張建峰,涂 溶,後藤孝
1河海大學(xué) 力學(xué)與材料學(xué)院,南京2100982武漢理工大學(xué) 材料復(fù)合新技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢4300703日本 東北大學(xué)金屬材料研究所,仙臺(tái)市980-8577,日本
旋轉(zhuǎn)CVD技術(shù)及其在陶瓷粉體擔(dān)載納米粒子催化劑制備中的應(yīng)用
張建峰1,涂溶2,後藤孝3
1河海大學(xué) 力學(xué)與材料學(xué)院,南京210098
2武漢理工大學(xué) 材料復(fù)合新技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室,武漢430070
3日本 東北大學(xué)金屬材料研究所,仙臺(tái)市980-8577,日本
擔(dān)載型納米粒子催化材料通常是指將金屬或金屬氧化物活性相以納米粒子的形式分散到惰性擔(dān)載陶瓷粉體表面而形成的復(fù)合粉體材料。提高納米粒子催化材料的分散均勻性是獲得高催化性能的關(guān)鍵。傳統(tǒng)的溶膠-凝膠法、浸潤(rùn)法等處理步驟冗長(zhǎng),易導(dǎo)致納米粒子的團(tuán)聚長(zhǎng)大,降低催化效果。流化床化學(xué)氣相沉積方法則比較適合處理粒徑在40 μm ~ 500 μm的擔(dān)載粉體。本文著重介紹了粉體旋轉(zhuǎn)化學(xué)氣相沉積技術(shù)的原理,并以鎳納米粒子為例闡述了這種技術(shù)的相關(guān)應(yīng)用。采用旋轉(zhuǎn)化學(xué)氣相沉積技術(shù),在六方氮化硼 (hBN)、立方氮化硼 (cBN)、氧化鋁 (Al2O3)、氧化硅 (SiO2) 等粉體表面沉積 (包覆) 了鎳納米粒子,顯示出了優(yōu)越的催化性能。本文同時(shí)分析了旋轉(zhuǎn)化學(xué)氣相沉積技術(shù)存在的問(wèn)題及未來(lái)的研究前景。
旋轉(zhuǎn)化學(xué)氣相沉積技術(shù);納米粒子催化材料;均勻分散
在全球能源日趨匱乏以及排放標(biāo)準(zhǔn)不斷提高的大背景下,開(kāi)發(fā)高活性低成本催化劑 (如 Ni或Ni3Al),將天然氣 (如甲烷) 重整制氫,成為重要的研究課題。典型的擔(dān)載型催化劑一般是由活性相(如金屬及金屬氧化物) 和具有高比表面積的惰性陶瓷擔(dān)載粉體 (如介孔二氧化硅、納米氧化鋁等)組成[1-4]。獲得高催化活性的關(guān)鍵在于催化劑納米粒子在擔(dān)載粉體表面的均勻分散[5]。
目前擔(dān)載型納米粒子催化劑的主要制備方法有溶膠-凝膠法、浸潤(rùn)法和化學(xué)氣相沉積 (CVD) 法等[6-12]。溶膠-凝膠和浸潤(rùn)等方法制備的擔(dān)載型納米粒子催化劑分散不夠均勻,且納米粒子尺寸分布較寬。對(duì)于浸潤(rùn)方法來(lái)說(shuō),由于納米粒子是通過(guò)物理方式吸附到擔(dān)載粉體表面,結(jié)合力較弱,因此納米粒子容易團(tuán)聚,在高溫催化反應(yīng)時(shí)易于團(tuán)聚燒結(jié),導(dǎo)致比表面積和催化活性的降低?;瘜W(xué)氣相沉積技術(shù)則可以克服這一缺點(diǎn)。在化學(xué)氣相沉積過(guò)程中,納米粒子通過(guò)前驅(qū)體氣體的分解在擔(dān)載粉體表面形核而生成,具有較高的分散度,并通過(guò)化學(xué)吸附與擔(dān)載粉體表面形成較強(qiáng)的界面相互作用。由于催化劑納米粒子是在接近于催化反應(yīng)溫度的條件下生成,因此具有很高的熱穩(wěn)定性。對(duì)于在平板上進(jìn)行化學(xué)氣相沉積來(lái)說(shuō),保證氣相與生長(zhǎng)表面的充分接觸并不存在問(wèn)題[13,14]。然而,由于粉體的團(tuán)聚以及巨大的比表面積,通過(guò)化學(xué)氣相沉積對(duì)粉體表面進(jìn)行包覆時(shí)情況則完全不同,變得異常困難[5]。在如此大比表面積的粉體表面實(shí)現(xiàn)納米粒子的均勻包覆成為研究者致力解決的問(wèn)題。
流化床-化學(xué)氣相沉積法通過(guò)將粉體流化,將大量固體顆粒懸浮于運(yùn)動(dòng)的流體之中,保證反應(yīng)氣體和粉末的良好接觸,同時(shí)將液相或固相金屬前驅(qū)體加熱揮發(fā),揮發(fā)氣體進(jìn)入反應(yīng)室,在粉體表面分解沉積,從而實(shí)現(xiàn)粉體的包覆[15-18]。根據(jù)粉料密度和粒度特性的不同,研究者將粉體劃分為A、B、C、D四類(lèi)[5,19,20]。如圖1所示,當(dāng)粉體的平均顆粒尺寸在40 μm ~ 500 μm、固體顆粒密度在1400 kg/m3~4000 kg/m3之間時(shí),屬于B類(lèi)粉體。這類(lèi)粉體流化性最好,最適合進(jìn)行流化床-化學(xué)氣相沉積法處理。而粉體小于40 μm (A類(lèi)或C類(lèi)) 或大于500 μm時(shí),由于難以達(dá)到穩(wěn)定的流化態(tài),不適于采用流化床-化學(xué)氣相沉積法進(jìn)行表面包覆。近年來(lái),研究者對(duì)流化床-化學(xué)氣相沉積技術(shù)進(jìn)行了改進(jìn),噴射型流化床-化學(xué)氣相沉積[21,22]、震動(dòng)型流化床-化學(xué)氣相沉積[23-25]以及循環(huán)流化床-化學(xué)氣相沉積[26,27]等儀器及技術(shù)應(yīng)運(yùn)而生,拓寬了流化床-化學(xué)氣相沉積技術(shù)的適用粉體范圍,但增加了制備成本和技術(shù)難度。
旋轉(zhuǎn) CVD 方法是一種在粉體表面包覆納米粒子的有效方法,具有包覆效果均勻、適用范圍廣等優(yōu)點(diǎn)。Itoh等人[28,29]報(bào)道了一種旋轉(zhuǎn)CVD方法,反應(yīng)室采用透明的石英玻璃管,紅外輻射加熱爐加熱粉體,以TiCl4-B2H6-H2和TiCl4-N2-H2作為反應(yīng)體系,在鱗片石墨和鈦粉表面包覆了TiN涂層。Santo等人[30]采用旋轉(zhuǎn)CVD方法,以有機(jī)金屬CVD方法制備了擔(dān)載金屬納米粒子催化劑,因此可以制備10 g以上的具有優(yōu)良催化性能的催化劑納米材料。
筆者于2008年開(kāi)始進(jìn)行新型 (改進(jìn)型) 旋轉(zhuǎn)CVD儀器的研究開(kāi)發(fā),用于粉體的表面包覆與改性[31,32]。圖2為儀器示意圖,主要由反應(yīng)室、原料罐、旋轉(zhuǎn)控制、真空泵以及加熱爐幾部分組成。由于粉體在反應(yīng)室內(nèi)處于浮游狀態(tài),因此該儀器對(duì)需包覆的粉體沒(méi)有粒徑限制,可以實(shí)現(xiàn)40 μm以下粉體的包覆。與已有文獻(xiàn)報(bào)道的類(lèi)似儀器相比,該儀器有如下一些特點(diǎn):
(1) 借助于原料罐內(nèi)壁焊接的葉片,可以使被包覆粉體在原料罐旋轉(zhuǎn)過(guò)程中不斷從高處落下而處于浮游狀態(tài),進(jìn)而使得粉體表面完全暴露于反應(yīng)氣體中;
(2) 可以通過(guò)調(diào)整旋轉(zhuǎn)速度調(diào)整粉體在空中的停滯時(shí)間;
(3) 借助于磁性流體密封保持反應(yīng)室內(nèi)的真空度,實(shí)現(xiàn)反應(yīng)室內(nèi)壓力的精確控制。
圖2 旋轉(zhuǎn)CVD儀器示意圖 (右圖為粉體在旋轉(zhuǎn)過(guò)程中的運(yùn)動(dòng)示意圖)Figure 2 Schematic of the rotary CVD apparatus. The left of the figure shows the simulation of the powder movement in the rotary process)
本文將以Ni金屬催化劑納米粒子為例,簡(jiǎn)要綜述已取得的部分成果。在以下例子中,將Ni金屬催化劑納米粒子包覆到粉體表明的具體實(shí)驗(yàn)步驟為:將二茂鎳原料2 g ~ 8 g放置于原料罐中加熱至120°C ~ 150°C,由載氣 (Ar) 攜帶至反應(yīng)罐中,載氣的流量控制在50 sccm。反應(yīng)罐的加熱溫度為550°C,旋轉(zhuǎn)速率控制在45 r/min。原料罐中粉體由于一直被葉片撥動(dòng)旋轉(zhuǎn)運(yùn)動(dòng),處于懸浮 (浮游)狀態(tài),因此能夠被均勻地包覆。反應(yīng)完成后,取出粉體,采用X-射線(xiàn)衍射 (XRD)、掃描電鏡 (SEM)等進(jìn)行粉體形貌的表征,并根據(jù)具體的應(yīng)用目標(biāo)測(cè)試其相應(yīng)的性能指標(biāo)。
催化化學(xué)氣相沉積法 (Catalytic chemical vapor deposition, CCVD) 是合成碳納米管的常用方法。在過(guò)渡金屬Fe、Co或Ni等催化劑的作用下,將含碳?xì)怏w (如甲烷、乙炔等) 或有機(jī)溶液 (苯、甲醇等) 在特定溫度下催化分解或者直接熱分解含有Fe、Ni等金屬元素的有機(jī)化合物,即可生長(zhǎng)出碳納米管[11,33-36]。采用CCVD可以選擇性地以多種形式生長(zhǎng)碳納米管,尤其是通過(guò)將催化劑負(fù)載到需要的載體上可以控制碳納米管的表面生長(zhǎng)位點(diǎn),制備多種結(jié)構(gòu)的碳納米管,例如非晶型的碳層、碳纖維、石墨烯層以及單壁碳納米管 (SWNTs) 和多壁碳納米管 (MWNTs) 等。催化劑的制備與分散方法主要有溶膠-凝膠、浸漬法等。催化劑在載體上的分散狀況是決定所獲得的碳納米管的形貌及產(chǎn)量的重要因素,例如高分散的催化劑可以降低沉積的碳量[37]。
筆者以二茂鎳為原料,通過(guò)原位分解生成金屬鎳作為催化劑,在立方氮化硼 (cBN) 粉體表面一步合成了碳納米管[38]。有趣的是,同樣的實(shí)驗(yàn)條件下,在六方氮化硼 (hBN) 表面卻未能形成碳納米管。如圖3所示,在hBN表面包覆的鎳納米粒子粒徑約為20 nm左右,未看到碳納米管的形成;而在cBN表面鎳納米粒子的粒徑最小為10 nm,最大達(dá)到了50 nm左右,形成了長(zhǎng)度為500 nm、外徑20 nm ~ 50 nm的碳納米管,且按照頂部生長(zhǎng)模式生長(zhǎng)。
導(dǎo)致這一差別的原因或許可以從熱導(dǎo)角度進(jìn)行分析。在CVD反應(yīng)過(guò)程中,二茂鎳通過(guò)如下反應(yīng)生成鎳納米粒子,同時(shí)為石墨或碳納米管的形成提供碳源[39-41]:
圖3 包覆在(a,b) hBN和(c,d) cBN粉體表面上的鎳納米粒子的透射電鏡照片[38]Figure 3 TEM images of Ni nano-particle precipitated on (a) hBN and (c) cBN. (b) and (d) are high magnification images of (a) and (c), respectively[38]
圖4 鎳包覆cBN及hBN粉體中碳的形成機(jī)理:路線(xiàn) (1) 表示了碳納米管的形成過(guò)程,路線(xiàn) (2) 表示了石墨層包覆在鎳表面的形成過(guò)程Figure 4 Carbon incorporation mechanism in Ni nano-particle precipitated cBN and hBN powders: the route (1) shows the growth process of carbon nanotubes, and the route (2) shows the formation process of only graphite layers on nickel
圖4給出了碳納米管形成機(jī)理示意圖。式 (1) 反應(yīng)后在hBN或cBN表面形成鎳納米粒子,隨后C5H5+n繼續(xù)加速分解。由于C5H5+n的分解是一個(gè)放熱過(guò)程,在鎳納米粒子上部 (與氣體接觸部分)溫度高于底部 (與hBN或cBN接觸部分),從而形成了溫度梯度,使得碳在鎳中擴(kuò)散到底部[42]。由于鎳底部與擔(dān)載粉體接觸,擔(dān)載粉體的熱導(dǎo)率成為決定碳擴(kuò)散的重要因素。鎳、hBN和cBN的熱導(dǎo)率分別為90 W·m-1·K-1、28 W·m-1·K-1~ 33 W·m-1·K-1和300 W·m-1·K-1~ 600 W·m-1·K-1[43.44]。cBN具有極高的熱導(dǎo)率,能夠?qū)㈡嚤砻娈a(chǎn)生的熱量迅速吸收,因此能夠保持碳的持續(xù)擴(kuò)散,從而導(dǎo)致了碳納米管的底部生長(zhǎng)模式[45]。而hBN熱導(dǎo)僅為鎳的三分之一左右,使得熱量在鎳本身聚集,分解的碳包覆在鎳的表面,破壞了鎳的繼續(xù)催化作用,因而難以形成碳的接續(xù)生長(zhǎng),也就不可能生成碳納米管。因此可以認(rèn)為:hBN與cBN的熱導(dǎo)差異大,導(dǎo)致了碳納米管生成能力的差異。
天然氣、汽油等的燃燒是造成溫室效應(yīng)以及霧霾天氣的重要原因。選擇新型能源以降低含碳原料的使用勢(shì)在必行。甲烷是含氫量最大的烴,是天然氣、沼氣、油田氣及煤礦坑道氣的主要成分,在自然界的分布范圍很廣,可作為燃料及制造氫氣、炭黑、一氧化碳、乙炔、氫氰酸及甲醛等物質(zhì)的原料[46-48]。甲烷直接分解產(chǎn)生的氫氣不需要進(jìn)行純化就可以應(yīng)用于質(zhì)子交換膜燃料電池,而分解產(chǎn)生的碳則可以用作直接碳燃料電池的燃料。
由于吸熱反應(yīng)的原因,甲烷分解的溫度高達(dá) 1300°C,而使用催化劑則可以將分解溫度降低到800°C以下,因此具有很好的應(yīng)用前景,而高分散的催化劑則是降低分解溫度并提高催化效果的關(guān)鍵因素[46]。用作催化劑擔(dān)載體的傳統(tǒng)材料 (包括SiO2、γ-Al2O3、沸石等) 往往具有低的熱導(dǎo)率,會(huì)使得分散其上的金屬納米粒子燒結(jié)團(tuán)聚,這些粉體本身的親水性也會(huì)導(dǎo)致低溫下催化劑被水覆蓋侵蝕,從而導(dǎo)致催化劑活性的損失[48,49]。六方氮化硼具有較高的熱導(dǎo)率和高溫穩(wěn)定性以及較好的化學(xué)惰性,而且本身也是一種疏水性材料,能夠阻止表面水分的凝結(jié),因此作為催化劑載體具有很大的優(yōu)勢(shì)。
筆者曾嘗試采用hBN作為催化劑載體,采用旋轉(zhuǎn)CVD技術(shù)將Ni納米粒子分散到表面。圖2顯示,采用二茂鎳在hBN粉體表面包覆了均勻分布的鎳納米粒子,引入氧氣消除了由二茂鎳碳?xì)浠鶊F(tuán)產(chǎn)生的碳雜質(zhì)污染[50]。Ni3Al是一種常用的催化材料,具有良好的制氫催化性能[51,52]。筆者以 Ni包覆的 hBN作為催化劑,以Ni3Al金屬間化合物催化劑作為對(duì)比材料,進(jìn)行了甲烷制氫的催化實(shí)驗(yàn)研究[53],結(jié)果如圖 5所示。顯然,采用Ni/hBN作為催化劑的情況下,甲烷轉(zhuǎn)化率及制氫速率均高于對(duì)比材料Ni3Al。
圖5 甲烷轉(zhuǎn)化率與氫氣產(chǎn)生速率隨溫度的變化關(guān)系Figure 5 The dependence of conversion of CH4and production rate of H2on temperature
我國(guó)的能源結(jié)構(gòu)“缺油、富煤”,作為替代燃料的甲醇主要來(lái)自于煤化工和天然氣合成,可以利用煤炭、天然氣、煤層氣等制成,在新能源汽車(chē)的熱潮中發(fā)展前景廣闊。通過(guò)高能量密度的甲醇或乙醇液體的催化轉(zhuǎn)化即時(shí)產(chǎn)生氫氣,是高效、安全利用氫氣作為機(jī)車(chē)燃料的最佳選擇。工業(yè)上利用甲醇制氫有甲醇分解、甲醇部分氧化和甲醇蒸汽重整等幾種方法[54-57];在這些方法中,主要采用兩種催化劑催化反應(yīng)過(guò)程,一類(lèi)為負(fù)載型貴金屬催化劑,另一類(lèi)為復(fù)合金屬氧化物型催化劑。Al2O3具有較好的熱導(dǎo)和化學(xué)惰性,是常用的催化劑擔(dān)載材料 (氧化物)。為了測(cè)試旋轉(zhuǎn) CVD技術(shù)在不同粒徑粉體表面包覆納米粒子的可行性,筆者在不同粒徑的 Al2O3粉體表面包覆了鎳納米粒子,研究了Al2O3粒徑對(duì)于包覆的鎳納米粒子的形貌、粒徑及催化性能的影響規(guī)律。
如圖6[58]所示,當(dāng)Al2O3粒徑最小為80 nm、最大為150 μm時(shí),均在粉體表面成功包覆了均勻分布的Ni納米粒子,Ni納米粒子的粒徑最大為62.5 nm,最小為8 nm,這表明旋轉(zhuǎn)CVD技術(shù)突破了流化床CVD的尺寸限制,對(duì)于粉體材料的包覆具有更大的適用范圍。但值得注意的是,隨著Al2O3粒徑的增加,相應(yīng)地粉體比表面積減小,暴露于反應(yīng)氣體中的可供鎳納米粒子著床的面積減小,因此沉積在其表面的鎳納米粒子數(shù)量減少,且由于納米粒子接觸及團(tuán)聚的原因,粒徑隨之增大。
圖6 Al2O3載體粉體粒徑對(duì)包覆其表面的鎳納米粒子粒徑的影響[58]Figure 6 Effect of particle size of Al2O3on the size of Ni particle forming on the surface of Al2O3powder[58]
圖7 氫氣產(chǎn)生速率與粉體的粒徑、比表面積之間的關(guān)系[58]Figure 7 The dependence of production rate of H2on the particle size of Al2O3and specific area of Ni/Al2O3catalysts[58]
將制備的Al2O3擔(dān)載Ni金屬納米粒子用于甲醇的分解催化實(shí)驗(yàn) (CH4OH → CO + 3H2),結(jié)果如圖7所示。隨著粉體粒徑的降低和比表面積的增加,氫氣的產(chǎn)生速率隨之增加。前已述及,流化床-化學(xué)氣相沉積技術(shù)對(duì)于納米粉體較難實(shí)現(xiàn)流化及表面均勻包覆處理[59-61]。而這一本研究則從粉體包覆角度實(shí)現(xiàn)了A類(lèi)和C類(lèi)粉體 (圖1) 中表面鎳納米粒子的包覆,提供了一種提高催化劑催化性能的新思路和新技術(shù)。
有序介孔材料于上世紀(jì)90年代迅速興起,得到國(guó)際物理學(xué)、化學(xué)與材料學(xué)界的高度重視,并迅速發(fā)展成為跨學(xué)科的研究熱點(diǎn)之一。介孔材料的發(fā)展,不僅將分子篩由微孔范圍擴(kuò)展至介孔范圍,而且使得大分子吸附、催化反應(yīng)、藥物存儲(chǔ)等得以實(shí)現(xiàn),在吸附分離、化工催化、生物醫(yī)藥、功能材料等眾多行業(yè)領(lǐng)域具有很好的應(yīng)用前景[62,63]。按照化學(xué)組成,介孔材料可以分為硅系和非硅系兩類(lèi),其中硅系介孔材料 (如MCM-41[64,65]、SBA-15[66-68]等) 具有表面積和孔道體積大、尺寸可控調(diào)節(jié)以及孔徑分布較窄、可控、均一等特點(diǎn),是目前研究較多的一類(lèi),技術(shù)也比較成熟。
選用介孔SiO2作為制備納米鎳、金等催化劑的載體,其大的比表面積及孔道結(jié)構(gòu)可以使得納米金屬離子分散均勻且不易聚結(jié)長(zhǎng)大,因而提高催化劑在反應(yīng)中的穩(wěn)定性[69,70]。目前主要的制備方法包括浸漬法、沉積-沉淀法和化學(xué)氣相沉積法,同時(shí)還輔之以表面功能化修飾,以獲得均勻分散的納米粒子,并限域于介孔孔道內(nèi)[68,71]。但表面修飾改性的制備時(shí)間較長(zhǎng),步驟繁瑣,且表面改性劑的存在對(duì)目標(biāo)反應(yīng)有不利影響。筆者應(yīng)用旋轉(zhuǎn)CVD技術(shù),通過(guò)保持介孔SiO2粉體 (介孔孔徑為7.1 nm)處于浮游狀態(tài),將熱分解產(chǎn)生的納米粒子定向裝載于介孔孔道內(nèi),獲得了均勻分布的鎳/氧化鎳納米粒子[72]。
圖9?。╝) 介孔二氧化硅及 (b,c) 鎳/氧化鎳裝載的介孔二氧化硅的小角X射線(xiàn)衍射圖譜:(b) RO2= 0,(c) RO2= 0.33 × 10-6m3s-1 [72]Figure 9 LAXRD patterns of (a) mesoporous silica and Ni-precipitated mesoporous silica at (b) RO2= 0and (c) RO2= 0.33 × 10-6m3s-1[72]
如圖8所示的TEM照片可以看出,納米粒子的粒徑為5 nm左右,略小于孔道尺寸。隨著氧氣含量的增加,鎳納米粒子仍然未有長(zhǎng)大,表明納米粒子處于孔道之內(nèi)。小角度X射線(xiàn)衍射結(jié)果也驗(yàn)證了這一論斷 (圖9)。裝載鎳納米粒子后,SiO2(100) 峰的強(qiáng)度下降明顯,表明鎳的裝載降低了 (100)的有序度,且 (100) 峰的位置向左偏移了0.06°,說(shuō)明鎳的裝載使得 SiO2的有序框架膨脹。裝載鎳納米粒子后用于甲醇的分解催化實(shí)驗(yàn),在633 K獲得的最大氫氣產(chǎn)生速率是1150 × 10-3mol·kg-1·s-1。
旋轉(zhuǎn)CVD方法通過(guò)旋轉(zhuǎn)撥片、磁流體密封、原料工藝系統(tǒng)等多方面的儀器設(shè)計(jì)思路,將被包覆粉體浮游于反應(yīng)氣體氣氛中,使得在粉體特別是微納米粉體表面均勻包覆 (沉積) 改性納米粒子成為可能。采用旋轉(zhuǎn)CVD方法,在不同的載體粉體表面包覆了Ni納米粒子,顯示出了良好的催化性能。
旋轉(zhuǎn)CVD方法目前存在的主要問(wèn)題在于:
(1) 該技術(shù)還僅限于實(shí)驗(yàn)室制備階段,每次制備的材料的量難以突破100 g以上;
(2) 采用金屬有機(jī)原料制備納米粒子時(shí)容易引入碳雜質(zhì),而采用氧氣去除碳雜質(zhì)的同時(shí)會(huì)導(dǎo)致金屬納米粒子的粗化和長(zhǎng)大;
(3) 關(guān)于粉體包覆的機(jī)理并不明晰。
在未來(lái)的研究中,應(yīng)針對(duì)上述問(wèn)題,通過(guò)引入多元供料系統(tǒng)等方式,探討將旋轉(zhuǎn)CVD方法用于制備金屬間化合物、合金納米粒子,應(yīng)用于多元非貴金屬催化材料的可能性。此外,還應(yīng)結(jié)合流體動(dòng)力學(xué)、材料力學(xué)等學(xué)科,模擬分析粉體的運(yùn)動(dòng)狀態(tài),建立相應(yīng)的理論模型,以指導(dǎo)實(shí)驗(yàn)研究的進(jìn)一步優(yōu)化,獲得高分散的納米粒子催化材料。
[1] DAVDA RR, SHABAKER JW, HUBER GW, et al. A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts [J]. Applied Catalysis B, 2005, 56 (1-2): 171-186.
[2] LONG NV, YANG Y, THI CM, et al. The development of mixture, alloy, and core-shell nanocatalysts with nanomaterial supports for energy conversion in low-temperature fuel cells [J]. Nano Energy, 2013, 2 (5): 636-676.
[3] NAHAR G, DUPONT V. Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria-zirconia supported catalysts: Review [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 777-796.
[4] Al-DALAMA K, STANISLAUS A. Temperature programmed reduction of SiO2-Al2O3supported Ni, Mo and NiMo catalysts prepared with EDTA [J]. Thermochimica Acta, 2011, 520 (1-2): 67-74.
[5] VAHLAS C, CAUSSAT B, SERP P, et al. Principles and applications of CVD powder technology [J]. Materials Science & Engineering R, 2006, 53 (1-2): 1-72.
[6] LAMBERT CK, GONZALEZ RD. The importance of measuring the metal content of supported metal catalysts prepared by the sol-gel method [J]. Applied Catalysis A: General, 1998, 172 (2): 233-239.
[7] VOLOVYCH I, KASAKA Y, SCHWARZE M, et al. Investigation of sol-gel supported palladium catalysts for Heck coupling reactions in o/w-microemulsions [J]. Journal of Molecular Catalysis A, 2014, 393: 210-221.
[8] LEKHAL A, GLASSER BJ, KHINAST JG. Impact of drying on the catalyst profile in supported impregnation catalysts [J]. Chemical Engineering Science, 2001, 56 (15): 4473-4487.
[9] LIU X, KHINAST JG, GLASSER BJ. A parametric investigation of impregnation and drying of supported catalysts [J]. Chemical Engineering Science, 2008, 63 (18): 4517-4530.
[10] SHI L, JIN Y, XING C, et al., Studies on surface impregnation combustion method to prepare supported Co/SiO2catalysts and its application for Fischer-Tropsch synthesis [J]. Applied Catalysis A, 2012, 435-436: 217-224.
[11] BISTAMAM MSA, AZAM MA. Tip-growth of aligned carbon nanotubes on cobalt catalyst supported by alumina using alcohol catalytic chemical vapor deposition [J]. Results in Physics, 2014, 4: 105-106.
[12] XU L, LIN X, XI Y, et al., Alumina-supported Fe catalyst prepared by vapor deposition and its catalytic performance for oxidative dehydrogenation of ethane [J]. Materials Research Bulletin, 2014, 59: 254-260.
[13] CHOY KL. Chemical vapour deposition of coatings [J]. Progress in Materials Science, 2003, 48: 57-170.
[14] GARCIA JRV, GOTO T. Thermal barrier coatings produced by chemical vapor deposition [J]. Science and Technology of Advanced Materials, 2003, 4 (4): 397-402.
[15] KOJIMA T, KIMURA T, MATSUKATA M. Development of numerical model for reactions in fluidized bed grid zone-application to chemical vapor deposition of polycrystalline silicon by monosilane pyrolysis [J]. Chemical Engineering Science, 1990, 45 (8): 2527-2534.
[16] CZOK G, WERTHER J. Particle coating by chemical vapor deposition in a fluidized bed reactor [J]. China Particuology, 2005, 3 (1-2): 105-112.
[17] BERTRAND N, MAURY F, DUVERNEUIL P. SnO2coated Ni particles prepared by fluidized bed chemical vapor deposition [J]. Surface and Coatings Technology, 2006, 200 (24): 6733-6739.
[18] PEREZ FJ, HIERRO MP, CARPINTERO MC, et al. Aluminum and silicon co-deposition by the chemical vapor deposition in fluidized bed reactor technique as a precursor of protective coatings of mullite [J]. Surface and Coatings Technology, 2004, 184 (2-3): 361-369.
[19] GELDART D. Types of gas fluidization [J]. Powder Technology, 1973, 7 (5): 285-292.
[20] MOLERUS O. Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces [J]. Powder Technology, 1982, 33 (1): 81-87.
[21] SARI S, KULAH G, KOKSAL M. Characterization of gas-solid flow in conical spouted beds operating with heavy particles [J]. Experimental Thermal and Fluid Science, 2012, 40: 132-139.
[22] RODRIGUEZ P, CAUSSAT B, ABLITZER C, et al. Fluidization and coating of very dense powders by fluidized bed chemical vapour deposition [J]. Chemical Engineering Research and Design, 2013, 91 (12): 2477-2483.
[23] CADORET L, REUGE N, PANNALA S, et al. Silicon chemical vapor deposition on macro and submicron powders in a fluidized bed [J]. Powder Technology, 2009, 190 (1-2): 185-191.
[24] CADORET L, ROSSIGNOL C, DEXPERT-GHYS J, et al. Chemical vapor deposition of silicon nanodots on TiO2submicronic powders in vibrated fluidized bed [J]. Materials Science and Engineering B, 2010. 170 (1-3): 41-50.
[25] ZEILSTRA C, van der HOEF MA, KUIPERS JAM. Experimental and numerical study of solids circulation in gas-vibro fluidized beds [J]. Powder Technology, 2013, 248: 153-160.
[26] BORER B, VON ROHR R. Growth structure of SiOxfilms deposited on various substrate particles by PECVD in a circulating fluidized bed reactor [J]. Surface and Coatings Technology, 2005, 200: 377-381.
[27] KIM GH, KIM SD, PARK SH. Plasma enhanced chemical vapor deposition of TiO2films on silica gel powders at atmospheric pressure in a circulating fluidized bed reactor [J]. Chemical Engineering and Processing: Process Intensification, 2009, 48 (6): 1135-1139.
[28] ITOH H, HATTORI K, OYA M, et al. Preparation of TiB2-TiN double layer coated iron lowder by rotary powder bed CVD [J]. Journal of the Ceramic Society of Japan, 1990, 98: 499-503.
[29] ITOH H, WATANABE N, NAKA S. Preparation of titanium nitride coated powders by rotary powder bed chemical vapour deposition [J]. Journal of Materials Science, 1988, 23: 43-47.
[30] SANTO VD, GALLO A, GATTI MM, et al. Tailored supported metal nanoparticles by CVD: An easy and efficient scale-up by a rotary bed OMCVD device [J]. Journal of Materials Chemistry, 2009. 19 (23): 9030-9037.
[31] ZHANG J, TU R, GOTO T. Preparation of Ni-precipitated hBN powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering [J]. Journal of Alloys and Compounds, 2010,502 (2): 371-375.
[32] ZHANG J, TU R, GOTO T. Spark plasma sintering of Al2O3-cBN composites facilitated by Ni nanoparticle precipitation on cBN powder by rotary chemical vapor deposition [J]. Journal of the European Ceramic Society, 2011, 31: 2083-2087.
[33] TRAN KY, HEINROCHS B, COLOMER JF, et al. Carbon nanotubes synthesis by the ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co, and Fe-Co/Al2O3sol-gel catalysts [J]. Applied Catalysis A, 2007, 318: 63-69.
[34] DANAFAR F, FAKHRU'L-RAZI A, SALLEH MAM, et al. Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes: A review. Chemical Engineering Journal, 2009, 155: 37-48.
[35] DANAFAR F, FAKHRU'L-RAZI A, SALLEH MAM, et al. Influence of catalytic particle size on the performance of fluidized-bed chemical vapor deposition synthesis of carbon nanotubes [J]. Chemical Engineering Research and Design, 2011, 89 (2): 214-223.
[36] POPOVSKA N, DANOVA K, JIPU I, et al. Catalytic growth of carbon nanotubes on zeolite supported iron, ruthenium and iron/ruthenium nanoparticles by chemical vapor deposition in a fluidized bed reactor [J]. Powder Technology, 2011, 207: 17-25.
[37] WU XB, CHEN P, LIN J, et al. Hydrogen uptake by carbon nanotubes [J]. International Journal of Hydrogen Energy, 2000, 25 (3): 261-265.
[38] ZHANG J, TU R, GOTO T. Preparation of carbon nanotube by rotary CVD on Ni nano-particle precipitated cBN using nickelocene as a precursor [J]. Materials Letters, 2011, 65 (2): 367-370.
[39] BRISSONNEAU L, REYNES A, VAHLAS C. MOCVD processed Ni films from nickelocene. Part III: gas phase study and deposition mechanisms [J]. Chemical Vapor Deposition, 1999, 5 (6): 281-290.
[40] BRISSONNEAU L, de CARO D, BOURSIER D, et al. MOCVD-processed Ni films from nickelocene. Part II: carbon content of the deposits [J]. Chemical Vapor Deposition, 1999, 5 (4): 143-149.
[41] BRISSONNEAU L, VAHLAS C. MOCVD-processed Ni films from nickelocene. Part I: growth rate and morphology [J]. Chemical Vapor Deposition, 1999, 5 (4): 135-142.
[42] KANZPW H, DING A. Formation mechanism of single-wall carbon nanotubes on liquid-metal particles [J]. Physical Review B, 1999, 60 (15): 11180-11186.
[43] PIERSON HO. Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, andApplications [M]. Westwood: Noyes Publications, 1996.
[44] 張絲雨. 最新金屬材料速用速查使用手冊(cè) [M]. 北京:中國(guó)科技文化出版社, 2005.
[45] BAKER RTK. Catalytic growth of carbon filaments [J]. Carbon, 1989, 27 (3): 315-323.
[46] ABBAS HF, wan DAUD WMA. Hydrogen production by methane decomposition: a review [J]. International Journal of Hydrogen Energy, 2010, 35 (3): 1160-1190.
[47] MONDAL KC, CHANDRAN SR. Evaluation of the economic impact of hydrogen production by methane decomposition with steam reforming of methane process [J]. International Journal of Hydrogen Energy,2014, 39 (18): 9670-9674.
[48] PUDUKUDY M, YAAKOB Z, AKMAL ZS. Direct decomposition of methane over SBA-15 supported Ni,Co and Fe based bimetallic catalysts [J]. Applied Surface Science, 2015, 330: 418-430.
[49] WU JCS, FAN YC, LIN CA. Deep oxidation of methanol using a novel Pt/boron nitride catalyst [J]. Industrial & Engineering Chemistry Research, 2003, 42 (14): 3225-3229.
[50] ZHANG J, TU R, GOTO T. Spark plasma sintering of Al2O3-Ni nanocomposites using Ni nanoparticles produced by rotary chemical vapour deposition [J]. Journal of the European Ceramic Society, 2014, 34: 435-441.
[51] CHUN D, XU Y, DEMURA M, et al. Catalytic properties of Ni3Al foils for methanol decomposition [J]. Catalysis Letters, 2006, 106 (1-2): 71-75.
[52] MA Y, XU Y, DEMURA M, et al. Catalytic stability of Ni3Al powder for methane steam reforming [J]. Applied Catalysis B, 2008, 80 (1-2): 15-23.
[53] ISHIHARA H. Master Thesis, Sendai: Tohoku University, 2011.
[54] IULIANELLI A, RIBEIRINHA P, MENDES A, et al. Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review [J]. Renewable & Sustainable Energy Reviews, 2014,29 (7): 355-368.
[55] 時(shí)春蓮. 甲醇裂解制氫工藝技術(shù)改進(jìn)[J]. 廣東化工, 2015, 42 (16): 298-299.
[56] 李守保, 李德才. 甲醇裂解制氫氣的相關(guān)技術(shù)研究[J]. 中國(guó)化工貿(mào)易, 2015, 7 (32) 228-228.
[57] 蔣元力, 林美淑, 金東顯. 甲醇制氫的燃料電池技術(shù)及應(yīng)用[J]. 化工進(jìn)展, 2001, 20 (7): 34-37.
[58] ZHANG J, TU R, GOTO T. Precipitation of Ni nanoparticle on Al2O3powders by novel rotary chemical vapor deposition [J]. Journal of the Ceramic Society of Japan, 2013, 121 : 226-229.
[59] AJBAR A, BAKHBAKHI Y, ALI S, et al. Fluidization of nano-powders: effect of sound vibration and pre-mixing with group A particles [J]. Powder Technology, 2011, 206 (3): 327-337.
[60] BARLETTA D, POLETTO M. Aggregation phenomena in fluidization of cohesive powders assisted by mechanical vibrations [J]. Powder Technology, 2012, 225: 93-100.
[61] SALEH K, JAOUDE MTMA, MORGENEYER M, et al. Dust generation from powders: a characterization test based on stirred fluidization [J]. Powder Technology, 2014, 255: 141-148.
[62] IMPENS NREN, VOORT PVD, VANSANT EF. Silylation of micro-, meso- and non-porous oxides: a review [J]. Microporous & Mesoporous Materials, 1999, 28 (2): 217-232.
[63] SCHUTH F, SCHMIDT W. Microporous and mesoporous materials [J]. Advanced Materials, 2002, 14 (9): 629-638.
[64] TREWYN BG, SLOWING II, GIRI S, et al. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release [J]. Accounts of Chemical Research, 2007, 40 (9): 846-853.
[65] ZHAO X, LU G, MILLAR G, et al. Synthesis and characterization of highly ordered MCM-41 in an alkali-free system and its catalytic activity [J]. Catalysis Letters, 1996, 38 (1-2): 33-37.
[66] SHENG X, KONG J, ZHOU Y, et al. Direct synthesis, characterization and catalytic application of SBA-15 mesoporous silica with heteropolyacid incorporated into their framework [J]. Microporous and Mesoporous Materials, 2014, 187: 7-13.
[67] KATIYAR A, YADAV S, SMIMIOTIS PG, et al. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules [J]. Journal of Chromatography A, 2006, 1122 (1-2): 13-20.
[68] CHEN CS, CHEN CC, CHEN CT, et al. Synthesis of Cu nanoparticles in mesoporous silica SBA-15 functionalized with carboxylic acid groups [J]. Chemical Communications, 2011, 47 (8): 2288-2290.
[69] ZAIZI SN, GHASEMI S, CHIANI E. Nickel/mesoporous silica (SBA-15) modified electrode: an effective porous material for electrooxidation of methanol [J]. Electrochimica Acta, 2013, 88: 463-472.
[70] ZHANG Q, QIAN J, LI X, et al. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging [J]. Nanotechnology, 2010, 21 (5): 055704.
[71] YIU HHP, KEANE MA, LETHBRIDGE ZAD, et al. Synthesis of novel magnetic iron metal-silica (Fe-SBA-15) and magnetite-silica (Fe3O4-SBA-15) nanocomposites with a high iron content using temperature-programed reduction [J]. Nanotechnology, 2008, 19 (25): 255606.
[72] ZHANG J, TU R, GOTO T. Precipitation of Ni and NiO nanoparticle catalysts on zeolite and mesoporous silica by rotary chemical vapor deposition. Journal of the Ceramic Society of Japan, 2013, 121: 891-894.
Advances in Rotary Chemical Vapor Deposition and Its Applications in Fabrication of Ceramic-Supported Nanoparticle Catalysts
ZHANG Jian-Feng1, TU Rong2, GOTO Takashi31College of Mechanics and Materials, Hohai University, Nanjing 210098, China2State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China3Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Supported catalysts are usually composite powders composed of catalytic nanoparticles dispersed on inert support powders. The uniform distribution of nanoparticles is a key factor to get the high catalytic performance. Traditional methods, such as sol-gel and impregnation,would induce the agglomeration of nanoparticles with a long treating procedure. Whereas the fluidized bed chemical vapor deposition (FBCVD) is applicable for surface modification of powders 40 μm ~ 500 μm in diameter. This review introduces the technical principles of the rotary CVD (RCVD) method and its successful applications with Ni as an example catalyst. The Ni nanoparticles were successfully dispersed on ceramic powders such as hBN, cBN, Al2O3and SiO2, and exhibited superior catalytic performance. The challenges were also presented for further applications.
Rotary CVD technique; nanoparticle catalysts; Uniform distribution
TB321
1005-1198 (2016) 03-0179-11
A
10.16253/j.cnki.37-1226/tq.2016.03.003
2016-01-30
2016-03-10
國(guó)家自然科學(xué)基金 (51372188,51301059);材料復(fù)合新技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金(2016-KF-8);日本學(xué)術(shù)振興會(huì)科學(xué)研究費(fèi)助成事業(yè)費(fèi) (若手B, 25820328)。
通訊作者: 張建峰 (1978 -), 男, 山東泰安人, 教授。E-mail: jfzhang_sic@163.com。
及
張建峰,男,現(xiàn)任河海大學(xué)教授、博士生導(dǎo)師。2007年博士畢業(yè)于中國(guó)科學(xué)院上海硅酸鹽研究所,并留所工作。2008年開(kāi)始先后在日本和德國(guó)從事博士后研究工作,2012年任日本東北大學(xué)助理教授,2014年回國(guó)到河海大學(xué)從事材料學(xué)教學(xué)和科研工作。主要從事先進(jìn)環(huán)境處理用二維納米材料、粉體表面包覆處理等方面的理論和應(yīng)用方面的研究。擁有授權(quán)中國(guó)發(fā)明專(zhuān)利11項(xiàng);發(fā)表專(zhuān)業(yè)學(xué)術(shù)論文60篇,參與編寫(xiě)英文學(xué)術(shù)著作2章。2010年獲得日本學(xué)術(shù)振興會(huì)獎(jiǎng)學(xué)金,2013年入選江蘇省特聘教授,2015年入選江蘇省六大人才高峰計(jì)劃。兼任中國(guó)硅酸鹽學(xué)會(huì)測(cè)試技術(shù)分會(huì)理事、江蘇省顆粒學(xué)會(huì)常務(wù)理事等學(xué)術(shù)職務(wù)。