明文勇 ,段 琦,亢建平,韓 升,張 偉,呂 劍
(1.山東華安新材料有限公司, 山東 淄博 255300;2. 西安近代化學(xué)研究所, 陜西 西安 710065)
1,4-丁二醇反應(yīng)研究進(jìn)展
明文勇1,段 琦1,亢建平2,韓 升2,張 偉2,呂 劍2
(1.山東華安新材料有限公司, 山東 淄博 255300;2. 西安近代化學(xué)研究所, 陜西 西安 710065)
本文對(duì)1,4-丁二醇的概況、可參與的反應(yīng)及其下游產(chǎn)品進(jìn)行了詳細(xì)綜述。
1,4-丁二醇 反應(yīng) 應(yīng)用
1,4-丁二醇是一種重要的的有機(jī)和精細(xì)化工原料,其衍生物更是附加價(jià)值高的精細(xì)化工產(chǎn)品,廣泛應(yīng)用于醫(yī)藥、化工、紡織、造紙、汽車和日用化工等領(lǐng)域。由于1,4-丁二醇結(jié)構(gòu)中含有兩個(gè)活潑羥基,決定了其化學(xué)性質(zhì)較活潑,可參與多種反應(yīng),本文對(duì)1,4-丁二醇參與的各類反應(yīng)進(jìn)行綜述。
1,4-丁二醇(簡稱BDO)是一種重要的有機(jī)和精細(xì)化工原料,英文名為1,4-butanediol,CAS號(hào)為110-63-4,無色粘稠狀液體。我國BDO產(chǎn)能的增加速度遠(yuǎn)超過市場需求的增長速度,BDO產(chǎn)能過剩問題嚴(yán)重。近年來,由于對(duì)它的下游產(chǎn)品需求量增長很快,且它的衍生物新用途也正在不斷地延伸和拓展,需求量也在不斷擴(kuò)大,因此加強(qiáng)它的下游產(chǎn)品的開發(fā)迫在眉睫。
1,4-丁二醇是典型的二元醇,結(jié)構(gòu)中含有兩個(gè)活潑羥基,決定了其化學(xué)性質(zhì)較活潑,可參與多種反應(yīng)。根據(jù)其參與反應(yīng)的類型可分為氧化反應(yīng)、取代反應(yīng)、硝基化反應(yīng)、脫水反應(yīng)、脫氫反應(yīng)、聚合反應(yīng)等,如圖1所示。
2.1 氧化反應(yīng)
Shahriar等[1-2]等采用R3NH[CrO3F]、R3NH[CrO3Cl]為氧化劑實(shí)現(xiàn)了微波室溫條件下選擇性氧化1,4-丁二醇中的一個(gè)醇基為醛基。Thomas等[3]采用COCl2為氧化劑, DMSO為溶劑將1,4-丁二醇中的兩個(gè)醇基同時(shí)氧化為醛基,收率為80%。Svetlakov等[4]采用HNO3為氧化劑, 在25~30℃條件下將1,4-丁二醇氧化為1,4-丁二酸,收率90%。Atsushi等[5]在光照條件下使1,4-丁二醇發(fā)生需氧氧化生成乳醇,收率86%。Huang等[6]采用Au/γ-AlOOH 和 Au/γ-Al2O3為催化劑,氧氣為氧化劑,將1,4-丁二醇氧化為γ-丁內(nèi)酯,重點(diǎn)考察了載體表面酸性、金離子尺寸對(duì)催化活性的影響。
2.2 取代反應(yīng)
1,4-丁二醇末端羥基可被鹵原子[7](氟、氯、溴、碘、疊氮)等基團(tuán)取代,生成相應(yīng)的氯代烷烴。Swati等[8-9]報(bào)道在HBr、 H2O存在下100℃, 48 h條件下, 以88%的收率得到1,4-二溴丁烷。Schunck等[10]報(bào)道在HBr、 H2O存在下苯為溶劑回流12h得到單取代產(chǎn)物4-溴丁醇,收率68%。Dzhemilev等[11]報(bào)道在高壓釜中以1,4-丁二醇為原料,Mo(CO)6為催化劑, CCl4為溶劑, 140℃,3 h條件下得到含氯單取代產(chǎn)物4-氯丁醇,收率為98%。Ding等[12]以1,4-丁二醇為原料經(jīng)溴代、疊氮化兩步反應(yīng)得到4-疊氮丁醇。Wolfgang等[13]采用光氣在HCl、DMF存在下以98%的收率獲得雙取代產(chǎn)物1,4-二氯丁烷。Berridge,等[14]報(bào)道以1,4-丁二醇為原料經(jīng)四步反應(yīng)得含氟單取代產(chǎn)物4-氟丁醇。Ferreri等[15]以1,4-丁二醇、碘甲烷為原料,PdCl2為催化劑以96%的收率獲得1,4-二碘丁烷。
2.3 硝基化反應(yīng)
Sarlauskas等[16]報(bào)道以N2O5為硝基化試劑, CH2Cl2為溶劑, 溫度為-15 ~15℃條件下1,4-丁二醇發(fā)生硝基化反應(yīng)。Braune等[17]報(bào)道以1,4-丁二醇為原料,二氯甲烷為溶劑,85%HNO3與尿素作為硝基化試劑,溫度控制在10~ 25℃間生成了1,4-丁二醇的單硝基化產(chǎn)物與雙硝基化產(chǎn)物混合物。
圖1 1,4-丁二醇衍生反應(yīng)
2.4 脫水反應(yīng)
2.5 脫氫反應(yīng)
Chaudhari等[22]報(bào)道在催化劑為Pt,添加劑為CaCO3經(jīng)三步反應(yīng)生成1,4-丁-2-烯二醇。Pillai
等[23]報(bào)道以1,4-丁二醇為原料在催化劑為Cr、Cu存在下經(jīng)氣相脫氫生成1,4-丁二烯。Zhao、Ishii, 等[24-25]報(bào)道1,4-丁二醇在Ru催化劑存在下205℃,10h脫氫生成γ一丁內(nèi)酯。
2.6 聚合反應(yīng)
Diaz等[26]以1,4-丁二醇與乙炔為原料經(jīng)七步反應(yīng)以85%的收率合成多環(huán)醚。Mukai等[27]報(bào)道1,4-丁二醇發(fā)生分子間脫水后經(jīng)聚合反應(yīng)生成丙酸酯聚合物。
2.7 成環(huán)反應(yīng)
Lan等[28]以1,4-丁二醇與丁醛為原料在甲苯溶劑中130℃、2h生成七元環(huán)二縮醛。Lee等[29]報(bào)道以1,4-丁二醇與甲胺為原料在250℃條件下成環(huán)生成N-甲基吡咯啉。Bogatskii[30]報(bào)道1,4-丁二醇與甲醛關(guān)環(huán)生成1.3-二氧環(huán)戊烷。Segawa等[31]報(bào)道以1,4-丁二醇為原料,In2O3為催化劑,固定床反應(yīng)器上375℃反應(yīng)5 h,生成60.8%的3-丁醇和20.4%的γ一丁內(nèi)酯。Reddy等[32]以Co-Cu/MgO為催化劑,250℃條件下1,4-丁二醇發(fā)生脫氫、脫水反應(yīng)關(guān)環(huán)生成四氫呋喃與γ一丁內(nèi)酯的混合物,催化劑的制備方法對(duì)反應(yīng)路徑有很大的影響。Klinger等[33]以1,4-丁二醇與氨氣為原料在Fe催化劑存在下250℃條件下生成氮氧六元雜環(huán)。
綜上所述,1,4-丁二醇原料易得、具有一定的化學(xué)活性,能參與多種不同類型的反應(yīng)生成相應(yīng)的下游產(chǎn)品,已開發(fā)的下游產(chǎn)品主要有四氫呋喃(THF)、γ-丁內(nèi)酯(GBL)、聚對(duì)苯二甲酸丁二醇酯(PBT)、聚氨酯(PU)、聚四亞甲基乙二醇醚(PTMEG)、N-甲基呲咯烷酮(NMP)雖由1,4-丁二醇為原料也可生成1,4-二氯丁烷、1,4-丁二酸(琥珀酸)、1,3-丁二烯等,但在經(jīng)濟(jì)上不可行。根據(jù)其可參與的反應(yīng),還可用于生產(chǎn)吡咯,國內(nèi)生產(chǎn)吡咯廠家較少,且吡咯價(jià)格較高,利潤空間較大??傊?,4-丁二醇衍生物用途十分廣泛,市場前景較好。因此,以1,4-丁二醇為原料對(duì)其下游產(chǎn)品的開發(fā)具有重要的意義。
[1] Shahriar, G. Oxidation of some organic diols with trialkylammonium fluorochromates(VI),R3NH[CrO3F],(R= CH3,C2H5,C3H7and C4H9) at room temperature and under microwave condition[J]. Journal of the Mexican Chemical Society, 2009,53(2):41-43.
[2] Shahriar G. Trialkylammonium chlorochromates (VI),R3NH[CrO3Cl], (R = R= CH3, C2H5,C3H7and C4H9): new reagents for oxidation of some organic diols under microwave condition[J]. Inorganic Chemistry: An Indian Journal, 2010,5(2), 51-54.
[3] Thomas T T. Oxidation of alcohols to carbonyl compounds via alkoxysulfonium ylides: the Moffat, Swern, and related oxidations[M]//Organic Reactions (Hoboken, N J,United States), 1990.
[4] Svetlakov N V.Oxidation of tetrahydrofuran and 1,4-butanediol with nitric acid[J].Russian Journal of Applied Chemistry, 2002,75(4): 669-671.
[5] Atsushi M. Catalytic aerobic oxidation of diols under photoirradiation: highly efficient synthesis of lactols[J].Tetrahedron Letters, 2002,43(19):3481-3484.
[6] Huang, J. Influence of support surface basicity and gold particle size on catalytic activity of Au/γ-AlOOH and Au/γ-Al2O3catalyst in aerobic oxidation of α,ω-diols to lactones[J].Applied Catalysis, B: Environmental, 2011, 103(3-4): 343-350.
[7] Maity D K. Reaction of hydroxyl radicals with 1-bromo-ω-iodoalkanes in aqueous solution: 2C-3E bonded radical cations[J].Radiation Physics and Chemistry, (1,Trombay Symposium on Radiation and Photochemistry, 1996), 1996:49 21-24.
[8] Swati D. Phenyl-ring-bearing cationic surfactants: effect of ring location on the micellar structure[J].Langmuir, 2010, 26(23):17882-17889.
[9] Bruce N. Synthesis of (14C6-3,4,7,8,11,12)-(1E,5E,9E)-cyclododeca-1,5,9-triene[J].Journal of Labelled Compounds and Radiopharmaceuticals, 2007,50(5-6):407-409.
[10] Schunck W H. Novel eicosanoid derivatives: PCT Int Appl, 2010081683[P].2010-07- 22 .
[11] Dzhemilev U M. Process for producing α,ω-chloroalkanols(chlorohydrins): Russ, 2287515[P].2006-11-20.
[12] Ding T J.A facile and green synthesis of sulforaphane[J]. Chinese Chemical Letters, 2006,17(9), 1152-1154.
[13] Ettl R, Reuther W. Preparation of alkyl chlorides from the corresponding alcohols: Eur Pat Appl: 645357, 1995-03-29.
[14] Berridge M S.Cyclic sulfates: useful substrates for selective nucleophilic substitution[J]. Journal of Organic Chemistry, 1990,55(4):1211-17.
[15] Ferreri C. The versatile behavior of the PdCl2/Et3SiH system conversion of alcohols to the corresponding halides and alkanes[J]. Journal of Organometallic Chemistry, 1998,554(2):135-137.
[16] Sarlauskas J. Organic nitrates and nitramines: synthesis, electrochemistry and cytotoxicity[C]//New Trends in Research of Energetic Materials, Proceedings of the Seminar, 13th, Pardubice, Czech Republic, 2010: 738-745.
[17] Braune S. Formation of nitrate esters in microreactors and millireactors using a continuous product extraction in a turbulent flow regime: PCT Int Appl, 2009080755[P].2009-07-02.
[19] 趙永祥,賀永藝,李奇飚,等. 一種由1,4-丁二醇合成3-丁烯-1-醇的方法:CN,101759529A[P]. 2010-06-30.
[21] Stonkus, V. Structure and catalytic properties of Co/porcelain in the synthesis of 2,3-dihydrofuran[J]. Journal of Chemical Technology and Biotechnology, 2001,76(1): 101-105.
[22] Chaudhari R V. Chemoselective catalytic hydrogenation process for the preparation of 1,4-butenediol from 1,4-butynediol:Indian Pat Appl: 2000DE00216[P].2006-12- 08.
[23] Pillai R B C. Synthesis of succinaldehyde by dehydrogenation of 1,4-butanediol using copper chromite catalyst in vapor phase[J]. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 1994,33B(11): 1087-1088.
[24] Zhao J, Hartwig J F. Acceptorless, neat, ruthenium-catalyzed dehydrogenative cyclization of diols toLactones[J]. Organometallics, 2005,24(10): 2441-2446.
[25] Ishii Y. Lactone synthesis of α,ω-diols with hydrogen peroxide catalyzed by heteropoly acids combined with cetylpyridinium chloride[J]. Journal of Organic Chemistry, 1988,53(23):5549-52.
[26] Diaz D. Double cationic propargylation: from linear to polycyclic ethers[J].Organic Letters, 2001,3(21): 3289-3291.
[27] Mukai K. Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases[J]. Biotechnology Letters, 1993,15(6):601-604.
[28] Lan P. Study on synthesis of novel seven-membered-ring acetals(ketals) over HZSM-5catalyst[J].Huaxue Shijie,2010, 51(9): 545-548.
[29] Lee S H. Methods for preparing γ-butyrolactone and N-methyl pyrrolidone from 1,4-butanediol Repub: Korean Kongkae Taeho Kongbo: 2011037895, 2011-04-13 .
[30] Bogatskii A V. Synthesis and properties of substituted 1,3-dioxepanes[J]. Acta Chimica Academiae Scientiarum Hungaricae, 1975,86(2):173-85.
[31] Segawa M.Vapor-phase catalytic reactions of alcohol over bixbyite indium oxide[J]. Journal of Molecular Catalysis A:Chemical,2009, 310(1-2): 166-173.
[32] Reddy K. Influence of method of preparation of Co-Cu/MgO catalyst on dehydrogenation/dehydration reaction pathway of 1,4-butanediol[J]. Catalysis Communications,2011, 12(10):866-869.
[33] Klinger G A. Synthesis of nitrogen-containing heterocycles on iron catalysts 2. Conversions of 1,4-butanediol and diethylene glycol in the presence of ammonia and hydrogen[J].Khimiya Geterotsiklicheskikh Soedinenii, 1987(2):195-8.
(本文文獻(xiàn)格式:明文勇 ,段 琦,亢建平,等.1,4-丁二醇反應(yīng)研究進(jìn)展[J].山東化工,2016,45(14):37-39.)
Progress in Research of 1,4-Butanediol Reaction
MingWenyong1*,DuanQi1,KangJianping2,HanSheng2,ZhangWei2,LvJian2
(1.ShanDong Huaan new material Co., Ltd., Zibo 255300 China; 2.Xi'an Modern Chemistry Research Instiute, Xi'an 710065.China)
The property, related reaction, application fields of 1,4-butanediol were reviewed in this article.
1,4-butanediol;properties;reaction;application
2016-05-07
明文勇(1966—),山東淄博人,高級(jí)工程師,主要從事化工工藝技術(shù)開發(fā)。
TQ2231.6+4
A
1008-021X(2016)14-0037-03