張文宇,?!∏?,周雨鋒,魏志佳,李凱凱,胡勝亮
(中北大學(xué) 材料科學(xué)與工程學(xué)院,山西 太原 030051)
?
一步合成硫、氮共摻雜的碳量子點(diǎn)及其在Fe3+檢測(cè)中的應(yīng)用
張文宇,常青,周雨鋒,魏志佳,李凱凱,胡勝亮*
(中北大學(xué) 材料科學(xué)與工程學(xué)院,山西 太原030051)
碳量子點(diǎn)的光致發(fā)光性質(zhì)不僅決定于尺寸還依賴于它的表面態(tài),因此通過(guò)在碳量子點(diǎn)表面摻雜或嫁接不同元素與基團(tuán)有望調(diào)節(jié)它的熒光發(fā)射行為。為了研究多種元素?fù)诫s對(duì)碳量子點(diǎn)發(fā)光性質(zhì)的影響,本文以對(duì)氨基苯磺酸為原料,通過(guò)水熱法一步合成了氮、硫共摻雜的碳量子點(diǎn)。實(shí)驗(yàn)結(jié)果表明:制備的碳量子點(diǎn)尺寸分布均勻,氮、硫分別以氨基和磺酸基團(tuán)的形式存在于碳量子點(diǎn)的表面。與已有的報(bào)道不同,碳量子點(diǎn)展現(xiàn)出了非激發(fā)波長(zhǎng)依賴的藍(lán)光發(fā)射行為,三價(jià)鐵離子可有效猝滅其熒光,鐵離子濃度在0~10-3mol·L-1范圍內(nèi)與碳量子點(diǎn)的熒光猝滅程度呈現(xiàn)良好的線性關(guān)系,檢出限約為10-7mol·L-1。制備的碳量子點(diǎn)對(duì)三價(jià)鐵離子具有高選擇性、高靈敏性以及較好的抗干擾能力,能作為三價(jià)鐵離子檢測(cè)的傳感器。
碳量子點(diǎn);三價(jià)鐵離子;熒光猝滅
*Corresponding Author,E-mail:hsliang@yeah.net
由于金屬離子在環(huán)境和生態(tài)系統(tǒng)中具有重要的作用,金屬離子感應(yīng)探針的設(shè)計(jì)與合成吸引了研究者的大量關(guān)注。其中,三價(jià)鐵離子是眾多金屬離子中重要的一種,它在很多生化過(guò)程中扮演著重要角色,如細(xì)胞代謝、酶催化、電子轉(zhuǎn)移、氧化反應(yīng)、氧運(yùn)輸、DNA和RNA的合成[1-4]。過(guò)量或者不足的Fe3+會(huì)導(dǎo)致身體的失衡與疾病,例如貧血、智力下降、關(guān)節(jié)炎、心力衰竭、糖尿病和癌癥等[5-7]。因此,有必要研制出一種方便有效的方法來(lái)檢測(cè)生物系統(tǒng)中的Fe3+。相較于需要復(fù)雜儀器或者繁瑣的樣品制備過(guò)程的傳統(tǒng)方法如電化學(xué)法和質(zhì)譜法[8-9],熒光檢測(cè)方法在高選擇性、高靈敏性以及操作簡(jiǎn)單方面顯示出了獨(dú)特的優(yōu)勢(shì)。傳統(tǒng)的熒光檢測(cè)會(huì)使用到有機(jī)染料或者半導(dǎo)體量子點(diǎn),與之相比,碳量子點(diǎn)具有良好的水溶性、生物相容性和低毒性等優(yōu)點(diǎn)[10-11]。碳量子點(diǎn)獨(dú)特的光電性能使得它們?cè)谏锍上瘛⑸飩鞲?、光催化和光伏器件等領(lǐng)域具有良好的應(yīng)用前景[12-15]。
碳量子點(diǎn)經(jīng)過(guò)摻雜或者表面鈍化后,其熒光量子產(chǎn)率以及光電性能均可以得到明顯的提高[16]。最近幾年,有很多關(guān)于氮元素?fù)诫s碳量子點(diǎn)的文獻(xiàn)報(bào)道,碳量子點(diǎn)的熒光量子產(chǎn)率均得到了提高[17-19]。然而,硫元素?fù)诫s或者氮、硫共摻雜的碳量子點(diǎn)還很少被報(bào)道,硫元素對(duì)碳量子點(diǎn)的影響還需要進(jìn)一步的研究。本文以對(duì)氨基苯磺酸為原料一步合成了氮、硫共摻雜碳量子點(diǎn),且碳量子點(diǎn)表面的含硫基團(tuán)與含氮基團(tuán)為磺酸基團(tuán)與氨基基團(tuán),合成的碳量子點(diǎn)可用于Fe3+的檢測(cè)。
將0.1 g對(duì)氨基苯磺酸溶解于10 mL去離子水中,然后將溶液移入聚四氟乙烯反應(yīng)釜中。將反應(yīng)釜置于烘箱中,在200 ℃下保溫5 h。反應(yīng)結(jié)束后,在空氣中冷卻至室溫,在10 000 r/min的轉(zhuǎn)速下離心得到的上清液即為氮、硫共摻雜的碳量子點(diǎn)。用F-280 熒光分光光度計(jì)(天津港東)、Tecnai G2 F20 透射電子顯微鏡(美國(guó) FEI 公司)、Thermo Nicolet 360傅里葉變換紅外光譜儀(美國(guó)尼高力公司)、X射線光電子能譜XPS(美國(guó)賽默飛世爾科技)對(duì)制得的樣品進(jìn)行表征。熒光量子產(chǎn)率的測(cè)定依據(jù)文獻(xiàn)[20-21],以硫酸奎寧為標(biāo)準(zhǔn)物,基于公式Φx=Φst(Ax/Ast)(Ix/Ist)(nx/nst)2(Φ:量子產(chǎn)率,A:熒光積分面積,I:吸光度,n:折射率)測(cè)量得出。
3.1氮、硫共摻雜碳量子點(diǎn)的表征與性質(zhì)研究
如圖1所示,碳量子點(diǎn)由對(duì)氨基苯磺酸(一種帶有氨基和磺酸基的物質(zhì))在水熱條件下一步合成。在高溫高壓條件下,對(duì)氨基苯磺酸經(jīng)過(guò)水解、聚合以及碳化作用,最后形成了碳量子點(diǎn)[22-23]。
圖1硫、氮共摻雜碳量子點(diǎn)的合成示意圖。
Fig.1Schematic illustration of the preparation process for the SN-CQDs
由對(duì)氨基苯磺酸制備出來(lái)的氮、硫共摻雜碳量子點(diǎn)溶液為無(wú)色透明的,在365 nm紫外燈激發(fā)下,溶液發(fā)出明亮的藍(lán)光(圖2(a)插圖)。從碳量子點(diǎn)的發(fā)射譜與激發(fā)譜可以看出制備的碳量子點(diǎn)的最佳激發(fā)峰為372 nm,發(fā)射峰為430 nm(圖2(a))。以硫酸奎寧(54%,0.1 mol·L-1H2SO4)為參考物質(zhì),測(cè)得該碳量子點(diǎn)的熒光量子產(chǎn)率約為4.2%。圖2(b) 是碳量子點(diǎn)在不同激發(fā)波長(zhǎng)下的熒光發(fā)射光譜,可以看出碳量子點(diǎn)的發(fā)射峰不隨激發(fā)波長(zhǎng)的變化而變化,這種現(xiàn)象與已有的文獻(xiàn)報(bào)道不同。目前,碳量子點(diǎn)發(fā)光機(jī)制主要?dú)w因于表面能量勢(shì)限,所以表面基團(tuán)可以有效干預(yù)激發(fā)電子在表面的輻射復(fù)合過(guò)程。 當(dāng)S與N元素引入到碳量子點(diǎn)表面后,促使表面勢(shì)限趨于穩(wěn)定,從而導(dǎo)致了單一輻射復(fù)合方式的發(fā)生[24]。
圖3是氮、硫共摻雜碳量子點(diǎn)的透射電鏡照片和尺寸分布圖??梢钥闯?,制備出的碳量子點(diǎn)具有良好的分散性,呈圓球形。對(duì)碳量子點(diǎn)的粒徑進(jìn)行統(tǒng)計(jì)分析,經(jīng)高斯擬合后得到碳量子點(diǎn)的尺寸主要分布在5 nm左右(圖3(b))。高分辨率TEM圖片表明,氮、硫共摻雜碳量子點(diǎn)的晶格間距為0.25 nm,為石墨的(1120)晶面結(jié)構(gòu)[25]。
圖2(a) 氮、硫共摻雜碳量子點(diǎn)的熒光發(fā)射譜和熒光激發(fā)譜,插圖為碳量子點(diǎn)在自然光以及紫外光下的光學(xué)照片;(b) 不同激發(fā)光下的碳量子點(diǎn)的熒光發(fā)射譜。
Fig.2(a) Photoluminescence excitation and emission spectra of SN-CQDs.Inset shows the photographs of the SN-CQDs under visible light (left) and UV light of 65 nm (right).(b) PL emission spectra of SN-CQDs under different excitation wavelengths.
圖3 (a) 碳量子點(diǎn)的TEM照片,插圖為高分辨率TEM照片;(b) 粒徑分布圖。
圖4 (a) 碳量子點(diǎn)的FTIR譜;(b) XPS全譜;(c) C1s;(d) O1s;(e) N1s;(f) S2p。
3.2碳量子點(diǎn)對(duì)Fe3+的檢測(cè)
研究發(fā)現(xiàn),當(dāng)Fe3+加入到氮、硫共摻雜碳量子點(diǎn)溶液中后,碳量子點(diǎn)的熒光強(qiáng)度會(huì)降低。如圖5(a) 所示,碳量子點(diǎn)的熒光強(qiáng)度隨著Fe3+濃度的變化呈規(guī)律性的變化,說(shuō)明該碳量子點(diǎn)有作為Fe3+檢測(cè)探針的應(yīng)用前景。圖5(b) 是碳量子點(diǎn)的熒光猝滅程度隨著Fe3+濃度變化的關(guān)系曲線( F0是碳量子點(diǎn)未加Fe3+溶液時(shí)在365 nm激發(fā)下的熒光強(qiáng)度,F(xiàn)是加入Fe3+溶液后在365 nm激發(fā)下的熒光強(qiáng)度),可以看出碳量子點(diǎn)的猝滅程度與Fe3+濃度在0~10-3mol·L-1范圍內(nèi)存在良好的線性關(guān)系,線性方程為F0/F= 1.07584+0.00154C(Fe3+),R2=0.989 61,檢出限大約為10-7mol·L-1。
我們對(duì)氮、硫共摻雜碳量子點(diǎn)對(duì)其他金屬離子的選擇性也進(jìn)行了研究。1 mmol·L-1的Ca2+、K+、Na+、Mg2+、Cd2+、Zn2+、Fe2+、Cu2+、Hg+、Ba2+、Mn2+、Sr2+、Pb2+溶液在相同條件下加入到碳量子點(diǎn)溶液中,碳量子點(diǎn)在365 nm激發(fā)下的熒光變化如圖5(c)所示。除了Fe3+對(duì)碳量子點(diǎn)造成了明顯的熒光猝滅現(xiàn)象外,其他金屬離子對(duì)熒光的影響很小,所以該氮、硫共摻雜碳量子點(diǎn)對(duì)Fe3+具有較好的選擇性。同時(shí),也探究了該碳量子點(diǎn)的抗干擾性。如圖5(d) 所示,在其他金屬離子存在的情況下,向溶液中加入1 mmol·L-1的Fe3+,可以看出熒光發(fā)生了猝滅現(xiàn)象,說(shuō)明該氮、硫共摻雜碳量子點(diǎn)作為Fe3+探針具有可靠的抗干擾能力。
圖5(a) 碳量子點(diǎn)隨著Fe3+濃度變化的熒光光譜圖;(b) 碳量子點(diǎn)的熒光猝滅程度與Fe3+濃度在0~1×10-3mol·L-1之間的關(guān)系曲線,F(xiàn)e3+濃度依次為0.01,0.025,0.05,0.1,0.2,0.3,0.5,0.7,1 mmol·L-1;(c) 不同金屬離子存在情況下的碳量子熒光相對(duì)強(qiáng)度(1 mmol·L-1);(d) 其他金屬離子存在的情況下(灰),再加入Fe3+處理后熒光相對(duì)強(qiáng)度。
Fig.5(a) Fluorescence spectra of SN-CQDs with different concentration of Fe3+.(b) F0/F versus Fe3+concentrations ranging from 0 to 1 mmol·L-1.(c) Fluorescence intensity ratios (F/F0) of SN-CQDs in the presence of different metal ions.(d) Corresponding fluorescence intensities before(black) and after(grey) the treatment with Fe3+.
Fe3+能引起氮、硫共摻雜碳量子點(diǎn)的熒光猝滅,這可能與碳量子點(diǎn)中的磺酸基團(tuán)有關(guān)。磺酸基團(tuán)中的硫原子具有較低的電負(fù)性以及較大的原子半徑,容易失去最外層的價(jià)電子,所以使得磺酸基團(tuán)易與Fe3+發(fā)生配位作用,從而使Fe3+通過(guò)磺酸基團(tuán)結(jié)合到碳量子點(diǎn)的表面。
如圖6所示,未加入Fe3+前,碳量子點(diǎn)吸收入射光的能量,基態(tài)中的電子躍遷到激發(fā)態(tài);當(dāng)激發(fā)態(tài)的電子回到基態(tài)時(shí),形成電子/空穴輻射復(fù)合,產(chǎn)生熒光。加入Fe3+后,F(xiàn)e3+通過(guò)碳量子點(diǎn)表面的磺酸基團(tuán)結(jié)合到碳量子點(diǎn)表面。Fe3+外層電子結(jié)構(gòu)為4s23d5,5個(gè)d軌道都是半充滿狀態(tài),碳量子點(diǎn)激發(fā)態(tài)上的電子很容易被轉(zhuǎn)移到Fe3+的d軌道上,促進(jìn)了非輻射電子/空穴復(fù)合,從而引起了氮、硫共摻雜碳量子點(diǎn)的熒光猝滅[26-27]。
圖6 Fe3+與碳量子點(diǎn)熒光猝滅作用的機(jī)理圖
Fig.6Schematic diagram for the fluorescence of CQDs quenched by Fe3+ions
以對(duì)氨基苯磺酸為原料,通過(guò)水熱法一步合成了氮、硫共摻雜碳量子點(diǎn)。制得的碳量子點(diǎn)表面含有氨基基團(tuán)與磺酸基團(tuán),且碳量子點(diǎn)對(duì)Fe3+具有較好的選擇性、靈敏性以及抗干擾能力,在環(huán)境以及生物檢測(cè)方面具有廣闊的應(yīng)用前景。
[1] AISEN P,WESSLING-RESNICK M,LEIBOLD E A.Iron metabolism [J].Curr.Opin.Chem.Biol.,1999,3(2):200-206.
[2] LIEU P T,HEISKALA M,PETERSON P A,et al..The roles of iron in health and disease [J].Mol.Aspects Med.,2001,22(1-2):1-87.
[3] CONRAD M E,UMBREIT J N,MOORE E G.Iron absorption and transport [J].Am.J.Med.Sci.,1999,318(4):213-229.
[4] SIRIVECH S,DRISKELL J,FRIEDEN E.NADH-FMN oxidoreductase activity and iron content of organs from riboflavin and iron-deficient rats [J].J.Nutr.,1977,107(5):739-745.
[5] KALINOWSKI D S,RICHARDSON D R.Future of toxicology-iron chelators and differing modes of action and toxicity:the changing face of iron chelation therapy [J].Chem.Res.Toxicol.,2007,20(5):715-720.
[6] HARDIKAR P S,JOSHI S M,BHAT D S,et al..Spuriously high prevalence of prediabetes diagnosed by HbA1c in young Indians partly explained by hematological factors and iron deficiency anemia [J].Diabetes Care,2012,35(4):797-802.
[7] FILIPPATOS G,FARMAKIS D,COLET J C,et al..Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia:a subanalysis of the FAIR-HF trial [J].Eur.J.Heart Fail.,2013,15(11):1267-1276.
[8] EVANS E H,DAWSON J B,FISHER A,et al..Advances in atomic emission,absorption and fluorescence spectrometry and related techniques [J].J.Anal.At.Spectrom.,2002,17(6):622-651.
[9] MICHALSKI R.Applications of ion chromatography for the determination of inorganic cations[J].Crit.Rev.Anal.Chem.,2009,39(4):230-250.
[10] RAY S C,SAHA A,JANA N R,et al..Fluorescent carbon Nanoparticle:synthesis,characterization and bio-imaging application [J].J.Phys.Chem.C,2009,113(43):18546-18551.
[11] LI H T,HE X D,LIU Y,et al..One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties [J].Carbon,2011,49(2):605-609.
[12] ZHOU L,LI Z H,LIU Z,et al..Luminescent carbon dot-gated nanovehicles for pH-triggered intracellular controlled release and imaging [J].Langmuir,2013,29(21):6396-6403.
[13] 趙清,常青,楊金龍,等.碳點(diǎn)嫁接海藻酸鈣復(fù)合結(jié)構(gòu)的制備及其對(duì)Cu2+的檢測(cè) [J].發(fā)光學(xué)報(bào),2014,35(3):387-392.
ZHAO Q,CHANG Q,YANG J L,et al..Preparation of complex carbon-dot-grafted calcium alginate and its application as fluorescent sensor for Cu2+[J].Chin.J.Lumin.,2014,35(3):387-392.(in Chinese)
[14] 丁艷麗,胡勝亮,常青.氨基修飾碳點(diǎn)與酞菁鋅復(fù)合結(jié)構(gòu)的制備與性能 [J].高等學(xué)?;瘜W(xué)學(xué)報(bào),2015,36(4):619-624.
DING Y L,HU S L,CHANG Q.Preparation and characterization of composites of amine-functionalized carbon dots and zinc phthalocyaine [J].Chem.J.Chin.Univ.,2015,36(4):619-624.(in Chinese)
[15] GUO X,WANG C F,YU Z Y,et al..Facile access to versatile fluorescent carbon dots toward light-emitting diodes [J].Chem.Commun.,2012,48(21):2692-2694.
[16] LI Y,ZHAO Y,CHENG H H,et al..Nitrogen-doped graphene quantum dots with oxygen-rich functional groups [J].J.Am.Chem.Soc.,2012,134(1):15-18.
[17] LI W,ZHANG Z H,KONG B,et al..Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging [J].Angew.Chem.,2013,52(31):8151-8155.
[18] LIU Y S,ZHAO Y N,ZHANG Y Y.One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (Ⅱ) ion detection [J].Sens.Actuators B,2014,196:647-652.
[19] LAI T T,ZHENG E H,CHEN L X,et al..Hybrid carbon source for producing nitrogen-doped polymer nanodots:one-pot hydrothermal synthesis,fluorescence enhancement and highly selective detection of Fe (Ⅲ) [J].Nanoscale,2013,5(17):8015-8021.
[20] LIANG Q H,MA W J,SHI Y,et al..Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications [J].Carbon,2013,60:421-428.
[21] SUN D,BAN R,ZHANG P H,et al..Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties [J].Carbon,2013,64:424-434.
[22] ZHANG Y Y,WU M,WANG Y Q,et al..A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent [J].Talanta,2013,117:196-202.
[23] AMJADI M,MANZOORI J L,HALLAJ T,et al..Strong enhancement of the chemiluminescence of the cerium (IV)-thiosulfate reaction by carbon dots,and its application to the sensitive determination of dopamine [J].Microchim.Acta,2014,181(5-6):671-677.
[24] CHANDRA S,PATRA P,PATHAN S H,et al..Luminescent S-doped carbon dots:an emergent architecture for multimodal applications [J].J.Mater.Chem.B,2013,1(18):2375-2382.
[25] QU D,ZHENG M,DU P,et al..Highly luminescent S,N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts [J].Nanoscale,2013,5(24):12272-12277.
[26] LI S H,LI Y C,CAO J,et al..Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+[J].Anal.Chem.,2014,86(20):10201-10207.
[27] HU S L,ZHAO Q,CHANG Q,et al..Enhanced performance of Fe3+detection via fluorescence resonance energy transfer between carbon quantum dots and Rhodamine B [J].RSC Adv.,2014,4(77):41069-41075.
張文宇(1990-),男,江蘇南京人,碩士研究生,2012年于鹽城工學(xué)院獲得學(xué)士學(xué)位,主要從事碳量子點(diǎn)的制備及應(yīng)用方面的研究。
E-mail:zhangwenyu2009@sina.com
胡勝亮(1978-),男,河北保定人,教授,博士生導(dǎo)師,2005年于天津大學(xué)獲得博士學(xué)位,主要從事熒光碳點(diǎn)的可控制備、性能調(diào)控及其應(yīng)用方面的研究。
E-mail:hsliang@yeah.net
One-step Synthesis of Sulfur- and Nitrogen-co-doped Carbon Quantum Dots for Fe(Ⅲ) Detection
ZHANG Wen-yu,CHANG Qing,ZHOU Yu-feng,WEI Zhi-jia,LI Kai-kai,HU Sheng-liang*
(School of Material Science and Engineering,North University of China,Taiyuan 030051,China)
Not only do the photoluminescence (PL) properties of carbon quantum dots (CQDs) depend on their sizes,but also rely on their surface states.Accordingly,the PL behaviors of CQDs could be tuned by doping and/or grafting heteroatoms and groups.In this work,sulfur-and nitrogen-co-doped carbon quantum dots (SN-CQDs) were firstly synthesized by one-step hydrothermal method using p-aminobenzenesulfonicacid as carbon source.Experimental results indicate that the obtained SN-CQDs have a uniform size and are modified by amine and sulphonic acid groups at their surface.Unlike previous reports,the SN-CQDs show the excitation-wavelength-independent photoluminescence behavior and their fluorescence can be quenched by Fe3+ions.There is a good linear relationship between the Fe3+concentrations within 0-10-3mol·L-1and the fluorescence quenching rates of SN-CQDs.The detecting limit for Fe3+ions is about 10-7mol·L-1.The obtained SN-CQDs have the ability of high selectivity,high sensitivity and good anti-jamming capability to ferric iron ions.Accordingly,SN-CQDs can be used for the detection of Fe3+ions in the environment and organism.
carbon quantum dots; ferric iron ion; fluorescence quenching
1000-7032(2016)04-0410-06
2015-12-18;
2016-01-20
國(guó)家自然科學(xué)基金(51172214,51272301);山西省優(yōu)秀青年科學(xué)基金(2014021008)資助項(xiàng)目
O613; 0657
A
10.3788/fgxb20163704.0410