王有祥,徐興軍*,邵淑麗,李懷永,王維禹,張偉偉
?
光周期對白腰朱頂雀脫支酶活性的影響
王有祥1,徐興軍1*,邵淑麗1,李懷永2,王維禹1,張偉偉1
(1.齊齊哈爾大學(xué)生命科學(xué)與農(nóng)林學(xué)院,黑龍江齊齊哈爾 161006;2. 齊齊哈爾市第一醫(yī)院放療科,黑龍江齊齊哈爾 161000)
將白腰朱頂雀()分為長光組(16 h光照,8 h黑暗)、短光組(8 h光照,16 h黑暗)和對照組(12 h光照,12 h黑暗)分別馴化4周,探尋光周期對白腰朱頂雀體質(zhì)量、器官質(zhì)量、基礎(chǔ)代謝率、體脂質(zhì)量分?jǐn)?shù)和脫支酶活性等生理生化指標(biāo)的影響,結(jié)果顯示:1) 短光組白腰朱頂雀體質(zhì)量隨馴化時間的延長逐漸增加,馴化后比馴化前體質(zhì)量增加了1.05 g,與對照組相比差異極顯著(0.01);長光組白腰朱頂雀體質(zhì)量增加幅度不明顯,馴化1~3周后漲幅較大。2) 短光組白腰朱頂雀的基礎(chǔ)代謝率在馴化2~4周的增加幅度最明顯,增加量為0.38mL/(g·h),馴化第3周至第4周結(jié)束時,短光組白腰朱頂雀基礎(chǔ)代謝率與長光組的差異極顯著(0.01)。3) 短光組白腰朱頂雀肌肉中脫支酶活性與對照組、長光組間的差異極顯著(0.01);長光組白腰朱頂雀肝臟中的脫支酶活性與對照組、短光組間的差異極顯著(0.01)。4) 短光組白腰朱頂雀體脂質(zhì)量分?jǐn)?shù)較對照組高2.19%,長光組體脂質(zhì)量分?jǐn)?shù)較對照組低1.73%,短光組和長光組白腰朱頂雀體脂質(zhì)量分?jǐn)?shù)與對照組間的差異極顯著(0.01),短光組與長光組間的差異極顯著(0.01)。5) 長光組白腰朱頂雀的消化能比短光組、對照組分別高22.71、24.69 kJ/g,長光組的消化能與對照組、短光組間的差異極顯著(<0.01)。6) 短光組和長光組白腰朱頂雀心臟、胃、腎臟、胰臟鮮質(zhì)量與對照組間的差異無統(tǒng)計學(xué)意義(>0.05)。結(jié)果表明,光周期是影響白腰朱頂雀產(chǎn)熱特征改變的主要環(huán)境因子之一,在短光照條件下,白腰朱頂雀通過增加體質(zhì)量、提高代謝率、提高對食物的消化速率、提高肝臟和肌肉組織中脫支酶的活性來補償能量消耗,以適應(yīng)外界光周期的變化。
白腰朱頂雀;光周期;脫支酶活性;基礎(chǔ)代謝率;體質(zhì)量
為應(yīng)對自然界中環(huán)境因素的季節(jié)性變化,動物通過適當(dāng)?shù)哪芰空{(diào)節(jié)來應(yīng)對惡劣環(huán)境。光周期是重要的環(huán)境因子之一,是許多動物體質(zhì)量和能量代謝季節(jié)性調(diào)節(jié)的重要信號[1]。動物的晝夜節(jié)律及季節(jié)節(jié)律隨光周期的季節(jié)性變化而變化。關(guān)于光周期對小型動物能量代謝及產(chǎn)熱方面影響的研究較多,如在長光照刺激下,日本鵪鶉的體質(zhì)量降低,攝入能、排泄能及同化能顯著升高[2];光周期直接參與腎上腺皮質(zhì)應(yīng)激反應(yīng)的調(diào)控[3];短光照使樹麻雀的體質(zhì)量增加并隨消化道的形態(tài)學(xué)變化而變化,通過小腸和直腸顯著增生來維持較長黑暗環(huán)境中正常的能量代謝[4];短光照和較長光照能使白頭鵯的體質(zhì)量和器官質(zhì)量發(fā)生明顯變化[5];短光照能提高布氏田鼠的產(chǎn)熱能力[6],等等。糖原對動物獲得生存所需要的能量具有重要意義[7]。糖原在分解過程中產(chǎn)生許多種酶,其中脫支酶是關(guān)鍵的酶之一[8–9]。
白腰朱頂雀()屬于雀形目(Passeriformes)、雀科(Fringillidae),生活于溪邊叢生柳林和沼澤化的多草疏林,食性比較雜,且隨季節(jié)的變化而變化,春、夏季主要以食蟲為主,秋、冬季主要以食草籽為主,常見于中國東北地區(qū),是中國北方地區(qū)最常見的雀形目之一。國內(nèi)關(guān)于鳥類的研究主要針對鳥類的代謝產(chǎn)熱方面[10–14],如樹麻雀肝臟的線粒體呼吸和肝臟、肌肉的細(xì)胞色素C氧化酶在夏季明顯高于冬季[10]等。目前,對光周期影響白腰朱頂雀脫支酶活性的研究尚少見報道。筆者研究白腰朱頂雀在不同光周期馴化下體質(zhì)量、基礎(chǔ)代謝率和脫支酶活性的變化,以深入了解北方小型鳥類對自然環(huán)境的適應(yīng)策略。
1.1材料
1.1.1試驗動物
白腰朱頂雀捕自黑龍江省齊齊哈爾市扎龍國家自然保護(hù)區(qū)(124°37'E至123°47'E ,47°32'N 至46°52'N),于齊齊哈爾大學(xué)生命科學(xué)與農(nóng)林學(xué)院動物學(xué)實驗室飼養(yǎng)。白腰朱頂雀自由取食及飲水,適應(yīng)飼養(yǎng)1周后按體質(zhì)量隨機分為長光組(16 h光照,8 h黑暗)、短光組(8 h光照,16 h黑暗)和對照組(12 h光照,12 h黑暗),每組各8只,組間體質(zhì)量無明顯差異。將各試驗組白腰朱頂雀分別置于3個人工光照培養(yǎng)箱中馴化4周,馴化溫度25 ℃。
1.1.2主要儀器與試劑
主要儀器:BS210型電子天平(Sartorius公司);TGL–16M臺式高速冷凍離心機(HERMLE Z323K Germany);LS–C50L高壓滅菌鍋(浙江);Μ–6382E超低溫冰箱(–86 ℃,Japan);C2000 IKA氧彈量熱儀(Germany);封閉式流體壓力呼吸儀(北京師范大學(xué)司南儀器廠);723N可見分光光度計(上海精密科學(xué)儀器有限公司);GZP–250A智能光照培養(yǎng)箱(南京紅龍儀器設(shè)備廠);250D數(shù)顯光照培養(yǎng)箱(江蘇省金壇市榮華儀器制造有限公司)。
主要試劑:1%支鏈淀粉溶液;乙酸鈉緩沖溶液(pH為6.0,0.5 mol/L);0.01 mol/L的稀碘液;氫氧化鉀溶液;二氧化硅。
1.2測定指標(biāo)及方法
1.2.1體質(zhì)量及器官質(zhì)量的測定
體質(zhì)量和各器官組織鮮質(zhì)量、干質(zhì)量用電子天平測量,精確到0.01 g。馴化試驗開始后分別測定3組白腰朱頂雀的體質(zhì)量(下文稱為“初始體質(zhì)量”);馴化試驗結(jié)束時測定3組白腰朱頂雀的體質(zhì)量及主要器官質(zhì)量。
1.2.2基礎(chǔ)代謝率的測定
采用封閉式流體壓力呼吸儀測定白腰朱頂雀的基礎(chǔ)代謝率,水浴溫度控制在25 ℃,呼吸室體積為3.6 L,用氫氧化鉀溶液和二氧化硅來吸收呼吸室內(nèi)的二氧化碳和水,每隔3 d測1次基礎(chǔ)代謝率。測量前先將白腰朱頂雀禁食4 h,稱取體質(zhì)量,單只放入鐵絲制成的代謝籠內(nèi),使其保持靜止?fàn)顟B(tài),然后將其放入呼吸室內(nèi)適應(yīng)30 min,待白腰朱頂雀呼吸穩(wěn)定后開始測量,每隔5 min記錄1次,連續(xù)測定1 h,選取比較穩(wěn)定的2個連續(xù)的最低值計算基礎(chǔ)代謝率,共測定1 h的耗氧量[7]。基礎(chǔ)代謝率的測定在18:00—24:00和人工光照培養(yǎng)箱的無光照時段進(jìn)行。
1.2.3脫支酶活性的測定
測定脫支酶活性的最適溫度為50 ℃,最適pH為6.0,最適底物濃度為1%。于300 μL 1%支鏈淀粉溶液和100 μL的上清酶液中加入100 μL乙酸鈉緩沖溶液(pH為6.0,0.5 mol/L),在50 ℃水浴中反應(yīng)1 h,取出100 μL反應(yīng)液,加入2.5 mL 0.01 mol/L的稀碘液后迅速放入分光光度計測定值(620 nm),以未反應(yīng)的酶液和底物混合物作為空白對照。在最適條件下作用1 h,將每1 min生成的支鏈淀粉在620 nm處光密度值增加0.01的酶活定義為一個酶活單位[15]。
1.2.4攝入熱量值的測定
用全收糞法[16]測定白腰朱頂雀在一定期間內(nèi)食入飼料物質(zhì)的質(zhì)量與糞便中排出物質(zhì)的質(zhì)量。記錄動物在某階段的飼料采食量和全部排糞量,對飼料和糞便進(jìn)行熱量測定。攝入能=攝入干物質(zhì)質(zhì)量×食物熱值;糞便能=糞便干質(zhì)量×糞便熱值;消化能=攝入能-糞便能。
1.2.5體脂質(zhì)量分?jǐn)?shù)的測定
體脂質(zhì)量分?jǐn)?shù)的測定采取索氏抽提法[17]。體脂質(zhì)量分?jǐn)?shù)=(胴體干質(zhì)量-抽提后不含體脂的胴體干質(zhì)量)/個體體質(zhì)量。
1.3數(shù)據(jù)分析
用SPSS軟件進(jìn)行數(shù)據(jù)統(tǒng)計分析。體質(zhì)量、器官質(zhì)量、基礎(chǔ)代謝率、體脂質(zhì)量分?jǐn)?shù)、脫支酶活性均采用一元方差檢測組間差異;馴化因素對體質(zhì)量、熱量值、基礎(chǔ)代謝率等的影響采用SPSS軟件多重比較LSD進(jìn)行分析。
2.1各處理白腰朱頂雀的體質(zhì)量和體脂質(zhì)量分?jǐn)?shù)及器官質(zhì)量
馴化開始時,3組白腰朱頂雀的體質(zhì)量間無明顯差異,隨著馴化時間的延長,3組白腰朱頂雀體質(zhì)量均呈上升趨勢,馴化至第2周時長光組與短光組間的差異極顯著(0.01);短光組白腰朱頂雀的體質(zhì)量在馴化3~4周大幅度增加,在第4周馴化結(jié)束時比初始體質(zhì)量增加1.69 g,與長光組、對照組間的差異極顯著(0.01);長光組和對照組白腰朱頂雀在第4周馴化結(jié)束后體質(zhì)量增加不明顯,與初始體質(zhì)量相比分別增加0.87、0.80 g(表1)。
表1 各處理白腰朱頂雀的體質(zhì)量
數(shù)據(jù)后字母表示組間差異分析結(jié)果(<0.05)。
短光組、長光組、對照組白腰朱頂雀的體脂質(zhì)量分?jǐn)?shù)分別為12.82%、8.90%、10.63%,短光組和長光組與對照組間的差異極顯著(0.01),短光組與長光組間的差異極顯著(0.01)。
由表2可見,短光組白腰朱頂雀心臟、肝臟、腎臟、脾臟的鮮質(zhì)量總體均略高于長光組;短光組白腰朱頂雀的消化道鮮質(zhì)量、干質(zhì)量與長光組間的均存在顯著性差異(0.05);長光組白腰朱頂雀肺干質(zhì)量顯著大于短光組的(0.05)。
表2 各處理白腰朱頂雀器官的鮮質(zhì)量和干質(zhì)量
組別 干質(zhì)量/mg 心臟胃肺腎臟消化道肝臟胰臟脾臟肌肉 對照組77.29±2.48137.66±2.2556.03±1.4437.53±1.35(286.11±7.27)aA166.34±3.3129.86±0.8825.64±0.13(1285.38±8.07)aA 長光組74.38±1.60138.55±1.7758.36±0.9037.22±2.02(174.33±3.21)bB168.53±1.1530.31±2.3325.34±0.25(1195.52±3.97)aA 短光組75.19±2.48142.66±0.9045.54±1.3138.01±0.66(284.63±1.99)aA173.28±1.5629.13±0.9927.66±1.10(1401.23±9.76)bB
表中同列數(shù)據(jù)后的字母表示差異顯著(0.05)或極顯著(0.01)。
2.2各處理白腰朱頂雀的基礎(chǔ)代謝率和消化能
在光周期馴化過程中,光周期的長短對基礎(chǔ)代謝率有顯著的影響,隨著馴化時間的延長,短光組白腰朱頂雀的基礎(chǔ)代謝率在馴化2~4周逐漸升高,在第4周馴化結(jié)束時達(dá)到最大值,與第1周相比升高0.60 mL/(g·h),與對照組間的差異顯著(0.05);長光組白腰朱頂雀的基礎(chǔ)代謝率升高幅度不明顯,長光組馴化0~2周的基礎(chǔ)代謝率大幅增加,在第4周馴化結(jié)束時達(dá)到最大值,與第1周相比增加0.35 mL/(g·h)(表3)。
表3 各處理白腰朱頂雀的基礎(chǔ)代謝率
表中同列數(shù)據(jù)后的字母表示差異顯著(0.05)或極顯著(0.01)。
短光組白腰朱頂雀的消化能隨著馴化時間的延長而降低,而長光組白腰朱頂雀的消化能隨著馴化時間的延長而升高。長光組、短光組、對照組白腰朱頂雀的消化能分別為76.06、53.35、51.37 kJ/g。長光組白腰朱頂雀的消化能與對照組、短光組間的差異極顯著(0.01)。長光組白腰朱頂雀的消化能比短光組、對照組分別高22.71、24.69 kJ/g。
2.3各處理白腰朱頂雀的脫支酶活性
由表4可見,長光組白腰朱頂雀肌肉中脫支酶活性與對照組間的差異無統(tǒng)計學(xué)意義(0.05),短光組白腰朱頂雀肌肉中的脫支酶活性與長光組、對照組間的差異極顯著(0.01);長光組白腰朱頂雀肝臟中的脫支酶活性與對照組間的差異無統(tǒng)計學(xué)意義(0.05),短光組白腰朱頂雀肝臟中脫支酶活性與長光組、對照組間的差異極顯著(0.01)。
表4 各處理白腰朱頂雀的脫支酶活性
表中同列數(shù)據(jù)后的字母表示差異顯著(0.05)或極顯著(0.01)。
光周期是影響鳥類能量代謝及產(chǎn)熱能力的重要因素。體質(zhì)量取決于能量收支平衡,其變化反映出動物隨環(huán)境變化的適應(yīng)性調(diào)節(jié),對動物的生理、形態(tài)等都有重要影響[18–20]。短光組白腰朱頂雀的體質(zhì)量馴化后較馴化前增加1.69 g,表明白腰朱頂雀通過增加體質(zhì)量的方式使其體表面積比相對減少,自身的熱傳導(dǎo)降低,體熱散失減少。隨著體質(zhì)量的增加,體脂質(zhì)量分?jǐn)?shù)和基礎(chǔ)代謝率也相應(yīng)提高[21–24],短光照條件下白腰朱頂雀攝入的能量不足以維持能量需求,只能通過儲存大量的內(nèi)源性脂肪為正常的基礎(chǔ)代謝供能。代謝器官質(zhì)量較小的改變會對基礎(chǔ)代謝率產(chǎn)生較大的影響[25–27]。短光組白腰朱頂雀體質(zhì)量比長光組的高,其心臟、消化道、肝臟、腎臟及脾臟的質(zhì)量均高于長光組的,表明白腰朱頂雀的基礎(chǔ)代謝率與肝臟、心臟等內(nèi)部器官有一定的相關(guān)性。這與柳勁松等[28]的研究結(jié)論相一致。動物在環(huán)境壓力影響下通過增加攝食量及消化速率、加大消化道容量或延長滯留時間來滿足能量代謝需求[29–30]。消化速率增加,肝臟的代謝活動也會增強。本研究中短光組白腰朱頂雀的肝臟質(zhì)量高于長光組的。這與張國凱等[12]關(guān)于白頭鵯代謝率與器官質(zhì)量在季節(jié)馴化中的可塑性變化研究結(jié)果相一致。光周期刺激能引起消化道發(fā)生增生反應(yīng),其質(zhì)量的增加必然引起基礎(chǔ)代謝率水平的提高[29]。短光組白腰朱頂雀的消化道鮮質(zhì)量高于長光組的,但短光組白腰朱頂雀的消化能顯著低于長光組的,表明消化道是食物消化吸收的主要場所,其質(zhì)量和活性對維持能量平衡有重要作用。
鳥類的消化酶活力隨季節(jié)的變化而變化,并直接影響動物對營養(yǎng)物質(zhì)的吸收利用。短光組白腰朱頂雀肝臟和肌肉中的脫支酶活性比長光組的高,其原因可能是短光組白腰朱頂雀消化道鮮質(zhì)量的增加提高了消化系統(tǒng)對營養(yǎng)物質(zhì)的吸收,間接影響了脫支酶的活性,進(jìn)而在食物中獲得了較多能量。糖原作為能量的儲存形式,在動物體內(nèi)用以保持能量平衡,其分解主要是由磷酸化酶與脫支酶協(xié)同進(jìn)行。脫支酶活性的高低與糖原含量與分解速率有關(guān)[31]。白腰朱頂雀肝臟中的脫支酶活性比肌肉中的高,其原因可能是肝糖原可直接分解供能,而肌糖原需要轉(zhuǎn)化為肝糖原后才能分解供能。短光組白腰朱頂雀肝臟中的脫支酶活性比對照組、長光組的高,可能是隨著馴化時間的延長,肝糖原不足以維持機體所需的能量,肌糖原經(jīng)過機體內(nèi)一系列反應(yīng)再參與供能。這與徐興軍等[32]關(guān)于溫度對麻雀肝糖原和肌糖原含量影響的研究結(jié)果一致。
總之,在季節(jié)性環(huán)境變化中,光周期是影響白腰朱頂雀產(chǎn)熱特征改變的主要環(huán)境因子之一,其中短光照較長光照更能引起白腰朱頂雀能量代謝的變化。在短光照條件下,白腰朱頂雀通過提高肝臟和肌肉組織中脫支酶的活性和增加體質(zhì)量、基礎(chǔ)代謝率來應(yīng)對短光照的影響,這些適應(yīng)機制是北方小型鳥類應(yīng)對短光照環(huán)境條件的生存策略之一。
[1] Bromage N,Porter M,Randall C.The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin [J].Aquaculture,2001,197(1):63–98.DOI:10.1016/s0044–8486(01)00583–x.
[2] Boon P,Visser GH,Daan S.Effect of photoperiod on body weight gain,and daily energy intake and energy expenditure in Japanese quail (japonica)[J]. Physiol Behav,2000,70(3/4):249–260.DOI:10.1016/s0031–9384(00)00257–2.
[3] Pravosudov V V,Clayton N S.Effects of demanding foraging conditions on cache retrieval accuracy in food-caching mountain chickadees ()[J]. Proceedings of the Royal Society B:Biological Sciences,2001,268(1465):363–368.DOI:10.1098/rspb.2000.1401.
[4] 楊志宏,邵淑麗,柳勁松.樹麻雀代謝率和器官重量在光周期馴化中的變化[J].四川動物,2009,28(4):513–516.
[5] 倪小英,林琳,周菲菲,等.光周期對白頭鵯體重、器官重量和能量代謝的影響[J].生態(tài)學(xué)報,2011,31(6):1703–1713.
[6] 李慶芬,黃晨西.光周期和溫度對布氏田鼠產(chǎn)熱的影響[J].動物學(xué)報,1995,41(4):362–369.
[7] 徐興軍,邵淑麗,張偉偉,等.饑餓條件下麻雀體內(nèi)糖原含量和基礎(chǔ)代謝率的變化[J].江蘇農(nóng)業(yè)科學(xué),2012,40(11):348–350.DOI:10.3969/j.issn.1002–1302. 2012.11.139.
[8] Narahara E,Makino Y,Omichi K.Glycogen debranching enzyme in bovine brain[J].J Biochem,2001,130(3):465–470.DOI:10.1093/oxfordjournals.jbchem.a003007.
[9] Duan X,Wu J.Advances in studying microbial GH13 starch debranching enzyme:a review[J].Acta microbiologica Sinica,2013,53(7):648–656.
[10] 柳勁松,李銘,邵淑麗.樹麻雀肝臟和肌肉產(chǎn)熱特征的季節(jié)性變化[J].動物學(xué)報,2008,54(5):777–784.
[11] Liknes E T,Scott S M,Swanson D L.Seasonal acclimatization in the American goldfinch revisited: to what extent do metabolic rates vary seasonally? [J].The Condor,2002,104(3):548.DOI:10.1650/0010– 5422(2002)104[0548: saitag] 2.0.co;2.
[12] 張國凱,方媛媛,姜雪華,等.白頭鵯的代謝率與器官重量在季節(jié)馴化中的可塑性變化[J].動物學(xué)雜志,2008,43(4):13–19.DOI:10.3969/j.issn.0250–3263.2008. 04.003.
[13] 鄭蔚虹,方媛媛,姜雪華,等.白頭鵯肝臟和肌肉冬夏兩季的代謝產(chǎn)熱特征比較[J].動物學(xué)研究,2010,31(3):319–327.DOI:10.3724/SP.J.1141.2010.03319.
[14] Montgomery M K,Hulbert A J,Buttemer WA. Metabolic rate and membrane fatty acid composition in birds:a comparison between long-living parrots and short-living fowl[J].J Comp Physiol B,Biochem Syst Environ Physiol,2012,182(1):127–137.DOI:10.1007/s00360–011–0603–1.
[15] 王有祥,徐興軍,邵淑麗,等.溫度馴化對白腰朱頂雀脫支酶活性的影響[J].東北林業(yè)大學(xué)學(xué)報,2015,43(9):107–110,120.DOI:10.3969/j.issn.1000–5382. 2015.09.022.
[16] 汪詩平,李永宏.放牧率和放牧?xí)r期對綿羊排糞量、采食量和干物質(zhì)消化率關(guān)系的影響[J].動物營養(yǎng)學(xué)報,1997,9(1):47–54.
[17] Mansour I AL-Mansour.Seasonal variation in basal metabolic rate and body composition within individual sanderling bird calidris alba[J].Journal of Biological Sciences,2004(4):564–567.DOI:10.3923/jbs.2004.564.567.
[18] Haim A,Zisapel N.Daily rhythms of nonshivering thermogenesis in common spiny miceunder short and long photoperiods[J].Journal of Thermal Biology,1999,24(5):455–459.DOI:10.1016/s0306–4565(99)00055–8.
[19] Génin F,Perret M.Photoperiod-induced changes in energy balance in gray mouse lemurs[J].Physiol Behav,2000,71(3/4):315–321.DOI:10.1016/s0031–9384(00)00335–8.
[20] 趙志軍,陳競峰,王德華.光周期和高脂食物對布氏田鼠能量代謝和產(chǎn)熱的影響[J].動物學(xué)報,2008,54(4):576–589.
[21] Cooper S J,Swanson D L.Seasonal acclimatization of thermoregulation in the black-capped chickadee[J]. The Condor,1994,96(3):638–646.DOI:10.2307/1369467.
[22] Rintam?kt P T,Stone J R,Lundberg A.Seasonal and diurnal body-mass fluctuations for two nonhoarding species of parus in sweden modeled using path analysis[J].Auk,2003,120(3):658.DOI:10.1642/0004–8038(2003)120[0658:sadbff]2.0.co;2.
[23] Mcnab B K,Kmcnab B.Ecological factors influence energetics in the Order Carnivora[J].Acta Zoologica Sinica,2005,51(4):535–545.
[24] Liu J S,Li M,Shao S L.Seasonal changes in thermogenic properties of liver and muscle in tree sparrows[J].Acta Entomologica Sinica,2008,51(11):1099–1128.
[25] Williams JB,Tieleman BI.Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures[J]. J Exp Biol,2000,203(Pt 20):3153–3159.
[26] Zheng WH,Li M,Liu JS,et al.Seasonal acclimatization of metabolism in Eurasian tree sparrows ()[J].Comp Biochem Physiol,Part A Mol Integr Physiol,2008,151(4):519–525.DOI:10.1016/j.cbpa.2008.07.009.
[27] Liu J S,Sun R Y,Wang D H.Thermogenic properties in three rodent species from Northeastern China in summer[J].Journal of Thermal Biology,2006,31(1):172–176.DOI:10.1016/j.jtherbio.2005.11.005.
[28] 柳勁松,王德華,孫儒泳.東北地區(qū)黑線倉鼠的代謝產(chǎn)熱特征及其體溫調(diào)節(jié)[J].動物學(xué)報,2003,49(4):451–457.DOI:10.3969/j.issn.1674–5507.2003.04.005.
[29] Song Z.Maximum energy assimilation rate in brandt’s vole () from inner mongolia grassland[J]. Acta Theriologica Sinica,2001,21(4):271–278.
[30] Daan S,Masman D,Groenewold A.Avian basal metabolic rates:their association with body composition and energy expenditure in nature[J].Am J Physiol,1990,259(2 Pt 2):333–340.
[31] Shen JJ,Chen YT.Molecular characterization of glycogen storage disease type III[J].Curr Mol Med,2002,2(2):167–175.DOI:10.2174/1566524024605752.
[32] 徐興軍,王昌河,張偉偉,等.溫度對麻雀肝糖原和肌糖原含量的影響[J].黑龍江畜牧獸醫(yī),2013(6):164–166.
Effects of photoperiod on debranching enzyme activity in redpolls
Wang Youxiang1,Xu Xingjun1*,Shao Shuli1,Li Huaiyong2,Wang Weiyu1,Zhang Weiwei1
(1.College of Life Sciences, Agriculture and Forestry, Qiqihar University, Qiqihar,Heilongjiang 161006, China; 2.Department of Radiation Oncology, First Hospital of Qiqihar, Qiqihar,Heilongjiang161000, China)
Four weeks’ domesticationwere selected to test the effects of photoperiod on their body weight, organ mass, basal metabolic rate, body fat mass fraction, debranching enzyme activity and other physiological and biochemical indicators. Three treatments were prepared, they were long light group (12 hours of light and 12 hours of dark), short light group (8 hours of light and 16 hours of dark) and the control group. The results showed that: 1) After domestication,body weight in short light group increased 1.05 g, body mass reached very significant level compared to the control group (0.01), while it did not get great increase in long light group before the1–3 weeks’ acclimatization; 2) Basal metabolic rate in short light group in 2–4 weeks got obvious increase with amount of 0.38 mL/(g·h), while after domestication at 3 weeks, basal metabolic rate in short light group reached very significant level compared to it in long light group (0.01), at the end of 4 weeks of acclimation, it reached very significant level in short light group compared with the long light group (0.01); 3) Debranching enzyme activity in muscle in the short light group reached significant level compared to them in the long light group and control group (0.01), as well as it in liver in the long light group compared to the short light group and control group (0.01); 4)Body fat mass fraction in short light group was higher 2.19% than that in control group, while it was lower 1.73% than that in control group in long light group; body fat mass fraction in short light and long group reached very significant level compared to the control group (0.01), it reached very significant level in the short light group compared to that in the long light group (0.01); 5)Digestible energy in long light group was respective higher 22.71 kJ/g and 24.69 kJ/g than them in short light group and control group, it reached very significant level in long light group compared with it in the short light and control group (0.01); 6)The fresh weight of heart, stomach, kidney and pancrea in short and long light group were not reached very significant level compared them with the control group (>0.05). Photoperiod was one of the main environmental factors affecting the change of thermogenesis at the condition of short light,could adapt itself to the change of photoperiod by improving body weight, basal metabolic rate, debranching enzyme activity in liver and muscle tissues to compensate the energy consumption from a series of physiological and biochemical reactions.
; photoperiod; debranching enzyme; basal metabolic rate; body weight
S865.3+4;Q959.7+39
A
1007-1032(2016)05-0518-06
2015–11–14
2016–04–20
黑龍江省教育廳科學(xué)技術(shù)研究項目(12541885)
王有祥(1990—),男,黑龍江虎林市人,碩士研究生,主要從事動物生理生態(tài)學(xué)研究,422645033@qq.com;*通信作者,徐興軍,教授,主要從事動物生理生態(tài)學(xué)研究,xxj0605@163.com
投稿網(wǎng)址:http://xb.ijournal.cn
責(zé)任編輯:王賽群
英文編輯:王庫
湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版)2016年5期