朱林奇, 張 沖, 胡 佳, 魏 旸, 郭 聰
(1.油氣資源與勘探技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室(長(zhǎng)江大學(xué)),湖北武漢 430100;2.長(zhǎng)江大學(xué)地球物理與石油資源學(xué)院,湖北武漢 430100;3.中國(guó)石油吉林油田分公司勘探開(kāi)發(fā)研究院,吉林長(zhǎng)春 124000)
?
基于單元體模型的核磁共振測(cè)井滲透率評(píng)價(jià)方法
朱林奇1.2, 張沖1.2, 胡佳3, 魏旸1.2, 郭聰1.2
(1.油氣資源與勘探技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室(長(zhǎng)江大學(xué)),湖北武漢 430100;2.長(zhǎng)江大學(xué)地球物理與石油資源學(xué)院,湖北武漢 430100;3.中國(guó)石油吉林油田分公司勘探開(kāi)發(fā)研究院,吉林長(zhǎng)春 124000)
為了解決低孔隙度、低滲透儲(chǔ)層滲透率計(jì)算模型精度較低的問(wèn)題,通過(guò)研究單元體模型,利用核磁共振測(cè)井資料表征譜面積與膠結(jié)指數(shù),并建立了計(jì)算儲(chǔ)層滲透率的數(shù)學(xué)模型(REV模型)。分析了REV模型中各參數(shù)與滲透率的關(guān)系,給出了模型中各參數(shù)的求取方法,并將REV模型與經(jīng)典的Timur-Coates模型和SDR模型進(jìn)行了對(duì)比。分析表明,譜面積與滲透率存在冪函數(shù)關(guān)系,相關(guān)系數(shù)達(dá)到0.88,膠結(jié)指數(shù)在譜面積和孔隙度確定的情況下與滲透率呈一次函數(shù)關(guān)系,相關(guān)系數(shù)達(dá)到0.82,譜面積與膠結(jié)指數(shù)共同決定了儲(chǔ)層滲透率的大小,滲透率與譜面積及膠結(jié)指數(shù)的變化存在較好的一致性。研究結(jié)果表明,REV模型的滲透率計(jì)算精度明顯高于Timur-Coates模型和SDR模型,具有推廣應(yīng)用價(jià)值。
核磁測(cè)井;單元體模型;譜面積;膠結(jié)指數(shù);孔隙度;滲透率
高孔隙度儲(chǔ)層的滲透率與孔隙度往往具有較好的相關(guān)性,即孔隙度越高滲透率越高。但對(duì)于低孔隙度、低滲透率儲(chǔ)層,除孔隙度之外,孔隙結(jié)構(gòu)也是影響其滲透率高低的主要因素之一[1-4]。由于通過(guò)核磁共振測(cè)井可以了解儲(chǔ)層孔隙結(jié)構(gòu),因此核磁共振測(cè)井資料被廣泛用于評(píng)價(jià)儲(chǔ)層滲透率,并建立了多種滲透率評(píng)價(jià)模型,其中較為經(jīng)典的是Timur-Coates模型[5]與SDR模型[6]。Timur-Coates模型利用孔隙度、自由束縛流體體積比來(lái)求取儲(chǔ)層滲透率。SDR模型利用孔隙度、橫向弛豫時(shí)間幾何平均值(T2LM)來(lái)預(yù)測(cè)儲(chǔ)層滲透率。這兩種模型考慮了孔喉結(jié)構(gòu)對(duì)滲透率的影響,評(píng)價(jià)儲(chǔ)層滲透率的精度高于常規(guī)測(cè)井曲線,但在評(píng)價(jià)低滲透率、特低滲透率儲(chǔ)層時(shí)其精度往往達(dá)不到要求[7-8]。
針對(duì)上述問(wèn)題,國(guó)內(nèi)外學(xué)者對(duì)滲透率評(píng)價(jià)模型進(jìn)行了改進(jìn)。例如:利用T2LM預(yù)測(cè)孔隙結(jié)構(gòu)參數(shù)從而計(jì)算滲透率的方法[9];利用T2LM預(yù)測(cè)Swanson參數(shù)從而計(jì)算滲透率的方法[10];利用T2譜分布均一系數(shù)、孔隙度、束縛水飽和度建立模型評(píng)價(jià)滲透率的方法[11];利用排驅(qū)壓力、分選系數(shù)以及孔隙度評(píng)價(jià)滲透率的方法[12];將T2譜分區(qū)間計(jì)算孔隙度與滲透率的關(guān)系,并進(jìn)行多元擬合的方法[13];利用孔隙度、主流喉道半徑(喉道對(duì)滲透率累積貢獻(xiàn)達(dá)95%以前喉道半徑的加權(quán)平均)以及排驅(qū)壓力評(píng)價(jià)滲透率的方法[14]等。盡管這些滲透率評(píng)價(jià)模型與方法在某些地區(qū)的計(jì)算精度較高,可滿足實(shí)際生產(chǎn)的需求,但并未從機(jī)理上解釋滲透率與孔隙結(jié)構(gòu)的關(guān)系,也未考慮除孔隙度與孔隙結(jié)構(gòu)外的參數(shù)對(duì)滲透率的影響。為此,D.Rush等人[15]提出了一種利用巖電試驗(yàn)與壓汞試驗(yàn)計(jì)算滲透率的單元體模型。該模型既考慮了孔隙度、孔隙結(jié)構(gòu)與滲透率的關(guān)系,又表現(xiàn)了膠結(jié)指數(shù)對(duì)滲透率的約束,應(yīng)用效果較其他模型好,但由于該模型的應(yīng)用要基于大量的試驗(yàn),難以應(yīng)用測(cè)井資料進(jìn)行滲透率評(píng)價(jià)。
筆者基于D.Rush等人的研究成果,提出了應(yīng)用核磁共振測(cè)井資料表征壓汞試驗(yàn)譜面積與巖電試驗(yàn)?zāi)z結(jié)指數(shù),從而計(jì)算儲(chǔ)層滲透率的方法,建立了數(shù)學(xué)模型(REV模型),并將REV模型應(yīng)用于致密砂巖儲(chǔ)層滲透率評(píng)價(jià),取得了較好的應(yīng)用效果。
將巖樣孔隙假設(shè)為一種理想的單元體模型,在該模型中,巖樣中不同孔徑的連通孔隙被累加為一根連通曲折的孔隙。單元體模型如圖1所示(Lb為模型的長(zhǎng)度,m;Ab為橫截面面積,m2;L為連通孔隙的總長(zhǎng)度,m;δ為孔隙直徑,m;假設(shè)流體從左至右流過(guò)連通孔隙,pa為連通孔隙入口處的毛細(xì)管壓力,MPa;pb為出口處的毛細(xì)管壓力,MPa)。
依據(jù)泊肅葉方程與達(dá)西公式,滲透率可表示為[16]:
(1)
圖1 單元體模型示意Fig.1 Schematic of hydraulic flow unit model
式中:φ為孔隙度;τ為孔隙曲折度;K為滲透率,mD。
式(1)表明,在該單元體模型下,巖樣的滲透率可以用連通孔隙的孔隙度φ、孔隙曲折度τ和孔隙直徑δ近似表征(實(shí)際情況下,滲透率主要由喉道大小所決定[17])。但τ和δ難以測(cè)量,需繼續(xù)對(duì)式(1)進(jìn)行轉(zhuǎn)換。依據(jù)W.R.Purcell提出的觀點(diǎn)[18]、巖石曲折孔隙等效導(dǎo)電理論[19]以及阿爾奇第一公式[20],τ和δ可被表征為:
(2)
(3)
式中:σ為界面張力,N/m;θ為界面潤(rùn)濕角;pc為毛管壓力,Pa;Sv為非潤(rùn)濕相飽和度;a為巖性系數(shù);m為膠結(jié)指數(shù)。
由于在試驗(yàn)中常固定a為1來(lái)計(jì)算m值,故可將式(2)和式(3)代入式(1)推導(dǎo)出滲透率的理論預(yù)測(cè)模型:
(4)
值得一提的是,式(4)僅是適用于滲流通道為孔隙儲(chǔ)層的一種近似滲透率預(yù)測(cè)模型,而對(duì)于存在較多裂縫的儲(chǔ)層,其預(yù)測(cè)效果要相對(duì)較差。
為了驗(yàn)證上述模型的正確性,利用某油田4個(gè)區(qū)塊共100塊致密砂巖巖樣的試驗(yàn)數(shù)據(jù)進(jìn)行相關(guān)性分析。其中,使用的試驗(yàn)儀器為MRAIN-7型核磁共振實(shí)驗(yàn)儀、AutoporeIV型壓汞實(shí)驗(yàn)儀、ZL5型智能LCR測(cè)量?jī)x以及DZSY-002型巖樣物性測(cè)量?jī)x。巖樣的平均孔隙度為6.62%,平均滲透率為0.978 mD。
圖2 不同孔隙結(jié)構(gòu)參數(shù)與滲透率的相關(guān)性Fig.2 Correlation comparison between different pore structure parameters and permeability
由圖2可知,譜面積S與滲透率的相關(guān)性較其他孔喉參數(shù)更好,這也證明了式(4)的正確性。
式(4)既體現(xiàn)了孔隙結(jié)構(gòu)(孔隙結(jié)構(gòu)越好、孔徑越大的巖石,譜面積越大)對(duì)滲透率的影響,又表征了膠結(jié)指數(shù)m對(duì)滲透率的約束。將上述100塊巖樣壓汞毛管壓力曲線按照曲線形態(tài)分為Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ和Ⅵ等6類(lèi),分別繪制出平均毛管壓力曲線,并確定對(duì)應(yīng)譜面積,在給定譜面積的情況下,利用式(4)模擬膠結(jié)指數(shù)m取不同值時(shí)對(duì)孔滲關(guān)系的影響,結(jié)果見(jiàn)圖3。
圖3 膠結(jié)指數(shù)對(duì)孔滲關(guān)系的影響Fig.3 The effect of cementation exponent on the relationship of porosity and permeability
由圖3可知,不同m值約束下孔滲關(guān)系并不一致。對(duì)其原因進(jìn)行理論分析認(rèn)為,孔隙結(jié)構(gòu)參數(shù)只能表征巖石中所有毛細(xì)管的平均孔隙結(jié)構(gòu),并不能表征毛細(xì)管間的差異,而這種差異會(huì)對(duì)巖石滲透率產(chǎn)生影響。在致密砂巖等低孔隙度、低滲透儲(chǔ)層中,由于孔隙類(lèi)型復(fù)雜,該差異會(huì)被放大。而膠結(jié)指數(shù)m能表征毛細(xì)管間的直徑差異[23],所以理論上膠結(jié)指數(shù)m應(yīng)能約束滲透率。
上述僅是從理論上對(duì)膠結(jié)指數(shù)m如何影響滲透率進(jìn)行分析,還需利用巖心數(shù)據(jù)進(jìn)行驗(yàn)證。在100塊巖心中選取相似孔隙度(8%~9%)、相似譜面積(3~6 ms2)的7塊巖心,進(jìn)行相關(guān)性分析,結(jié)果見(jiàn)圖4。
圖4 膠結(jié)指數(shù)與滲透率的關(guān)系Fig.4 Relationship between cementation exponent and permeability
從圖4可以看出,取常用對(duì)數(shù)后滲透率與膠結(jié)指數(shù)成線性關(guān)系,相關(guān)系數(shù)接近0.82,這與將式(4)中孔隙度、譜面積取定值后的滲透率與膠結(jié)指數(shù)理論關(guān)系一致,證明了式(4)的正確性。
綜上所述,基于孔隙結(jié)構(gòu)與電性特征的單元體模型,其精度比僅體現(xiàn)孔隙結(jié)構(gòu)的滲透率模型高,且單元體模型中反映毛細(xì)管間差異的m并不能取定值。
由核磁共振T2譜構(gòu)造偽毛細(xì)管壓力曲線[24],表達(dá)式為:
(5)
式中:T2為橫向弛豫時(shí)間,s;C為刻度系數(shù)。
為了驗(yàn)證該方法也適用于致密砂巖儲(chǔ)層,選取川中地區(qū)某油田4區(qū)塊須家河組地層先后進(jìn)行了核磁共振試驗(yàn)與壓汞試驗(yàn)的10塊巖樣進(jìn)行分析,求取儲(chǔ)層刻度系數(shù)C,結(jié)果見(jiàn)表1。求取C值后評(píng)價(jià)偽毛細(xì)管壓力曲線效果,結(jié)果見(jiàn)圖5[25]。
表1巖樣刻度系數(shù)C確定結(jié)果
Table 1Determination of the calibration coefficientCfor rock sample
序號(hào)巖樣編號(hào)孔隙度,%滲透率/mD刻度系數(shù)C1110.5881.033952214.0020.48685339.3260.242115458.3570.496855105.5690.1491006189.0390.6241007198.1950.26912582211.7130.2279592417.1360.58190102516.4290.27095
從表1可以明顯看出,儲(chǔ)層的刻度系數(shù)為85~125,多集中于100左右。從圖5可以看出,T2譜構(gòu)造偽毛細(xì)管壓力曲線方法在致密砂巖儲(chǔ)層同樣適用,可達(dá)到一定效果。
若要由式(4)確定巖石滲透率,需要先后對(duì)巖石進(jìn)行巖電試驗(yàn)與壓汞試驗(yàn),這使該公式的適用性變低。研究表明,膠結(jié)指數(shù)m與孔隙度存在一定關(guān)系[26-28],利用高精度膠結(jié)指數(shù)模型表征膠結(jié)指數(shù)m[29],有:
(6)
式中:c1,c2,c3和c4均為系數(shù)。
圖5 利用刻度系數(shù)C與核磁共振橫向弛豫時(shí)間譜評(píng)價(jià)偽毛管壓力曲線效果Fig.5 The pseudo capillary pressure curves evaluated by using calibration coefficient C and transverse relaxation time spectrum of nuclear magnetic resonance
利用川中地區(qū)須家河組的26塊巖樣的巖電試驗(yàn)資料,以最小二乘法求出高精度膠結(jié)指數(shù)模型的系數(shù)c1,c2,c3和c4,分別為0.549 5,1.072 0,-11.670 0和1.657 0。利用模型系數(shù)對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行回歸,得到巖樣原始數(shù)據(jù)及膠結(jié)指數(shù)預(yù)測(cè)的相對(duì)誤差(見(jiàn)表2)。
表2巖樣原始數(shù)據(jù)及膠結(jié)指數(shù)預(yù)測(cè)誤差
Table 2The prediction error for raw data and cementation exponent of rock samples
巖樣編號(hào)孔隙度,%滲透率/mD膠結(jié)指數(shù)巖電試驗(yàn)預(yù)測(cè)值相對(duì)誤差,%110.5881.0331.5241.5441.321214.0020.4861.6411.6191.35939.3260.2421.5721.5103.96249.4130.8551.4781.5122.29258.3570.4961.4901.4810.64964.5960.0761.3831.3383.28475.8560.1601.4051.3920.94386.6990.2011.4391.4240.99097.2810.2821.4371.4450.547105.5690.1491.3431.3802.7691116.1751.0811.6561.6570.0201213.8770.5751.6301.6170.8131314.6783.0591.5621.6314.455148.5710.4241.5141.4871.760156.7830.2971.5361.4277.099166.0920.1321.5101.4017.2101713.3380.5731.5851.6061.342189.0390.6241.4891.5020.837198.1950.2691.5071.4762.101207.8030.4981.4351.4631.938215.9220.1311.3351.3944.4472211.7130.2271.5761.5710.3102321.26890.6481.5901.7258.4822417.1360.5811.6691.6710.1462516.4290.2701.7001.6612.2922610.1280.2111.5561.5321.546
將式(5)、式(6)代入式(4)中并取常用對(duì)數(shù),得到表達(dá)式:
(7)
考慮到理論模型與實(shí)際模型的差異,式(7)可改為:
(8)
(9)
式中:λ1,λ2,λ3,λ4,λ5和λ6均為儲(chǔ)層特征參數(shù)。
利用表2中26塊致密砂巖巖樣的試驗(yàn)數(shù)據(jù)建立模型,確定式(8)中各參數(shù)的值。26塊巖樣中有1塊選在高孔隙度、高滲透率的砂層處,是為了驗(yàn)證該模型在高孔隙度、高滲透率儲(chǔ)層的適用性。
編制遺傳算法程序,通過(guò)遺傳算法來(lái)求取式(8)中各參數(shù)的最優(yōu)值(利用11—26號(hào)巖樣進(jìn)行遺傳算法的尋優(yōu),利用1—10號(hào)巖樣進(jìn)行參數(shù)驗(yàn)證),結(jié)果為:λ1=0.119 9、λ2=5.789 2、λ3=-2.925 0、λ4=-2.097 4、λ5=0.184 3、λ6=0.308 1。同時(shí),求取SDR模型與Timur-Coates模型在該地區(qū)的經(jīng)驗(yàn)參數(shù)m1,m2,m3,n1,n2和n3,分別為0.000 1,5.457 9,-1.554 4,0.004 7,5.044 0和6.014 4。利用上述3種模型對(duì)26塊砂巖巖樣的滲透率進(jìn)行預(yù)測(cè),以檢驗(yàn)?zāi)P偷臏?zhǔn)確度,預(yù)測(cè)效果見(jiàn)圖6。
由圖6可知:Timur-Coates模型預(yù)測(cè)效果最差,相對(duì)誤差為136.74%;SDR模型次之,相對(duì)誤差為87.47%;基于單元體模型理論推導(dǎo)的REV模型無(wú)論在低滲透率—特低滲透率區(qū)域,還是在高滲透率區(qū)域,精度均優(yōu)于SDR模型與Timur-Coates模型,26個(gè)樣本總相對(duì)誤差僅為33.49%??梢?jiàn),REV模型與SDR模型、Timur-Coates模型相比優(yōu)勢(shì)明顯。
圖6 3種模型預(yù)測(cè)滲透率與實(shí)際滲透率的對(duì)比Fig.6 Comparison of core permeability and predicted permeability with three kinds of models
從圖7可以看出,Timur-Coates模型與SDR模型預(yù)測(cè)的儲(chǔ)層滲透率與巖心分析得到的空氣滲透率之間差異明顯,預(yù)測(cè)結(jié)果誤差較大,而利用REV模型預(yù)測(cè)的滲透率曲線與巖心分析得到的空氣滲透率較為吻合,證明該方法預(yù)測(cè)精度較高。
圖7 不同滲透率預(yù)測(cè)模型在A井的應(yīng)用效果Fig.7 The application effect of different permeability models in Well A
1) 基于單元體模型的核磁共振測(cè)井滲透率評(píng)價(jià)方法,即REV模型中,譜面積S更好地反映了巖樣的孔隙結(jié)構(gòu),與滲透率存在著較好的關(guān)系;膠結(jié)指數(shù)m能反映毛管間的差異,從而對(duì)滲透率進(jìn)行約束。應(yīng)用該單元體模型時(shí),不應(yīng)將膠結(jié)指數(shù)取為定值。
2) 通過(guò)對(duì)比計(jì)算滲透率和巖心分析滲透率,可知REV模型的相對(duì)誤差遠(yuǎn)低于SDR模型和Timur-Coates模型。
3) 應(yīng)用實(shí)例證明,與SDR模型和Timur-Coates模型相比,REV模型預(yù)測(cè)的滲透率與巖心分析滲透率更為吻合,且吻合程度較高,值得推廣應(yīng)用。
References
[1]王新江,張麗萍,石京平.海拉爾油田孔隙結(jié)構(gòu)特征分析[J].大慶石油地質(zhì)與開(kāi)發(fā),2007,26(6):91-94.WANG Xinjiang,ZHANG Liping,SHI Jingping.Analysis of pore structure characteristics in Hailaer Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2007,26(6):91-94.
[2]劉曉鵬,胡曉新.近五年核磁共振測(cè)井在儲(chǔ)集層孔隙結(jié)構(gòu)評(píng)價(jià)中的若干進(jìn)展[J].地球物理學(xué)進(jìn)展,2009,24(6):2194-2201.
LIU Xiaopeng,HU Xiaoxin.Progress of NMR log in evaluating reservoir pore structure in the last five years[J].Progress in Geophysics,2009,24(6):2194-2201.
[3]申本科,趙紅兵,崔文富,等.砂礫巖儲(chǔ)層測(cè)井評(píng)價(jià)研究[J].地球物理學(xué)進(jìn)展,2012,27(3):1051-1058.
SHEN Benke,ZHAO Hongbing,CUI Wenfu,et al.Sandy conglomerate reservoir logging evaluation study[J].Progress in Geophysics,2012,27(3):1051-1058.
[4]陳歡慶,曹晨,梁淑賢,等.儲(chǔ)層孔隙結(jié)構(gòu)研究進(jìn)展[J].天然氣地球科學(xué),2013,24(2):227-237.
CHEN Huanqing,CAO Chen,LIANG Shuxian,et al.Research advances on reservoir pores[J].Natural Gas Geoscience,2013,24(2):227-237.
[5]COATES G R,GALFORD J,MARDON D,et al.A new characterization of bulk-volume irreducible using magnetic resonance[J].The Log Analyst,1998,39(1):51-63.
[6]KENYON W E,DAY P I,STRALEY C,et al.A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones[R].SPE 15643,1988.
[7]謝偉彪,周鳳鳴,司兆偉,等.基于數(shù)理推導(dǎo)的砂巖地層滲透率計(jì)算新模型[J].測(cè)井技術(shù),2014,38(5):553-557.
XIE Weibiao,ZHOU Fengming,SI Zhaowei,et al.New calculation model of permeability in sandstone formation by the mathematical derivation[J].Well Logging Technology,2014,38(5):553-557.
[8]朱林奇,張沖,何小菊,等.基于動(dòng)態(tài)孔隙結(jié)構(gòu)效率的核磁共振測(cè)井預(yù)測(cè)滲透率方法[J].新疆石油地質(zhì),2015,36(5):607-611.
ZHU Linqi,ZHANG Chong,HE Xiaoju,et al.NMR logging permeability prediction method based on dynamic pore structure efficiency[J].Xinjiang Petroleum Geology,2015,36(5):607-611.
[9]盧文東,肖立志,李偉,等.核磁共振測(cè)井在低孔低滲儲(chǔ)層滲透率計(jì)算中的應(yīng)用[J].中國(guó)海上油氣,2007,19(2):103-106.
LU Wendong,XIAO Lizhi,LI Wei,et al.An application of NMR logging to calculating permeability in low porosity and low permeability reservoir[J].China Offshore Oil and Gas,2007,19(2):103-106.
[10]肖亮,劉曉鵬,毛志強(qiáng).結(jié)合NMR和毛管壓力資料計(jì)算儲(chǔ)層滲透率的方法[J].石油學(xué)報(bào),2009,30(1):100-103.
XIAO Liang,LIU Xiaopeng,MAO Zhiqiang.A computation method for reservoir permeability by combining NMR log and capillary pressure data[J].Acta Petrolei Sinica,2009,30(1):100-103.
[11]李潮流,徐秋貞,張振波,等.用核磁共振測(cè)井評(píng)價(jià)特低滲透砂巖儲(chǔ)層滲透性新方法[J].測(cè)井技術(shù),2009,33(5):436-439.
LI Chaoliu,XU Qiuzhen,ZHANG Zhenbo,et al.A new method on permeability analysis for sand reservoir with specially low permeability by NMR[J].Well Logging Technology,2009,33(5):436-439.
[12]LI Chaoliu,ZHOU Cancan,LI Xia,et al.A novel model for assessing the pore structure of tight sands and its application[J].Applied Geophysics,2010,7(3):283-291.
[13]邵維志,解經(jīng)宇,遲秀榮,等.低孔隙度低滲透率巖石孔隙度與滲透率關(guān)系研究[J].測(cè)井技術(shù),2013,37(2):149-153.
SHAO Weizhi,XIE Jingyu,CHI Xiurong,et al.On the relation of porosity and permeability in low porosity and low permeability rock[J].Well Logging Technology,2013,37(2):149-153.
[14]成志剛,羅少成,杜支文,等.基于儲(chǔ)層孔喉特征參數(shù)計(jì)算致密砂巖滲透率的新方法[J].測(cè)井技術(shù),2014,38(2):185-189.
CHENG Zhigang,LUO Shaocheng,DU Zhiwen,et al.The method to calculate tight sandstone reservoir permeability using pore throat characteristic parameters[J].Well Logging Technology,2014,38(2):185-189.
[15]RUSH D,LINDSAY C,ALLEN M.Combining electrical measurements and mercury porosimetry to predict permeability[J].Petrophysics,2013,54(6):531-537.
[16]HUBBERT M K.Darcy’s law and the field equations of the flow of underground fluids[R].SPE 749,1956.
[17]李衛(wèi)成,張艷梅,王芳,等.應(yīng)用恒速壓汞技術(shù)研究致密油儲(chǔ)層微觀孔隙結(jié)構(gòu)特征:以鄂爾多斯盆地上三疊統(tǒng)延長(zhǎng)組為例[J].巖性油氣藏,2012,24(6):60-65.
LI Weicheng,ZHANG Yanmei,WANG Fang,et al.Application of constant-rate Mercury penetration technique to study of pore throat characteristics of tight reservoir:a case study from the upper Triassic Yanchang Formation in Ordos Basin[J].Lithologic Reservoirs,2012,24(6):60-65.
[18]PURCELL W R.Capillary pressures their measurement using mercury and the calculation of permeability there from[R].SPE 949039,1949.
[19]陳繼華,陳政,毛志強(qiáng).低孔隙度低滲透率儲(chǔ)層物性參數(shù)與膠結(jié)指數(shù)關(guān)系研究[J].測(cè)井技術(shù),2011,35(3):238-242.
CHEN Jihua,CHEN Zheng,MAO Zhiqiang.On the relation between cementation exponent m and petrophysical parameters of low permeability and low porosity reservoir[J].Well Logging Technology,2011,35(3):238-242.
[20]ARCHIE G E.The electrical resistivity log as an aid in determining some reservoir characteristics[R].SPE 942054,1942.
[21]SWANSON B F.A simple correlation between permeabilities and Mercury capillary pressure[J].Journal of Petroleum Technology,1981,40(12):2498-2503.
[22]魏虎,孫衛(wèi),屈樂(lè),等.靖邊氣田北部上古生界儲(chǔ)層微觀孔隙結(jié)構(gòu)及其對(duì)生產(chǎn)動(dòng)態(tài)影響[J].地質(zhì)科技情報(bào),2011,30(2):85-90.
WEI Hu,SUN Wei,QU Le,et al.Micro-pore structure characteristics and its influence on gas well production performance in the northern part of sandstone reservoir in Jingbian Gas Field[J].Geological Science and Technology Information,2011,30(2):85-90.
[23]孫建國(guó).阿爾奇(Archie)公式:提出背景與早期爭(zhēng)論[J].地球物理學(xué)進(jìn)展,2007,22(2):472-486.
SUN Jianguo.Archie’s formula:historical background and earlier debates[J].Progress in Geophysics,2007,22(2):472-486.
[24]HOFMAN J,SLIJKERMAIL W,LOOYESTIJN W,et al.Constructing capillary pressure curve from NMR log data in the presence of hydrocarbons:SPWLA-1999-KKK[R].Oslo,Norway:SPWLA 40th Annual Logging Symposium,1999.
[25]朱林奇,張沖,石文睿,等.結(jié)合壓汞實(shí)驗(yàn)與核磁共振測(cè)井預(yù)測(cè)束縛水飽和度方法研究[J].科學(xué)技術(shù)與工程,2016,16(15):22-29.
ZHU Linqi,ZHANG Chong,SHI Wenrui,et al.Study on the prediction of irreducible water saturation by combing Mercury intrusion and NMR logging data[J].Science Technology and Engineering,2016,16(15):22-29.
[26]王憲剛,任曉娟,張寧生,等.低滲透率氣藏巖石電性參數(shù)特征及影響因素[J].測(cè)井技術(shù),2010,34(1):6-8,30.
WANG Xiangang,REN Xiaojuan,ZHANG Ningsheng,et al.On rock electrical parameters characteristics in low-permeability gas reservoir and its influential factors[J].Well Logging Technology,2010,34(1):6-8,30.
[27]劉忠華,吳淑琴,杜寶會(huì),等.儲(chǔ)層滲透性與地層因素關(guān)系的實(shí)驗(yàn)研究與分析[J].地球物理學(xué)報(bào),2013,56(6):2088-2097.
LIU Zhonghua,WU Shuqin,DU Baohui,et al.Experimental study on the relationship between reservoir permeability and its formation resistivity factor[J].Chinese Journal of Geophysics,2013,56(6):2088-2097.
[28]羅少成,成志剛,林偉川,等.復(fù)雜孔隙結(jié)構(gòu)儲(chǔ)層變巖電參數(shù)飽和度模型研究[J].測(cè)井技術(shù),2015,39(1):43-47.
LUO Shaocheng,CHENG Zhigang,LIN Weichuan,et al.Research on saturation model of variable rock-electric parameters for reservoirs with complicated pore structures[J].Well Logging Technology,2015,39(1):43-47.
[29]李雄炎,秦瑞寶,毛志強(qiáng),等.高精度膠結(jié)指數(shù)模型的建立與應(yīng)用[J].石油學(xué)報(bào),2014,35(1):76-84.
LI Xiongyan,QIN Ruibao,MAO Zhiqiang,et al.Establishment and application of a high-precision cementation exponent model[J].Acta Petrolei Sinica,2014,35(1):76-84.
[30]VASCONCELOS J A,RAMREZ J A,TAKAHASHI R H C,et al.Improvements in genetic algorithms[R].IEEE Transactions on Magnetics,2001,37(5):3414-3417.
[31]MOGBOLU P O,AKINOL O,UGURU C.Application of genetic algorithm in deconvolution of logs[R].SPE 150743,2011.
[32]張沖,張占松,張超謨.基于等效巖石組分理論的滲透率解釋模型[J].測(cè)井技術(shù),2014,38(6):690-694.
ZHANG Chong,ZHANG Zhansong,ZHANG Chaomo.A permeability interpretation model based on equivalent rock elements theory[J].Well Logging Technology,2014,38(6):690-694.
[編輯令文學(xué)]
An NMR Logging Permeability Evaluation Method Based on the Representative Elementary Volume Model
ZHU Linqi1, 2, ZHANG Chong1, 2, HU Jia3, WEI Yang1, 2, GUO Cong1, 2
(1.KeyLaboratoryofMinistryofEducationforOilandGaResourcesExplorationTechnologies(YangtzeUniversity),Wuhan,Hubei, 430100,China; 2.InstituteofGeophysicsandPetroleumResources,YangtzeUniversity,Wuhan,Hubei, 430100,China; 3.ExplorationandDevelopmentResearchInstitute,PetroChinaJilinOilfieldCompany,Changchun,Jilin,124000,China)
In order to solve the problem that permeability calculation models have low accuracy for low porosity and low permeability reservoirs, a mathematical model for predicting reservoir permeability has been established by using NMR logging data to characterize spectral area S and cementation exponent on the basis of a study of the representative elementary volume model (REV model). The relationship of each parameter from the REV model and permeability has been analyzed, and the calculation method for all parameters in the model was taken into consideration. The REV model was compared with the classical Timur-Coates and SDR models, the study results indicated that there was a power function relationship between spectral area and permeability, with the correlation coefficient of 0.88. Given a certain of spectral area and porosity, the cementation exponent has a linear relationship with permeability, with a correlation coefficient of 0.82. The value of reservoir permeability is determined by both the spectral area and cementation exponent. There is a good consistency in the change among permeability, spectral area and the cementation index. The study results showed that the accuracy of permeability calculation by REV model was significantly higher than Timur-Coates and SDR models, which is worthy of popularization and application.
nuclear magnetic logging; representative elementary volume model; spectrum area; cementation exponent; porosity; permeability
2015-12-28;改回日期:2016-06-09。
朱林奇(1993—),男,湖北荊州人,2014年畢業(yè)于長(zhǎng)江大學(xué)勘查技術(shù)與工程專業(yè),在讀碩士研究生,主要從事核磁共振測(cè)井解釋、機(jī)器學(xué)習(xí)方法的測(cè)井應(yīng)用和數(shù)字巖心方面的研究。E-mail:445364694@qq.com。
張沖,yzlogging@163.com。
國(guó)家自然科學(xué)基金項(xiàng)目“致密氣儲(chǔ)層巖石導(dǎo)電機(jī)理研究及飽和度評(píng)價(jià)”(編號(hào):41404084)、湖北省自然科學(xué)基金項(xiàng)目“基于等效巖石單元模型的滲透率測(cè)井評(píng)價(jià)方法研究”(編號(hào):2013CFB396)資助。
doi:10.11911/syztjs.201604021
P631.8+13;TE311+.2
A
1001-0890(2016)04-0120-07
?測(cè)井錄井?