號:SML0310和1134357);細胞培養(yǎng)用胎牛血清、RPMI1640培養(yǎng)基、trypsin-EDTA溶液選購自Hyclone公司;Lipofectamine 2000購自Invitrogen公司;Tripure 總RNA提取試劑盒購自Roche公司;RNA反轉(zhuǎn)錄試劑盒及實時熒光定量 PCR(qRT-PCR)試劑盒購自康為世紀(jì)公司;細胞計數(shù)試劑盒(cell counting kit,CCK-8)購自日本同仁化學(xué)研究所(Donjindo);MDR1、GST-pi和甘油醛-3-磷酸脫氫酶(GAPDH,內(nèi)參)抗體購自Abcam公司(貨號:ab129450、ab170323和ab128915);MDR1基因和GST-pi基因的siRNA-pool敲降序列購自Santa-Cruz公司(貨號:sc-29395和sc-72091).
1.1.2細胞樣本
食管癌Eca109細胞及其順鉑耐藥株Eca109/cDDP細胞購自上海凱基生物科技有限公司,二者針對順鉑的耐藥指數(shù)為10.8(即順鉑針對耐藥株的半數(shù)抑制劑量是針對其親本細胞株的10.8倍).
表1 qRT-PCR的引物
Tab.1 Primers for qRT-PCR
目的基因正向引物序列(5'→3')反向引物序列(5'→3')MDR1CCCATCATTGCAATAGCAGGGTTCAAACTTCTGCTCCTGAGST-piCTCCGCTGCAAATACATCTCACAATGAAGGTCTTGCCTCCGAPDHGAAGGTGAAGGTCGGAGTGAAGATGGTGATGGGATTTC
1.2方法
1.2.1細胞培養(yǎng)
Eca109和Eca109/cDDP細胞的培養(yǎng)條件如下:含10%(體積分數(shù))胎牛血清的RPMI1640培養(yǎng)基,37 ℃,5%(體積分數(shù),下同)CO2,飽和濕度;耐藥株的順鉑維持質(zhì)量濃度為0.75 mg/L.
1.2.2基因敲降
采用脂質(zhì)體轉(zhuǎn)染方法,當(dāng)貼壁生長的細胞匯合度達到70%時,更換細胞培養(yǎng)液為無血清的RPMI1640培養(yǎng)基;分別用無血清培養(yǎng)基按比例稀釋Lipofectamine 2000及siRNA,混勻二者后靜置20 min,滴入細胞培養(yǎng)上清中,5 h后更換為含血清的培養(yǎng)基;正常培養(yǎng)48 h后,利用qRT-PCR方法檢查轉(zhuǎn)染效率.
1.2.3qRT-PCR檢測
取出待收集細胞,用真空泵吸去培養(yǎng)基后加入預(yù)冷的磷酸鹽緩沖液(PBS)清洗2遍,再次去上清后加入1 mL Tripure試劑,按照操作說明提取總RNA.按照 RNA反轉(zhuǎn)錄試劑盒說明書操作,首先42 ℃孵育50 min,然后70 ℃孵育15 min,當(dāng)反應(yīng)結(jié)束后保持4 ℃,最后置于-20 ℃冰箱貯存?zhèn)溆?反轉(zhuǎn)錄后的cDNA作為模板進行qRT-PCR擴增,反應(yīng)體系:cDNA 1 μL,正、反向引物(表1)各0.6 μL,SYBR Green熒光染料mix 10 μL,無菌蒸餾水8 μL,ROX熒光參比染料 0.4 μL.反應(yīng)條件:94 ℃預(yù)變性2 min;95 ℃變性5 s,60 ℃退火延伸20 s,循環(huán)40次;72 ℃延伸5 min.實驗數(shù)據(jù)分析借助Rotorgene 4.6軟件采用2-△△CT法處理,以GAPDH基因作為內(nèi)參.
1.2.4免疫印跡檢測
用蛋白裂解液提取樣品蛋白,BCA法測定蛋白濃度,將制備好的蛋白加入5×上樣緩沖液,沸水浴5 min使蛋白變性,十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳(SDS-PAGE)分離后,轉(zhuǎn)印至聚偏二氟乙烯(PVDF)膜;將轉(zhuǎn)印膜浸入含5%(質(zhì)量分數(shù))脫脂奶粉的TBST(20 mmol/L pH 7.5 Tris-HCl,0.8%(質(zhì)量分數(shù))NaCl,0.1%(體積分數(shù))Tween-20)中室溫封閉1 h,分別將稀釋后的抗體浸潤轉(zhuǎn)印膜,室溫孵育2 h,TBST洗膜后浸潤于辣根過氧化物酶(HRP)標(biāo)記的二抗中室溫孵1 h,再次洗膜后使用增強化學(xué)發(fā)光(ECL)方法進行顯影、曝光,膠片晾干后,掃描并分析.使用ImageJ(V2.1)軟件對目的蛋白與內(nèi)參進行灰度對比.
1.2.5免疫熒光檢測
在蓋玻片上接種細胞培養(yǎng)36 h,除去培養(yǎng)基后PBS清洗3×5 min(3次,每次5 min,下同),用4%(質(zhì)量分數(shù))甲醛溶液固定30 min,吸去固定液后PBS清洗3×5 min;用0.75% (體積分數(shù))Triton-X100溶液進行透明化后,PBS清洗3×5 min,5%(質(zhì)量分數(shù),下同)牛血清白蛋白(BSA)室溫封閉30 min;加入含有一抗(MDR1抗體,1∶200)的1%BSA,置于4 ℃濕盒中雜交過夜,PBS清洗3×5 min,加入含有二抗(羊抗兔Alexa488,1∶400)的1%BSA,室溫避光孵育30 min;PBS清洗3×5 min(避光),置于1 μg/mL的核酸染料4′,6-二脒基-2-苯基吲哚(DAPI)溶液中室溫孵育5 min(避光),PBS清洗3×5 min(避光),用95%(體積分數(shù))甘油封片后,拍照分析,4 ℃避光保存.
1.2.6CCK-8法檢測細胞增殖
獲得細胞懸液經(jīng)細胞計數(shù)后,按5×104mL-1接種于96孔板中,將培養(yǎng)板置于培養(yǎng)箱中,在37 ℃,5%CO2的條件下培養(yǎng)24~36 h;每孔加入10 μL試劑盒中的CCK-8溶液,輕輕震蕩搖勻,將培養(yǎng)板置于培養(yǎng)箱內(nèi)繼續(xù)孵育2 h;細胞到達測量時間點后,用酶標(biāo)儀測定在450 nm處的吸光度,記錄數(shù)據(jù).
1.2.7統(tǒng)計學(xué)分析
采用GraphPad統(tǒng)計分析軟件對實驗數(shù)據(jù)進行配對t-檢驗或單因素方差分析,p<0.05視為有顯著差異,p<0.001視為有極顯著差異.
2結(jié)果和分析
2.1MDR1基因在Eca109和Eca109/cDDP細胞中的表達
采用qRT-PCR的方法檢測MDR1基因在食管癌Eca109和Eca109/cDDP細胞中不同藥物濃度處理下的表達,以GAPDH基因為內(nèi)參.結(jié)果(圖1)顯示:MDR1基因在Eca109細胞中的表達水平很低,Eca109/cDDP細胞中其表達顯著上調(diào)(配對t-檢驗,p<0.001);而在Eca109/cDDP細胞中添加色胺酮能顯著抑制MDR1基因的表達,并呈劑量依賴關(guān)系(單因素方差分析,p<0.001).
TRYP為色胺酮,下同.**p<0.001.圖1 不同濃度色胺酮處理下Eca109細胞和 Eca109/cDDP細胞中MDR1基因的轉(zhuǎn)錄水平Fig.1Transcriptional level of MDR1 gene in Eca109 and Eca109/cDDP under treatment with tryptanthin of different concentrations
2.2MDR1蛋白在Eca109和Eca109/cDDP細胞中的表達
為了進一步探索色胺酮影響Eca109/cDDP細胞株順鉑耐藥性的機制,利用免疫印跡和免疫熒光的方法檢測了色胺酮對MDR1蛋白表達的影響.免疫印跡實驗結(jié)果(圖2(a))顯示:在Eca109細胞中MDR1蛋白表達量很低,Eca109/cDDP細胞中表達上升;而在Eca109/cDDP細胞中添加色胺酮能明顯抑制MDR1的表達,并呈劑量依賴關(guān)系.免疫熒光實驗結(jié)果(圖2(b))同樣顯示,色胺酮能明顯抑制Eca109/cDDP細胞中MDR1蛋白在細胞膜上的表達.
圖2 免疫印跡(a)與免疫熒光(b)法檢測Eca109細胞 和Eca109/cDDP細胞中MDR1蛋白的表達Fig.2Detection of MDR1 expression level in Eca109 and Eca109/cDDP by Western blot (a) and immunofluorescence (b)
2.3GST-pi在Eca109和Eca109/cDDP細胞中的表達
為了研究食管癌中色胺酮逆轉(zhuǎn)Eca109/cDDP細胞株順鉑耐藥性的機制,進一步檢測了色胺酮處理對GST-pi蛋白表達的影響.結(jié)果顯示:GST-pi在Eca109細胞中表達量很低,在Eca109/cDDP細胞中表達上升,而在Eca109/cDDP細胞中添加色胺酮能顯著抑制GST-pi蛋白的表達,并呈劑量依賴關(guān)系(圖3(a));同時,如圖3(b)所示,GST-pi基因的mRNA水平也有相似的變化趨勢(單因素方差分析,p<0.05),但其變化水平不如蛋白水平變化顯著也預(yù)示著色胺酮對其表達的影響未必局限于基因轉(zhuǎn)錄水平.
*p<0.05;**p<0.001.圖3 Eca109和Eca109/cDDP中GST-pi表達水平的變化Fig.3Changes of GST-pi expression level in Eca109 and Eca109/cDDP
2.4CCK-8法檢測色胺酮對細胞增殖的影響
*p<0.05;**p<0.001.圖4 色胺酮對細胞增殖能力(a)及順鉑敏感度(b)的影響Fig.4Effect of tryptanthrin on cell proliferation (a) and sensitivity of cDDP (b)
利用CCK-8法檢測色胺酮對食管癌順鉑耐藥株Eca109/cDDP細胞增殖能力的影響.結(jié)果顯示:不同時間梯度和藥物濃度的色胺酮處理對Eca109/cDDP細胞增殖能力呈現(xiàn)不同的抑制效果(圖4(a)),24,48,72 h處理下,色胺酮對Eca109/cDDP細胞(順鉑維持質(zhì)量濃度為0.75 mg/L)的半數(shù)抑制質(zhì)量濃度(IC50)依次為19.2,5.9,3.5 mg/L;同時,色胺酮存在的情況下,Eca109細胞及耐藥株Eca109/cDDP細胞對順鉑的敏感度均有顯著上升(圖4(b))(配對t-檢驗,p<0.05和p<0.001),其中Eca109細胞對順鉑的IC50由0.34 mg/L降至0.21 mg/L,Eca109/cDDP細胞對順鉑的IC50由3.75 mg/L降至0.55 mg/L.
2.5敲降MDR1和GST-pi基因后的回補實驗
利用siRNA技術(shù)分別敲降Eca109/cDDP細胞中的MDR1和GST-pi基因(圖5(a)),采用CCK-8法檢測順鉑及色胺酮對其增殖能力的影響.結(jié)果顯示:基因敲降后色胺酮對Eca109/cDDP細胞增殖的抑制能力下降(配對t-檢驗,p<0.001),即說明色胺酮逆轉(zhuǎn)Eca109/cDDP細胞耐藥性的能力依賴于MDR1和GST-pi的表達(圖5(b)).如圖5(c)所示,色胺酮處理情況下Eca109/cDDP細胞IC50的顯著變化結(jié)果(配對t-檢驗,p<0.05或p<0.001)也體現(xiàn)了基因敲降后對其抑制能力的回補效果.
3討論
現(xiàn)今對于食管癌患者主要采用手術(shù)治療輔以放療、化療等綜合治療手段,但其臨床治療效果及遠期預(yù)后仍不理想,復(fù)發(fā)率及病死率較高[12].化療藥物耐藥性的出現(xiàn)是化療失敗的主要因素.順鉑作為一種比較有效的食管癌化療藥物,在長期使用后也不可避免地出現(xiàn)耐藥性.很多研究都在致力于尋找能夠抑制MDR1基因及其蛋白表達的藥物[13-16].有關(guān)色胺酮及其衍生物在乳腺癌方面的研究發(fā)現(xiàn)色胺酮能夠逆轉(zhuǎn)乳腺癌細胞阿霉素耐藥株的耐藥性[11],而在食管癌方面還未見相關(guān)報道.本研究在分子和細胞層次闡明了色胺酮對食管癌耐藥性的逆轉(zhuǎn)調(diào)控.
ns.無顯著差異;*p<0.05;**p<0.001.圖5 Eca109/cDDP中敲降MDR1和GST-pi基因后色胺酮對其細胞增殖能力的抑制效果變化Fig.5Alteration of inhibitory effect of tryptanthrin on proliferation of Eca109/cDDP after knockdown of MDR1 and GST-pi genes
本研究發(fā)現(xiàn)色胺酮對MDR1和GST-pi基因及其蛋白表達均有顯著的抑制效果.基因敲降的回補實驗及其相應(yīng)的增殖能力檢測結(jié)果顯示,色胺酮抑制Eca109/cDDP細胞增殖依賴于MDR1和GST-pi基因的表達,表明色胺酮能通過調(diào)控MDR1及GST-pi來逆轉(zhuǎn)食管癌細胞順鉑耐藥株的耐藥性,從而抑制食管癌細胞的增殖.
吲哚胺2,3-雙加氧酶(IDO)是肝臟以外唯一催化色氨酸沿犬尿氨酸途徑代謝的限速酶[17],研究證實IDO在很多實體腫瘤中表達明顯增強[18],而色胺酮及其衍生物在細胞水平上都有極強的IDO抑制活性[19].因此,色胺酮及其衍生物抑制腫瘤在體內(nèi)免疫逃脫方面也擁有強大的潛在藥用價值.
色胺酮的天然含量很低,導(dǎo)致其提取分離成本高且操作難,而色胺酮及其衍生物的化學(xué)合成方法已經(jīng)日趨成熟[20].但由于色胺酮不溶于水,導(dǎo)致其難以進入細胞,從而有研究借助于納米材料把色胺酮送進細胞內(nèi),但是這一技術(shù)還處于研發(fā)階段[21].因此,色胺酮在臨床應(yīng)用上有很大的前景,但是也面臨著很大的挑戰(zhàn).
綜上所述,色胺酮是一種潛在的輔助化療藥物,有望對現(xiàn)行化療方案尤其是在耐藥性產(chǎn)生后發(fā)揮重要作用.
參考文獻:
[1]CHEN W,ZHENG R,BAADE P D,et al.Cancer statistics in China,2015[J].CA:A Cancer Journal for Clinicians,2016,66(2):115-132.
[2]LIN Y,TOTSUKA Y,HE Y,et al.Epidemiology of esophageal cancer in Japan and China[J].Journal of Epi-demiology,2013,23(4):233-242.
[3]RUBENSTEIN J H,SHAHEEN N J.Epidemiology,diagnosis,and management of esophageal adenocarcinoma[J].Gastroenterology,2015,149(2):302-317.
[4]OYANAGI H,ICHIKAWA H,KOSUGI S,et al.Three cases of esophageal carcinoma achieved a pathological complete response after neoadjuvant chemotherapy with cisplatin and 5-fluo-rouracil[J].Gan To Kagaku Ryoho Cancer & Chemotherapy,2015,42(4):497-501.
[5]TEPPER J,KRASNA M J,NIEDZWIECKI D,et al.Phase Ⅲ trial of trimodality therapy with cisplatin,fluo-rouracil,radiotherapy,and surgery compared with surgery alone for esophageal cancer:CALGB 9781[J].Journal of Clinical Oncology,2008,26(7):1086-1092.
[6]HEGEWISCH-BECKER S.MDR1 reversal:criteria for clinical trials designed to overcome the multidrug resis-tance phenotype[J].Leukemia,1996,10(Sup. 3):S32-S38.
[7]JEDLITSCHKY G,LEIER I,BUCHHOLZ U,et al.ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein[J].Cancer Research,1994,54(18):4833-4836.
[8]ZHU X,ZHANG X,MA G,et al.Transport characteristics of tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 cells[J].Journal of Pharmacy & Pharmaceutical Sciences,2011,14(3):325-335.
[9]JUN K Y,PARK S E,LIANG J L,et al.Benzo[b]tryptanthrin inhibits MDR1,topoisomerase activity,and reverses adriamycin resistance in breast cancer cells[J].Chem Med Chem,2015,10(5):827-835.
[10]李捷,繆珊,王四旺,等.色胺酮對小鼠急性和亞急性毒性實驗研究[J].中國醫(yī)藥導(dǎo)報,2012,9(32):13-14.
[11]YU S T,CHEN T M,TSENG S Y,et al.Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells[J].Biochemical and Biophysical Research Communications,2007,358(1):79-84.
[12]DI PIETRO M,F(xiàn)ITZGERALD R C.Research advances in esophageal diseases:bench to bedside[J].F1000 Prime Reports,2013,5(44):1-11.
[13]SAABY L,HELMS H C,BRODIN B.IPEC-J2 MDR1,a novel high-resistance cell line with functional expression of human P-glycoprotein (ABCB1) for drug screening studies[J].Molecular Pharmaceutics,2016,13 (2):640-652.
[14]HABIBOLLAHI P,GHAHREMANI M H,AZIZI E,et al.Multi drug resistance-1 (MDR1) expression in response to chronic diazinon exposure:aninvitrostudy on Caco-2 cells[J].Bulletin of Environmental Contamination and Toxicology,2011,86(1):105-109.
[15]KRECH T,SCHEUERER E,GEFFERS R,et al.ABCB1/MDR1 contributes to the anticancer drug-resis-tant phenotype of IPH-926 human lobular breast cancer cells[J].Cancer Letters,2012,315(2):153-160.
[16]FANELLI M,HATTINGER C M,VELLA S,et al.Targeting ABCB1 and ABCC1 with their specific inhibitor CBT-1 can overcome drug resistance in osteosarcoma[J].Current Cancer Drug Targets,2016,16(3):261-274.
[17]TAKIKAWA O,YOSHIDA R,KIDO R,et al.Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase[J].The Journal of Biological Chemistry,1986,261(8):3648-3653.
[18]UYTTENHOVE C,PILOTTE L,THEATE I,et al.Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase[J].Nature Medicine,2003,9(10):1269-1274.
[19]YANG S,LI X,HU F,et al.Discovery of tryptanthrin derivatives as potent inhibitors of indoleamine 2,3-di-oxygenase with therapeutic activity in Lewis lung cancer (LLC) tumor-bearing mice[J].Journal of Medicinal Chemistry,2013,56(21):8321-8331.
[20]ONAMBELE L A,RIEPL H,F(xiàn)ISCHER R,et al.Synthesis and evaluation of the antiplasmodial activity of tryptanthrin derivatives[J].International Journal for Parasitology Drugs and Drug Resistance,2015,5(2):48-57.
[21]FANG Y P,LIN Y K,SU Y H,et al.Tryptanthrin-loaded nanoparticles for delivery into cultured human breast cancer cells,MCF7:the effects of solid lipid/liquid lipid ratios in the inner core[J].Chemical & Pharmaceutical Bulletin,2011,59(2):266-271.
doi:10.6043/j.issn.0438-0479.201603033
收稿日期:2016-03-22錄用日期:2016-05-04
基金項目:國家自然科學(xué)基金(81373709);福建中醫(yī)藥大學(xué)重點學(xué)科專項(X2014126)
*通信作者:skybound.hb@163.com
中圖分類號:R 735.1
文獻標(biāo)志碼:A
文章編號:0438-0479(2016)04-0495-06
Effect of Tryptanthrin on Drug Resistance During Chemotherapy of Esophageal Cancer
HUANG Bin*,SU Yanqing,LIN Xiaolan,WANG Yingzheng
(Rehabilitation Technical Engineering Research Center,Fujian University of Traditional Chinese Medicine,F(xiàn)uzhou 350122,China)
Abstract:To study the inhibitory effect of tryptanthrin on drug resistance to cisplatin chemotherapy for esophageal carcinoma and its mechanism,different treatments (blank control,cisplatin treatment,tryptanthrin treatment and cisplatin combined tryptanthrin treatment) of esophageal cancer Eca109 cells and cisplatin-resistant Eca109 cells (Eca109/cDDP) were performed on the basis of the purpose of experiments.Real-time quantitative PCR was used to detect the mRNA levels of multidrug resistance gene 1(MDR1) and glutathione-s-transferase-pi gene (GST-pi) in Eca109 and Eca109/cDDP cells.Western blot and/or immunofluorescence were used to detect the protein levels of MDR1 and GST-pi.The proliferation of cells was tested by cell counting kit (CCK-8).The results showed that tryptanthrin suppressed cell proliferation by inhibition of mRNA and protein levels of MDR1 and GST-pi in Eca109/cDDP cells.In summary,tryptanthrin can reverse the cisplatin resistance in Eca109/cDDP by its inhibition on MDR1 and GST-pi expression.It could be a potential adjuvant agent for chemotherapy.
Key words:tryptanthrin;combination therapy;esophageal cancer;cisplatin;drug resistance
引文格式:黃彬,蘇燕青,林曉嵐,等.色胺酮在食管癌化療耐藥過程中的作用[J].廈門大學(xué)學(xué)報(自然科學(xué)版),2016,55(4):495-500.
Citation:HUANG B,SU Y Q,LIN X L,et al.Effect of tryptanthrin on drug resistance during chemotherapy of esophageal cancer[J].Journal of Xiamen University(Natural Science),2016,55(4):495-500.(in Chinese)