楊亮 季振林
摘要: 將邊界元方法與配點(diǎn)法結(jié)合形成一種混合方法用于大尺度阻性管道的聲學(xué)性能預(yù)測,根據(jù)截面形式,整個(gè)結(jié)構(gòu)被劃分為若干子結(jié)構(gòu),邊界元方法與配點(diǎn)法分別被用于計(jì)算非規(guī)則結(jié)構(gòu)和規(guī)則結(jié)構(gòu)的阻抗矩陣,最后將各阻抗矩陣連接起來用于傳遞損失的計(jì)算。由于管道進(jìn)出口為非平面波傳播,考慮對進(jìn)出口配點(diǎn)進(jìn)行模態(tài)展開,將阻抗矩陣轉(zhuǎn)化為散射矩陣,使用進(jìn)出口的聲功率計(jì)算傳遞損失。通過與數(shù)值方法和實(shí)驗(yàn)值比較驗(yàn)證了方法的正確性,進(jìn)而應(yīng)用該方法對管道消聲性能進(jìn)行分析。關(guān)鍵詞: 消聲;傳遞損失;阻性管道;邊界元方法;配點(diǎn)法
中圖分類號(hào):TB535; TB115.1文獻(xiàn)標(biāo)志碼: A文章編號(hào): 1004-4523(2016)03-0498-06
DOI:10.16385/j.cnki.issn.10044523.2016.03.016
引言
解析方法[1]和傳統(tǒng)數(shù)值方法(有限元方法[2]和邊界元方法[35])已經(jīng)被普遍應(yīng)用于消聲管道的聲學(xué)性能計(jì)算,解析方法計(jì)算速度快、精度高,但只適用于簡單結(jié)構(gòu)的傳遞損失計(jì)算。傳統(tǒng)數(shù)值方法理論上可應(yīng)用于任意復(fù)雜結(jié)構(gòu),但對大尺度聲學(xué)問題會(huì)花費(fèi)較多的計(jì)算時(shí)間和內(nèi)存。因此,對于大尺度復(fù)雜消聲管道(如燃?xì)廨啓C(jī)進(jìn)排氣管道及大型暖通空調(diào)管道等)的計(jì)算方法需要進(jìn)一步研究,目前,國內(nèi)外學(xué)者主要從兩個(gè)方面對此類問題進(jìn)行了探索和研究:首先是對計(jì)算方法本身進(jìn)行了優(yōu)化,針對管道聲學(xué),Ji等[4]和Lou等[5]使用一種阻抗矩陣方法用于具有較長管道的消聲系統(tǒng)的計(jì)算,近年來,快速算法[6]的出現(xiàn)也在一定程度上彌補(bǔ)了傳統(tǒng)數(shù)值方法的局限性。另一方面,針對具體問題可以考慮結(jié)合數(shù)值方法的任意適用性和解析方法的快速準(zhǔn)確性形成混合方法,進(jìn)而實(shí)現(xiàn)大尺度問題的計(jì)算。Kirby[710]使用數(shù)值配點(diǎn)方法對消聲管道進(jìn)行了大量的研究,使用二維有限元方法提取管道截面的特征值和相應(yīng)的特征向量,進(jìn)而在一定的邊界條件下應(yīng)用配點(diǎn)法得到模態(tài)幅值系數(shù)。接著,Kirby[11]對配點(diǎn)法進(jìn)行了改進(jìn),使用數(shù)值模態(tài)匹配方法對阻性消聲器進(jìn)行了研究,F(xiàn)ang和Ji[1213]使用該方法對抗性消聲器和考慮運(yùn)流效應(yīng)的阻性消聲器進(jìn)行了分析。數(shù)值配點(diǎn)法適用性更強(qiáng),適用于具有較為復(fù)雜結(jié)構(gòu)管道[8]的聲學(xué)性能計(jì)算。以上介紹的混合方法都是針對沿結(jié)構(gòu)軸向方向具有一致截面的消聲器或者消聲管道,在實(shí)際應(yīng)用中,變截面管道是較為常見的,此時(shí)如何應(yīng)用混合方法實(shí)現(xiàn)大尺度問題的快速計(jì)算值得進(jìn)一步研究。
本文針對變截面管道使用邊界元配點(diǎn)混合方法進(jìn)行計(jì)算,將消聲器或消聲管道劃分為若干子結(jié)構(gòu),分別使用數(shù)值配點(diǎn)方法和邊界元方法計(jì)算規(guī)則結(jié)構(gòu)和非規(guī)則結(jié)構(gòu)的阻抗矩陣,最后將各阻抗矩陣連接起來用于傳遞損失的計(jì)算,對于進(jìn)出口尺寸較大的結(jié)構(gòu),應(yīng)用混合方法無法直接得到進(jìn)出口的模態(tài)幅值系數(shù),考慮在進(jìn)出口將配點(diǎn)聲壓和振速進(jìn)行模態(tài)展開,得到散射矩陣,進(jìn)而計(jì)算得到模態(tài)幅值系數(shù)用于非平面波情況下傳遞損失的計(jì)算。通過與實(shí)驗(yàn)值及傳統(tǒng)配點(diǎn)方法的比較驗(yàn)證提出方法的正確性,進(jìn)而應(yīng)用本方法對一個(gè)變截面阻性管道的消聲性能進(jìn)行了分析。
4結(jié)論
基于阻抗矩陣方法發(fā)展了一種混合計(jì)算技術(shù),對管道中的非規(guī)則子結(jié)構(gòu)使用邊界元方法計(jì)算阻抗矩陣,而配點(diǎn)法被應(yīng)用計(jì)算沿軸向截面一致的子結(jié)構(gòu)的阻抗矩陣,最后得到整體結(jié)構(gòu)的阻抗矩陣。考慮管道進(jìn)出口尺寸較大不能應(yīng)用平面波理論計(jì)算傳遞損失,對進(jìn)出口配點(diǎn)進(jìn)行模態(tài)展開進(jìn)而得到散射矩陣用于模態(tài)幅值系數(shù)的計(jì)算,最后通過進(jìn)出口的聲功率計(jì)算傳遞損失,通過算例驗(yàn)證了方法的正確性。增大穿孔率以及吸聲材料的流阻率會(huì)改善阻性管道的消聲性能。
參考文獻(xiàn):
[1]Selamet A, Ji Z L. Acoustic attenuation performance of circular expansion chambers with offset inlet/outlet: I. Analytical approach[J]. Journal of Sound and Vibration, 1998, 213(4): 601-617.
[2]Mehdizadeh O Z, Paraschivoiu M. A threedimensional finite element approach for predicting the transmission loss in mufflers and silencers with no mean flow[J]. Applied Acoustics, 2005, 66(8): 902-918.
[3]季振林. 穿孔管阻性消聲器消聲性能計(jì)算及分析[J]. 振動(dòng)工程學(xué)報(bào), 2006, 18(4): 453-457.
Ji Zhenlin. Acoustic attenuation performance calculation and analysis of perforated tube dissipative silencer[J]. Journal of Vibration Engineering, 2006, 18(4): 453-457.
[4]Ji Z L, Ma Q, Zhang Z H. Application of the boundary element method to predicting acoustic performance of expansion chamber mufflers with mean flow[J]. Journal of Sound and Vibration, 1994, 173(1): 57-71.
[5]Lou G, Wu T W, Cheng C Y R. Boundary element analysis of packed silencers with a substructuring technique[J]. Engineering Analysis with Boundary Elements, 2003, 27(7): 643-653.
[6]Wu H, Liu Y, Jiang W. A lowfrequency fast multipole boundary element method based on analytical integration of the hypersingular integral for 3D acoustic problems[J].Engineering Analysis with Boundary Elements, 2013, 37(2): 309-318.
[7]Kirby R, Lawrie J B. A point collocation approach to modelling large dissipative silencers[J]. Journal of Sound and Vibration, 2005, 286(1): 313-339.
[8]Kirby R. The influence of baffle fairings on the acoustic performance of rectangular splitter silencers[J]. The Journal of the Acoustical Society of America, 2005, 118(4): 2302-2312.
[9]Kirby R, Williams P T, Hill J. A three dimensional investigation into the acoustic performance of dissipative splitter silencers[J]. The Journal of the Acoustical Society of America, 2014, 135(5): 2727-2737.
[10]Kirby R, Amott K, Williams P T, et al. On the acoustic performance of rectangular splitter silencers in the presence of mean flow[J]. Journal of Sound and Vibration, 2014, 333(24): 6295-6311.
[11]Kirby R. A comparison between analytic and numerical methods for modelling automotive dissipative silencers with mean flow[J]. Journal of Sound and Vibration, 2009, 325(3): 565-582.
[12]Fang Z, Ji Z L. Acoustic attenuation analysis of expansion chambers with extended inlet/outlet[J]. Noise Control Engineering Journal, 2013, 61(2): 240-249.
[13]Fang Z, Ji Z L. Numerical mode matching approach for acoustic attenuation predictions of doublechamber perforated tube dissipative silencers with mean flow[J]. Journal of Computational Acoustics, 2014, 22(02): 1-15.
[14]Ji Z L. Boundary element acoustic analysis of hybrid expansion chamber silencers with perforated facing[J]. Engineering Analysis with Boundary Elements, 2010, 34(7): 690-696.
[15]Wang P, Wu T W. Impedancetoscattering matrix method for silencer analysis[C]. NoiseCon 2014. Fort Lauderdale,453-460.
Acoustic attenuation prediction of dissipative ducts by combining boundary
element method and numerical point collocation approach
YANG Liang, JI Zhenlin
(School of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China)
Abstract: A technique combining boundary element method (BEM) and point collocation approach (PCA) is proposed to evaluate the acoustic attenuation performance of dissipative ducts. The duct is divided into several substructures according to its different crosssection shapes. The BEM and PCA are employed to calculate the impedance matrices of the substructures with regular shape crosssections and irregular shape crosssections, respectively, and then the impedance matrices for the whole structures are assembled toghether. Due to the nonplane wave propagation, the scattering matrix is obtained from impedance matrix by expanding the modes of the collocation points at inlet and outlet planes and then sound power is adopted to calculate the transmission loss (TL). The combined technique is verified by numerical method and experiment results. The influence of structural variables on the transmission loss is analyzed, which shows that increasing the flow resistivity of the soundabsorbing material and increasing the perforation ratio of perforated plate may improve the attenuation performance of dissipative ducts.Key words: acoustic attenuation; transmission loss; dissipative ducts; boundary element method; point collocation approach作者簡介:楊亮(1989—),男,博士研究生。Email:liang_yang@ymail.com
通訊作者:季振林(1965—),男,教授,博士生導(dǎo)師。電話:(0451)82588822;Email:zhenlinji@yahoo.com第5期,等:振 動(dòng) 工 程 學(xué) 報(bào)第28卷5結(jié)論
參考文獻(xiàn):
[1]Gong Shunfeng, Lu Yong, Jin Weiliang. Simulation of airblast load and its effect on RC structures[J]. Transactions of Tianjin University, 2006,12(Suppl.):165—170.
[6]Malvar L J, Crawford J E, Wesevich J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997,199(910):847—873.