王新月, 葛明橋, 馮古雨
(1. 江南大學 生態(tài)紡織教育部重點實驗室,江蘇 無錫 214122; 2. 江南大學 紡織服裝學院,江蘇 無錫 214122;
?
山梨醇摻雜對PVA/PEDOT∶PSS共混纖維結(jié)構(gòu)和導(dǎo)電性能的影響*
王新月1, 2, 葛明橋1, 2, 馮古雨1,2
(1. 江南大學 生態(tài)紡織教育部重點實驗室,江蘇 無錫 214122; 2. 江南大學 紡織服裝學院,江蘇 無錫 214122;
摘要:為改善PVA/PEDOT∶PSS共混纖維的導(dǎo)電性能,采用濕法紡絲的方法,通過向PVA/PEDOT∶PSS混合紡絲液中添加山梨醇,制備出經(jīng)山梨醇摻雜的PVA/PEDOT∶PSS共混纖維。采用紅外光譜分析儀(FT-IR),高阻計,X射線衍射儀(XRD),顯微共聚焦激光拉曼光譜儀,掃描電子顯微鏡(SEM),電子單纖維強力儀對共混纖維的結(jié)構(gòu)與性能進行測試表征。通過對比分析摻雜前后共混纖維電導(dǎo)率的變化,探究了山梨醇摻雜對PVA/PEDOT∶PSS共混纖維結(jié)構(gòu)和導(dǎo)電性能的影響。結(jié)果表明,山梨醇摻雜可以改善PVA/PEDOT∶PSS共混纖維的導(dǎo)電性能,摻雜質(zhì)量分數(shù)為7%時,共混纖維電導(dǎo)率達到19.1 S/cm。XRD結(jié)果顯示,摻雜未改變PVA/PEDOT∶PSS共混纖維的結(jié)晶性能和聚集態(tài)結(jié)構(gòu);拉曼光譜顯示,摻雜使得PEDOT的主要特征峰紅移,PEDOT主鏈發(fā)生苯-醌轉(zhuǎn)變;摻雜使得共混纖維的表面逐漸變得光滑;摻雜后,共混纖維的拉伸強度升高,斷裂伸長降低。
關(guān)鍵詞:山梨醇;PVA/PEDOT∶PSS;共混纖維
0引言
電子型導(dǎo)電聚合物聚 3,4-乙撐二氧噻吩(PEDOT),經(jīng)聚對苯乙烯磺酸根陰離子 (PSS)摻雜后,可以穩(wěn)定地分散在水溶液中,具有高電導(dǎo)率,良好的穩(wěn)定性及較好的光學透明性,在抗靜電涂層[1-2]、電致變色顯示器[3-5]及有機太陽能電池[6-8]等方面應(yīng)用廣泛。近年來,通過濕法紡絲制備PEDOT∶PSS導(dǎo)電纖維的研究迅速發(fā)展,因其具有高電導(dǎo)率,電化學感應(yīng)特性[9]及良好的電荷儲存能力[9],在制備多功能智能電子織物、化學傳感器[10]、電化學驅(qū)動器[11]及儲能電極[12]方面有廣泛的應(yīng)用前景。Okuzaki等[13]通過濕法紡絲制備出PEDOT∶PSS導(dǎo)電纖維,隨后用乙二醇[14]浸泡提高纖維電導(dǎo)率;Jalili等[15]將聚乙二醇加入紡絲液,通過一步濕法紡絲方法制備出具有高電導(dǎo)率的PEDOT∶PSS導(dǎo)電纖維。但是,由于單一成分的PEDOT∶PSS導(dǎo)電纖維成本昂貴且不能滿足部分紡織材料加工時的力學性能要求,因此,選擇力學性能良好、制備工藝簡單的PVA,與PEDOT∶PSS共混在降低成本的同時提高纖維的力學性能。但是由于PVA是絕緣性高分子,與PEDOT∶PSS的共混很大程度上降低了共混纖維的導(dǎo)電性能,因此本文在之前工作的基礎(chǔ)上,將山梨醇作為摻雜劑加入紡絲液,并深入探討了山梨醇摻雜對PVA/PEDOT∶PSS共混導(dǎo)電纖維結(jié)構(gòu)和性能的影響。
1實驗
1.1摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS導(dǎo)電纖維的制備
配置PVA(分子量13.2萬,醇解度99%, 日本Kurary)濃度為100 mg/mL,PEDOT∶PSS(1.3%(質(zhì)量分數(shù)),美國sigma)濃度為5 mg/mL的PVA/PEDOT∶PSS混合溶液。向混合溶液中加入質(zhì)量分數(shù)為1%~8%的山梨醇溶液(分析純,國藥試劑),制得PVA/PEDOT∶PSS/山梨醇混合溶液。將PVA/PEDOT∶PSS/山梨醇混合溶液進行恒溫加熱高速攪拌,加熱溫度為恒溫90 ℃,攪拌速度為1 500 r/min,攪拌5 h后制備出溶解完全、混合均勻PVA/PEDOT∶PSS/山梨醇混合溶液,并作為濕法紡絲的紡絲液。取5 mL紡絲液注入平頭針管(針頭內(nèi)徑D=0.8 mm),將注入紡絲液的針管置于注射泵上,利用注射泵的壓力將紡絲液擠入甲醇凝固浴中進行濕法紡絲,擠出速率為3.6 mL/h,隨后將纖維纏繞到熱輥上進行收集和干燥,熱輥溫度為200 ℃以完全去除共混纖維中的山梨醇,即制得摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混導(dǎo)電纖維。
1.2PVA/PEDOT∶PSS共混導(dǎo)電纖維的性能表征
樣品的化學結(jié)構(gòu)由Thermo Fisher公司的NICOLET型傅立葉-紅外光譜儀分析測定。樣品的表面微觀形貌由日本Hitachi公司的SU1510型掃描電子顯微鏡觀察得到。采用美國Tektronix公司的Keithley 6517B型高阻計測量單根纖維的電導(dǎo)率。采用YG004型電子單纖維強力儀測試纖維的拉伸力學性能。樣品的聚集態(tài)結(jié)構(gòu)由德國Bruker公司的D8 Advance型X射線衍射儀分析測定,Cu-Kα射線源,掃描速率4°/min。樣品的內(nèi)部分子結(jié)構(gòu)由Renishaw公司的in Via型拉曼光譜儀分析測定,功率0.5 mW,激發(fā)波長785 nm。
2結(jié)果與討論
2.1紅外分析
圖1PVA、PEDOT∶PSS及摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混纖維紅外譜圖
Fig 1 FT-IR spectra of PVA、PEDOT∶PSS and PVA/PEDOT∶PSS blended fibers doped with different sorbitol content
2.2纖維導(dǎo)電性能分析
圖2為摻雜不同質(zhì)量分數(shù)的山梨醇的PVA/PEDOT∶PSS共混纖維的電導(dǎo)率變化曲線。從圖2可以看出,未摻雜山梨醇時,PVA/PEDOT∶PSS共混纖維的電導(dǎo)率為2.09 S/cm;隨著山梨醇質(zhì)量分數(shù)的增加,共混纖維的電導(dǎo)率逐漸增加,當山梨醇質(zhì)量分數(shù)增加到7%時,共混纖維電導(dǎo)率最高,達到19.1 S/cm;之后,繼續(xù)增加山梨醇質(zhì)量分數(shù),共混纖維電導(dǎo)率不再變化。這是由于山梨醇的加入增加了共混纖維內(nèi)—OH的數(shù)量,而—OH會與PSS分子鏈間產(chǎn)生相互作用,形成氫鍵,從而間接促使PEDOT主鏈發(fā)生苯-醌轉(zhuǎn)變[19]。為了證明這種變化,做了XRD和拉曼測試。
圖2摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混纖維的電導(dǎo)率變化曲線
Fig 2 Electrical conductivity curve of PVA/PEDOT∶PSS blended fibers at different sorbitol content
2.3纖維聚集態(tài)結(jié)構(gòu)分析
圖3為摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混纖維的XRD譜圖。
圖3摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混纖維的XRD譜圖
Fig 3 XRD patterns of PVA/PEDOT∶PSS blended fibers doped with different sorbitol content
聚合物的結(jié)晶性能,代表聚合物分子緊密整齊堆砌的程度,是影響聚合物導(dǎo)電性能的重要因素之一[20]。一些導(dǎo)電聚合物的結(jié)晶性能會因有機溶劑的摻雜發(fā)生相應(yīng)變化,由最初的無定形態(tài)轉(zhuǎn)化為利于載流子傳輸?shù)木B(tài)[21],從而使得聚合物的導(dǎo)電性能得到顯著提高。圖3(a)中,未摻雜山梨醇的PVA/PEDOT∶PSS共混纖維的XRD譜圖中沒有出現(xiàn)明顯的結(jié)晶峰,說明共混纖維的聚集態(tài)結(jié)構(gòu)為無定形態(tài)。圖3(b)-(e)中,摻雜不同質(zhì)量分數(shù)的山梨醇共混纖維的XRD譜圖與未摻雜山梨醇的共混纖維的XRD譜圖大致相似,說明山梨醇摻雜并沒有使共混纖維產(chǎn)生晶化,共混纖維仍保持無定形態(tài)。進而說明共混纖維電導(dǎo)率的提高并非源于纖維聚集態(tài)結(jié)構(gòu)的變化。
2.4拉曼分析
圖4為未摻雜山梨醇及摻雜7%山梨醇的PVA/PEDOT∶PSS共混纖維的拉曼光譜圖。
圖4未摻雜山梨醇及摻雜7%山梨醇的PVA/PEDOT∶PSS共混纖維的拉曼光譜圖
Fig 4 Raman spectra of PVA/PEDOT∶PSS blended fibers
拉曼光譜是研究有機物分子結(jié)構(gòu)的重要工具,拉曼位移、峰強度及形狀是判斷化學鍵、官能團及高聚物主鏈結(jié)構(gòu)變化的重要依據(jù)[22]。從圖4(a)中可以觀察到,1 428 cm-1處產(chǎn)生一個強吸收特征峰,該特征峰由PEDOT主鏈上單個五元噻吩環(huán)的Cα=Cβ對稱伸縮振動引起[23]。摻雜7%山梨醇后,該特征峰發(fā)生明顯紅移,從1 428 cm-1處移至1 411 cm-1處。這種峰位移的變化說明山梨醇摻雜使得PEDOT主鏈上單個五元噻吩環(huán)的Cα=Cβ轉(zhuǎn)變?yōu)镃α-Cβ,而連接兩個噻吩環(huán)的Cα-Cβ鍵轉(zhuǎn)變?yōu)镃α=Cβ鍵,從而導(dǎo)致PEDOT主鏈由苯式結(jié)構(gòu)變成醌式結(jié)構(gòu)[19],轉(zhuǎn)變過程如圖5所示。根據(jù)Flory高分子溶液理論相關(guān)理論模型[24],苯式結(jié)構(gòu)的PEDOT分子鏈表現(xiàn)為無規(guī)則線團卷曲狀[19],其內(nèi)部載流子沿PEDOT分子鏈遷移的能壘較高[19],遷移速度較慢,從而影響聚合物的導(dǎo)電性能;而當PEDOT分子鏈轉(zhuǎn)變?yōu)轷浇Y(jié)構(gòu)時,分子鏈表現(xiàn)為伸展性卷曲狀,伴隨局部區(qū)域為直線狀[19]。這種伸展性卷曲狀中,分子鏈局部有序結(jié)構(gòu)大幅增加,且部分直線狀主鏈降低了載流子遷移的能壘[19],更有利于載流子遷移,從而使得PVA/PEDOT∶PSS共混纖維的導(dǎo)電性能提高。
圖5 苯-醌轉(zhuǎn)變結(jié)構(gòu)示意圖
2.5纖維表面形貌分析
圖6為摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混纖維的電鏡照片。
圖6摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混纖維的電鏡照片
Fig 6 SEM images of PVA/PEDOT∶PSS blended fibers doped with different sorbitol content
從圖6(a)可以觀察到,未摻雜山梨醇的共混纖維表面有很多細小溝槽,這是由于具有苯式結(jié)構(gòu)的PEDOT主鏈為無規(guī)則線團卷曲狀,與PVA分子鏈結(jié)合得不緊密均勻,且PEDOT和PSS分子鏈由于靜電絡(luò)合作用相互纏繞,破壞了長直線性PVA分子鏈的均勻性,從而在共混纖維表面產(chǎn)生了很多細小溝槽。而隨著山梨醇質(zhì)量分數(shù)的增加,從圖6(b)-(e)可以看出,共混纖維表面溝槽逐漸減少,纖維表面逐漸變得光滑。這是由于山梨醇摻雜使得PEDOT主鏈由緊緊纏繞的線團卷曲狀變?yōu)橄鄬κ嬲沟纳煺剐跃砬鸂?伴隨部分區(qū)域直線狀),伸展性卷曲狀的PEDOT主鏈與PVA分子鏈結(jié)合得更加緊密而均勻,所以隨著山梨醇質(zhì)量分數(shù)的增加,共混纖維表面溝槽減少,變得更加光滑。
2.6力學性能分析
圖7為摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混纖維的拉伸力學性能變化曲線。
圖7摻雜不同質(zhì)量分數(shù)山梨醇的PVA/PEDOT∶PSS共混纖維的拉伸應(yīng)力-應(yīng)變曲線
Fig 7 Tensile stress-strain curves of PVA/PEDOT∶PSS blended fibers doped with different sorbitol content
從圖7可以看出,隨著山梨醇摻雜質(zhì)量分數(shù)的增加,PVA/PEDOT∶PSS共混纖維的拉伸強度逐漸升高,斷裂伸長逐漸降低。這是由于山梨醇摻雜使得PEDOT主鏈發(fā)生苯-醌轉(zhuǎn)變,由于醌式結(jié)構(gòu)的PEDOT主鏈因其伸展性卷曲的形狀,與線團卷曲狀的苯式結(jié)構(gòu)的PEDOT主鏈相比,可以與PVA分子鏈結(jié)合得更加均勻緊密,從而使得共混纖維的結(jié)構(gòu)更加均勻,纖維中的應(yīng)力集中點減少,因此隨著山梨醇摻雜質(zhì)量分數(shù)的增加,共混纖維的拉伸強度逐漸升高。PEDOT主鏈的苯-醌轉(zhuǎn)變,對應(yīng)著分子結(jié)構(gòu)上單個噻吩環(huán)上的Cα=Cβ鍵轉(zhuǎn)變?yōu)镃α-Cβ鍵,而連接兩個噻吩環(huán)的Cα-Cβ鍵轉(zhuǎn)變?yōu)镃α=Cβ鍵,單鍵內(nèi)旋轉(zhuǎn)作用降低,分子鏈剛性增強[25],所以隨著山梨醇摻雜質(zhì)量分數(shù)的增加,共混纖維的斷裂伸長逐漸降低。
3結(jié)論
山梨醇摻雜能夠有效改善PVA/PEDOT∶PSS共混纖維的導(dǎo)電性能。山梨醇摻雜不改變PVA/PEDOT∶PSS共混纖維的聚集態(tài)結(jié)構(gòu)和結(jié)晶性能。山梨醇摻雜后使得PEDOT主鏈發(fā)生苯-醌轉(zhuǎn)變,分子鏈剛性增強,分子間作用力增大。隨著山梨醇摻雜質(zhì)量分數(shù)的提高,PVA/PEDOT∶PSS共混纖維的電導(dǎo)率逐漸升高,摻雜質(zhì)量分數(shù)為7%時,共混纖維電導(dǎo)率達到19.1 S/cm;共混纖維表面溝槽減少,變得更加光滑;拉伸強度逐漸升高,斷裂伸長下降。
參考文獻:
[1]Ding Y, Invernale M A, Sotzing G A. Conductivity trends of PEDOT-PSS impregnated fabric and the effect of conductivity on electrochromic textile[J]. ACS Applied Materials & Interfaces, 2010, 6(2): 1588-1593.
[2]Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology, 2011, 6(5): 296-301.
[3]Alemu D, Wei H Y, Ho K C, et al. Highly conductive PEDOT∶ PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells[J]. Energy & Environmental Science, 2012, 11(5): 9662-9671.
[4]Hong W, Xu Y, Lu G, et al. Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells[J]. Electrochemistry Communications, 2008, 10(10): 1555-1558.
[5]J?nsson S K M, Birgerson J, Crispin X, et al. The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films[J]. Synthetic Metals, 2003, 139(1): 1-10.
[6]Günes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells[J]. Chemical Reviews, 2007, 107(4): 1324-1338.
[7]Groenendaal L, Jonas F, Freitag D, et al. Poly (3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future[J]. Advanced Materials, 2000, 12(7): 481-494.
[8]Rowell M W, Topinka M A, McGehee M D, et al. Organic solar cells with carbon nanotube network electrodes[J]. Applied Physics Letters, 2006, 88(23): 233506.
[9]Jalili R, Razal J M, Innis P C, et al. One-step wet-spinning process of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) fibers and the origin of higher electrical conductivity[J]. Advanced Functional Materials, 2011, 21(17): 3363-3370.
[10]Wolfbeis O S. Fiber-optic chemical sensors and biosensors[J]. Analytical Chemistry, 2008, 80(12): 4269-4283.
[11]Spinks G M, Mottaghitalab V, Bahrami-Samani M, et al. Carbon-nanotube-reinforced polyaniline fibers for high-strength artificial muscles[J]. Advanced Materials, 2006, 18(5): 637-640.
[12]Wang C Y, Mottaghitalab V, Too C O, et al. Polyaniline and polyaniline-carbon nanotube composite fibres as battery materials in ionic liquid electrolyte[J]. Journal of Power Sources, 2007, 163(2): 1105-1109.
[13]Okuzaki H, Ishihara M. Spinning and characterization of conducting microfibers[J]. Macromolecular Rapid Communications, 2003, 24(3): 261-264.
[14]Okuzaki H, Harashina Y, Yan H. Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol[J]. European Polymer Journal, 2009, 45(1): 256-261.
[15]Jalili R, Razal J M, Innis P C, et al. One-step wet-spinning process of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) fibers and the origin of higher electrical conductivity[J]. Advanced Functional Materials, 2011, 21(17): 3363-3370.
[16]Wang X Y, Gao Q, Gao C X, et al. Study on preparation of hollow α-Fe2O3magnetic nanofibers[J]. Journal of Functional Materials, 2015, 46(9): 02001-02004.
王新月, 高強, 高春霞,等.α-Fe2O3中空磁性納米纖維的制備研究[J]. 功能材料, 2015, 46(9):02001-02004.
[17]Yoo D, Kim J, Kim J H. Direct synthesis of highly conductive poly (3, 4-ethylenedioxythiophene): poly (4-styrenesulfonate)(PEDOT∶ PSS)/graphene composites and their applications in energy harvesting systems[J]. Nano Research, 2014, 7(5): 717-730.
[18]Xu S, Luo Y, Liu G, et al. Bifacial dye-sensitized solar cells using highly transparent PEDOT∶PSS films as counter electrodes[J]. Electrochimica Acta, 2015, 156: 20-28.
[19]Ouyang J, Xu Q, Chu C W, et al. On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment[J]. Polymer, 2004, 45(25): 8443-8450.
[20]Nardes A M, Kemerink M, De Kok M M, et al. Conductivity, work function, and environmental stability of PEDOT∶ PSS thin films treated with sorbitol[J]. Organic Electronics, 2008, 9(5): 727-734.
[21]Wu C G, Chien L N. The π-π interaction induced secondary doping in conducting poly-3-alkylthiophenes[J]. Synthetic Metals, 2000, 110(3): 251-255.
[22]Chang Jianhua, Dong Qigong. Theory and analysis of wave spectrum[M]. Beijing: Science Press, 2005.
常建華, 董綺功. 波譜原理及解析[M]. 北京: 科學出版社, 2005.
[23]Yu W L, Meng H, Pei J, et al. Tuning redox behavior and emissive wavelength of conjugated polymers by p-n diblock structures[J]. Journal of the American Chemical Society, 1998, 120(45): 11808-11809.
[24]Flory P J, McIntyre A D. Mechanism of crystallization in polymers[J]. Journal of Polymer Science, 1955, 90(18): 592-594.
[25]Wang X, Perzon E, Delgado J L, et al. Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative[J]. Applied Physics Letters, 2004, 85(21): 5081-5083.
文章編號:1001-9731(2016)07-07005-05
基金項目:國家自然科學基金資助項目(21171074/B010201);中央高?;究蒲袠I(yè)務(wù)費專項資金資助項目(JUSRP11444);教育部創(chuàng)新團隊資助項目(IRT1135)
作者簡介:王新月(1992-),女,沈陽人,碩士,師從葛明橋教授,從事功能纖維制備研究。
中圖分類號:TQ342+.83
文獻標識碼:A
DOI:10.3969/j.issn.1001-9731.2016.07.002
Influence of sorbitol doping on the structure and electrical conductivity of PVA/PEDOT∶PSS blended fibers
WANG Xinyue1, 2, GE Mingqiao1, 2, FENG Guyu1, 2
(1. Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education,Jiangnan University, Wuxi 214122, China;2. College of Textile & Clothing, Jiangnan University, Wuxi 214122, China)
Abstract:In order to improve the electrical conductivity of PVA/PEDOT∶PSS blended fibers, sorbitol was added, as a dopant, into PVA/PEDOT∶PSS blended spinning formulation. The modified PVA/PEDOT∶PSS blended fibers were prepared employing wet-spinning technique. The microstructures and properties were tested and characterized by Fourier transform infrared spectroscopy (FT-IR), electrometer, X-ray diffraction (XRD), laser Raman co-focal microspectrometry, scanning electron microscopy (SEM) and single fiber strength tester. The results shows that electrical conductivity of PVA/PEDOT∶PSS blended fibers improved slightly by sorbitol doping. The XRD shows that the amorphous state of sorbitol-doped blended fibers does not change; the Raman shows that the main characteristic absorption peak shifts to red, indicating that the PEDOT backbone turns from “benzoid structure” into “quinoid structure”; the SEM shows that the surface of blended fibers turns smooth gradually; the tensile strength of the blended fibers increase slightly, the elongation at break decreases slightly.
Key words:sorbitol; PVA/PEDOT∶PSS; blended fibers
收到初稿日期:2015-07-09 收到修改稿日期:2015-09-15 通訊作者:葛明橋,E-mail: ge_mingqiao@126.com