張金友
(大慶油田有限責(zé)任公司勘探開發(fā)研究院 黑龍江大慶 163712)
?
陸相坳陷盆地?zé)N源巖內(nèi)致密砂巖儲(chǔ)層含油性主控因素
——以松遼盆地北部中央坳陷區(qū)齊家凹陷高臺(tái)子油層為例
張金友
(大慶油田有限責(zé)任公司勘探開發(fā)研究院 黑龍江大慶 163712)
松遼盆地北部中央坳陷區(qū)齊家凹陷青山口組高臺(tái)子油層是典型的烴源巖內(nèi)致密砂巖油。通過對(duì)儲(chǔ)層宏觀、微觀含油性分析及含油性主控因素的深入研究,表明高臺(tái)子油層儲(chǔ)層含油性主要受沉積微相、成巖作用及烴源巖質(zhì)量的綜合控制,表現(xiàn)為有利沉積微相控制儲(chǔ)層含油富集程度,河口壩、遠(yuǎn)砂壩微相砂體內(nèi)大喉道發(fā)育,物性好,為致密油運(yùn)移提供優(yōu)勢(shì)通道,同時(shí)儲(chǔ)集空間相對(duì)發(fā)育,為致密油提供更廣泛的聚集場(chǎng)所,油氣最富集,沉積微相是控制高臺(tái)子油層“甜點(diǎn)區(qū)”發(fā)育的關(guān)鍵地質(zhì)條件。成巖作用控制石油差異分布,機(jī)械壓實(shí)和膠結(jié)作用導(dǎo)致儲(chǔ)層在油氣大規(guī)模運(yùn)聚之前普遍進(jìn)入致密化,局部膠結(jié)作用弱的砂巖及溶蝕作用強(qiáng)烈的砂巖,大孔隙及大喉道發(fā)育,后期石油充注儲(chǔ)層發(fā)生差異聚集,砂巖呈現(xiàn)不同的含油級(jí)別。烴源巖質(zhì)量控制儲(chǔ)層含油的普遍程度,好—最好烴源巖區(qū)油源充足、充注動(dòng)力強(qiáng),且就近運(yùn)聚,雖然砂體薄,物性差,但砂體含油更普遍,含油物性下限低,差—中等烴源巖區(qū)砂體厚度大,物性總體較好,但受烴源巖質(zhì)量及沉積、成巖作用綜合控制,砂體含油普遍性差,主要以砂體中部物性好的層段含油為主,干砂層增多。甜點(diǎn)區(qū)主要分布在成熟烴源巖內(nèi)部,縱向多套含油層系錯(cuò)疊形成甜點(diǎn)區(qū)連片分布,中北部含油砂體累計(jì)厚度大,物性好,向南部變差,計(jì)算甜點(diǎn)區(qū)資源1.5×108t,勘探前景良好。
陸相坳陷盆地 齊家凹陷 高臺(tái)子油層 致密砂巖 含油性 控制因素
松遼盆地北部中央坳陷區(qū)齊家凹陷在青山口組沉積時(shí)期位于沉降與沉積中心,湖泊—三角洲相的沉積環(huán)境發(fā)育,沉積了一套累計(jì)厚度大的泥質(zhì)巖,是重要的烴源巖層[18-19],同時(shí)在青山口組內(nèi)部的高臺(tái)子油層廣泛發(fā)育三角洲相砂體[20],這些砂體物性差,與烴源巖縱向互層緊密接觸,近源供油,是典型的源內(nèi)致密油[21]。目前大慶油田通過大規(guī)模體積壓裂技術(shù),在高臺(tái)子油層孔隙度為4%左右的含油砂巖儲(chǔ)層內(nèi)獲得了工業(yè)油流,從而使物性更差的儲(chǔ)層成為勘探的現(xiàn)實(shí)目標(biāo),這一勘探領(lǐng)域?qū)嫌吞镌鰞?chǔ)上產(chǎn)意義重大。但是,在勘探實(shí)踐中發(fā)現(xiàn),該區(qū)致密砂巖儲(chǔ)層含油非均質(zhì)性強(qiáng),有些儲(chǔ)集層段物性好,但是不含油或含油性很差,有些地區(qū)物性差的儲(chǔ)集體含油反而比較普遍,含油性及其分布主控因素認(rèn)識(shí)不清,制約著致密油“甜點(diǎn)區(qū)”的優(yōu)選和評(píng)價(jià)。本文利用大量實(shí)驗(yàn)分析數(shù)據(jù),重點(diǎn)對(duì)齊家凹陷高臺(tái)子油層致密砂巖儲(chǔ)層的含油性及其控制因素開展研究,對(duì)深入認(rèn)識(shí)陸相致密油富集規(guī)律及優(yōu)選有利勘探區(qū)帶具有重要的現(xiàn)實(shí)意義。
齊家凹陷位于松遼盆地中央坳陷區(qū)齊家—古龍凹陷內(nèi)部,經(jīng)歷了斷陷、沉陷、構(gòu)造反轉(zhuǎn)三個(gè)構(gòu)造發(fā)展過程,明水組沉積末期基本定型[22-23],形成了現(xiàn)今齊家凹陷西北部高、南部低緩的構(gòu)造格局,現(xiàn)今齊家凹陷主體部分的高臺(tái)子油層頂面埋深一般超過1 700 m。在構(gòu)造發(fā)展過程中,主要形成了斷陷和坳陷兩套沉積層序,其中坳陷沉積層序?qū)τ蜌膺\(yùn)移、聚集起著極為重要的作用,泉頭組沉積時(shí)期開始,是盆地整體沉降、坳陷層序堆積建造階段和同生構(gòu)造的形成期,青山口組沉積時(shí)期為松遼盆地坳陷沉降最強(qiáng)烈時(shí)期之一[22],利于沉積物的建造和堆積。古地形恢復(fù)表明,齊家凹陷高臺(tái)子油層沉積時(shí)期古坡角一般在0.1°~0.5°,北部物源體系供給充分,三角洲前緣亞相的沉積環(huán)境在全區(qū)廣泛發(fā)育,在水流與湖浪共同作用下,形成了砂體在平面上大面積連片、縱向上疊置的分布特征(圖1),三維空間上烴源巖緊密包裹砂巖,呈互層狀分布(圖2),地層厚度一般在150~200 m,石油主要聚集在齊家凹陷南部成熟烴源巖范圍內(nèi)的高臺(tái)子油層,純油層大面積發(fā)育的地區(qū)是致密油勘探的主要目標(biāo)區(qū)。
圖1 齊家凹陷高臺(tái)子油層沉積相及石油平面分布圖Fig.1 Sedimentary facies and oil distribution of Gaotaizi oil reservoir in Qijia sag
齊家凹陷高臺(tái)子油層致密油區(qū)儲(chǔ)集層主要為河口壩、遠(yuǎn)砂壩和席狀砂微相成因的粉砂巖,巖性主要為長(zhǎng)石砂巖、巖屑長(zhǎng)石砂巖、鈣質(zhì)長(zhǎng)石砂巖等,泥質(zhì)雜基含量較高。大量常規(guī)薄片觀察及場(chǎng)發(fā)射掃描電鏡分析表明,儲(chǔ)層儲(chǔ)集空間以粒間孔、長(zhǎng)石粒內(nèi)溶孔最為發(fā)育(圖3),見少量的方解石膠結(jié)物溶孔、巖屑粒內(nèi)溶孔、自生礦物晶間孔、碎屑礦物晶間孔、鑄模孔及微裂縫,孔隙直徑大小一般在5~20 μm,局部發(fā)育的鑄??卓紫吨睆娇蛇_(dá)200 μm以上,原生粒間孔孔隙直徑一般小于30 μm,同時(shí)儲(chǔ)層內(nèi)存在大量連通性較差的納米級(jí)孔隙。
根據(jù)15口井641塊巖芯孔滲數(shù)據(jù)統(tǒng)計(jì),致密砂巖儲(chǔ)層物性差,孔隙度一般分布在3%~12%,滲透率主要分布在(0.01~1)×10-3μm2,一般小于0.5×10-3μm2,屬于特低孔超低滲儲(chǔ)層,孔隙度與滲透率相關(guān)性一般,說明儲(chǔ)層非均質(zhì)性較強(qiáng)。隨著物性增高,儲(chǔ)層含油性總體變好(圖4a)。壓汞數(shù)據(jù)及CT掃描分析,致密油儲(chǔ)層孔喉半徑小,以納米級(jí)孔喉連通為主,孔喉半徑一般分布在10~500 nm(圖4b),占95.7%,孔隙配位數(shù)一般在1~4。
齊家凹陷高臺(tái)子油層致密砂巖儲(chǔ)層含油級(jí)別總體以油浸、油斑和油跡顯示為主(圖4a),砂體含油性受沉積相、成巖作用及烴源巖質(zhì)量綜合控制,但不同因素對(duì)砂體含油分布的控制作用不同。
3.1 有利沉積相帶控制砂體含油富集程度
在同一沉積相體系內(nèi)部的不同微相之間,砂體規(guī)模、疊置樣式和巖石礦物成分等諸多方面存在差異,這種沉積微相之間不同尺度的非均質(zhì)性造成砂巖儲(chǔ)層具有不同的原始孔隙度,也使沉積物在后期埋藏演化過程中發(fā)生不同成巖作用和孔隙變化[24]。形成于強(qiáng)水動(dòng)力環(huán)境、厚度大、分選好、泥質(zhì)含量低的砂體具有良好的原生孔隙結(jié)構(gòu),原生粒間孔隙會(huì)非常發(fā)育,孔隙連通性好,原始孔隙度高,滲透性好,在經(jīng)歷溶蝕改造之前仍能保存連通良好的原生孔隙,為孔隙流體的流動(dòng)提供了必要的孔隙空間,易于進(jìn)行溶蝕改造而形成大規(guī)模的次生孔隙[25],所以不同的沉積環(huán)境會(huì)對(duì)油氣的運(yùn)移和聚集過程產(chǎn)生不同程度的影響,決定油氣不同的分布狀態(tài)。
齊家凹陷高臺(tái)子油層致密油區(qū)砂體成因類型豐富,主要有河口壩、遠(yuǎn)砂壩和席狀砂微相成因砂體,砂巖從物源方向向湖區(qū)展布,形成以河口壩砂體為核心,平面上向外呈朵葉狀大面積連續(xù)分布,砂體連續(xù)性好,南北向砂體延伸長(zhǎng)度超過15 km,向邊部逐漸變薄,尖滅在烴源巖中,縱向上砂巖與烴源巖互層疊置分布。河口壩砂體離物源區(qū)相對(duì)較近,水動(dòng)力條件最強(qiáng),泥質(zhì)含量低,沉積厚度大,一般在2~3.5 m,砂體物性好,平均孔隙度為10.4%,滲透率平均為0.48×10-3μm2(圖5a)。薄片觀察及CT掃描顯示,河口壩砂體孔隙半徑一般在30~100 μm,孔喉半徑一般100~500 nm,孔隙配位數(shù)平均3,孔喉結(jié)構(gòu)好,連通性好,這些大孔隙及大喉道構(gòu)成油氣優(yōu)勢(shì)運(yùn)移的主要通道和聚集場(chǎng)所,含油級(jí)別多為油浸和油斑顯示。向外側(cè)遠(yuǎn)砂壩砂體沉積區(qū)砂體厚度變薄,一般為1.5~2.5 m,孔隙度平均為8.6%,滲透率平均0.2×10-3μm2(圖5b),孔隙半徑一般在10~50 μm,孔喉半徑一般在50~200 nm,孔隙配位數(shù)平均2,含油顯示一般為油斑和油跡。邊部席狀砂砂體的厚度、物性及孔喉結(jié)構(gòu)上變得更差,泥質(zhì)膠結(jié)重,孔隙度平均為6.3%,滲透率平均為0.04×10-3μm2(圖5c),孔隙半徑一般小于10 μm,孔喉半徑一般小于50 nm,孔隙配位數(shù)小于2,含油顯示一般為油跡及熒光。沉積微相控制儲(chǔ)層的宏觀展布和微觀結(jié)構(gòu),油氣沿著砂體運(yùn)移過程中,優(yōu)先充注河口壩、遠(yuǎn)砂壩等物性好的砂體(圖6),這些砂體物性好,在油源充足的條件下,油氣富集程度高,受沉積微相控制,縱向上多套含油砂體錯(cuò)疊連片分布(圖2),從而構(gòu)成高臺(tái)子油層甜點(diǎn)區(qū)的主體。
阿花像扶不起的阿斗,說阿坤,我們斗不過金融危機(jī)的,比我們實(shí)力強(qiáng)的拋光廠都倒了,我們豈能逃脫命運(yùn)的安排?好了阿坤,我們現(xiàn)在要商量的是,景花廠如何破產(chǎn)了。
圖2 齊家地區(qū)高臺(tái)子油層烴源巖與致密油分布關(guān)系圖Fig.2 Distribution relation of hydrocarbon source rocks and dense oil of Gaotaizi oil reservoir in Qijia sag
圖3 齊家凹陷高臺(tái)子油層致密儲(chǔ)層微觀照片a.河口壩微相致密砂巖儲(chǔ)層鑄體薄片,發(fā)育粒間孔和粒間溶孔,孔隙度10.9%,滲透率0.45×10-3 μm2,平均喉道半徑443 nm,J281井,2 129.37 m;b.遠(yuǎn)砂壩微相致密砂巖儲(chǔ)層鑄體薄片,以長(zhǎng)石溶孔和粒間微孔為主,泥質(zhì)含量較高,孔隙度12.5%,滲透率0.23×10-3 μm2,平均喉道半徑121 nm,X83井,1 928.03 m;c.席狀砂微相致密砂巖儲(chǔ)層鑄體薄片,少量溶蝕孔和微孔,巖性致密,泥質(zhì)含量高,孔隙度4.36%,滲透率0.016×10-3 μm2,平均喉道半徑34 nm,QP1井,2 044.14 m;d.致密砂巖儲(chǔ)層石英及長(zhǎng)石顆粒粒間微孔,J281井,2 129.37 m,聚焦離子電子雙束電鏡;e.致密砂巖儲(chǔ)層石英顆粒粒間微孔及納米級(jí)喉道,鏡下白色礦物為重晶石膠結(jié)粒間孔隙,J341井,2 059.85 m,聚焦離子電子雙束電鏡;f.致密砂巖儲(chǔ)層伊利石填充粒間孔隙,形成大量微孔,J341井,2 059.85 m,聚焦離子電子雙束電鏡。Fig.3 Microscopic photos of tight reservoir of Gaotaizi oil reservoir in Qijia sag
圖4 齊家凹陷高臺(tái)子油層致密儲(chǔ)層物性及喉道分布特征a.孔隙度與滲透率及含油性關(guān)系;b.平均喉道半徑分布直方圖Fig.4 Distribution characteristics of physical properties and the throat of Gaotaizi oil reservoir in Qijia sag
圖5 齊家凹陷高臺(tái)子油層不同沉積微相儲(chǔ)層物性分布直方圖a.河口壩微相致密砂巖儲(chǔ)層孔隙度及滲透率分布直方圖;b.遠(yuǎn)砂壩微相致密砂巖儲(chǔ)層孔隙度及滲透率分布直方圖;c.席狀砂微相致密砂巖儲(chǔ)層孔隙度及滲透率分布直方圖Fig.5 Distribution histogram of reservoir physical property from different sedimentary microfacies of Gaotaizi oil reservoir in Qijia sag
圖6 齊家凹陷高臺(tái)子油層致密油沉積微相—含油性分布模式Fig.6 Distribution pattern of microfacies and oil-bearing tight reservoir of Gaotaizi oil reservoir in Qijia sag
3.2 成巖作用導(dǎo)致油氣差異聚集
沉積作用是影響致密油儲(chǔ)層含油性的重要基礎(chǔ)條件,而成巖作用是影響致密油儲(chǔ)層含油性的另一關(guān)鍵地質(zhì)因素,因?yàn)閹r石在沉積后埋藏成巖過程中,要經(jīng)歷一系列復(fù)雜的成巖作用效應(yīng),會(huì)使巖石的原始結(jié)構(gòu)、礦物及地球化學(xué)成分等發(fā)生變化[26],礦物與孔隙流體之間的相互作用會(huì)使礦物發(fā)生遷移與沉淀等[27],使孔喉結(jié)構(gòu)變好或變差,控制儲(chǔ)層的儲(chǔ)集性能,進(jìn)而影響油氣在儲(chǔ)層中的滲流和聚集,使油氣分布發(fā)生變化。
成巖演化史研究,齊家凹陷高臺(tái)子油層對(duì)儲(chǔ)層影響最大的成巖作用類型為機(jī)械壓實(shí)作用、膠結(jié)作用和溶蝕溶解作用,壓實(shí)作用和膠結(jié)作用是儲(chǔ)層致密化的主要因素。地層埋藏史研究表明,明水組沉積時(shí)期,青山口組地層進(jìn)入埋深最大時(shí)期,高臺(tái)子油層埋藏深度普遍在1 700 m以下,砂巖碎屑顆粒多呈線接觸,部分長(zhǎng)石顆粒由于壓實(shí)作用發(fā)生碎裂等強(qiáng)壓實(shí)證據(jù),壓實(shí)作用可使孔隙體積減少30%左右。另一個(gè)導(dǎo)致孔隙度降低的重要因素是鈣質(zhì)和泥質(zhì)的膠結(jié)作用,巖芯樣品分析,高臺(tái)子油層碳酸鹽巖含量一般在5%~20%,最高可達(dá)35%,碳酸鹽膠結(jié)物主要為方解石,方解石膠結(jié)物形成時(shí)間主要以明水組沉積以前形成為主,一般在河口壩、遠(yuǎn)砂壩微相砂體的上部含量最高,中部含量低,這可能與該區(qū)砂體頂部廣泛發(fā)育的介形蟲層有關(guān),在成巖演化過程中,為水體提供大量鈣質(zhì)來源,在滲流過程中,向下逐漸沉淀,形成碳酸鹽含量漸變的特征,而砂壩砂體的底部為泥質(zhì)膠結(jié),儲(chǔ)層更為致密。所以,方解石和泥質(zhì)膠結(jié)作用使儲(chǔ)層在壓實(shí)作用的基礎(chǔ)上進(jìn)一步減少了儲(chǔ)集空間,縮小喉道,使儲(chǔ)層孔喉結(jié)構(gòu)更加復(fù)雜和致密??紫抖垦莼芯勘砻鳎趬簩?shí)及膠結(jié)作用下,烴源巖大規(guī)模生烴前即明水組沉積末期前儲(chǔ)層已經(jīng)進(jìn)入致密(圖7),孔隙度整體小于12%以下,雖然在烴源巖成熟期產(chǎn)生的酸性流體對(duì)部分儲(chǔ)層進(jìn)行了改造,改善了儲(chǔ)集空間和孔喉結(jié)構(gòu),但總體增孔有限,主要還是屬于先致密后成藏的油氣聚集過程。成巖演化過程與油氣運(yùn)聚過程的時(shí)空匹配關(guān)系對(duì)油氣分布及富集有著重要的影響,雖然儲(chǔ)層總體致密化,但沉積、成巖作用形成的儲(chǔ)層非均質(zhì)性使儲(chǔ)層內(nèi)部相對(duì)還存在差異致密,石油會(huì)優(yōu)先進(jìn)入滲透性好、排替壓力最低的儲(chǔ)集層部分,隨著石油的不斷充注,在驅(qū)動(dòng)力的作用下,逐漸向更小的孔隙部分運(yùn)聚[28],在孔隙、喉道、驅(qū)動(dòng)力等綜合控制下,油氣差異聚集,形成儲(chǔ)層含油非均質(zhì)性。
實(shí)際樣品分析如圖8所示,2 162~2 163.5 m處的河口壩砂體,受沉積、成巖作用控制,河口壩砂體頂部方解石含量高,一般在10%~15%左右,受方解石膠結(jié)作用影響,孔隙度一般在6%~8%,滲透率小于0.2×10-3μm2,平均喉道半徑小于0.05 μm,細(xì)小的孔隙和喉道導(dǎo)致排驅(qū)壓力較大,一般可達(dá)5~6 MPa,石油運(yùn)移阻力大,砂體呈現(xiàn)為油跡或油斑含油顯示。河口壩中下部砂體沉積時(shí)分選磨圓好,粉砂巖砂體純凈,方解石及泥質(zhì)含量低,原始儲(chǔ)集空間保存相對(duì)較好,且后期酸性流體更易于在其中流動(dòng),產(chǎn)生次生孔隙,進(jìn)一步改善儲(chǔ)層孔喉結(jié)構(gòu),樣品分析顯示,該段砂體孔隙度分布在10%~15%,滲透率大于0.2×10-3μm2,喉道半徑大于0.1 μm,排驅(qū)壓力一般在1~3 MPa,含油顯示以油浸為主。河口壩砂體底部為含泥粉砂巖和泥質(zhì)粉砂巖等過渡巖性,泥質(zhì)含量高,孔隙度一般小于8%,滲透率小于0.03×10-3μm2,平均喉道半徑小于0.05×10-3μm2,排驅(qū)壓力可達(dá)到5~10 MPa,說明泥質(zhì)對(duì)砂體孔隙結(jié)構(gòu)影響更為明顯,由于阻力更大,石油難以進(jìn)入砂體聚集,很多砂體為干層或僅見油跡和熒光顯示。所以,在沉積、成巖作用控制下,砂體含油差異明顯,形成儲(chǔ)層含油非均質(zhì)性特征(圖8)。
3.3 烴源巖質(zhì)量控制砂體含油普遍程度
齊家凹陷高臺(tái)子油層致密油主要分布在孔隙度小于12%、鏡質(zhì)體反射率大于0.75%的成熟烴源巖區(qū)內(nèi)(圖1,2),按照陸相盆地?zé)N源巖分類評(píng)價(jià)標(biāo)準(zhǔn),高臺(tái)子油層內(nèi)部烴源巖可分為好—最好烴源巖區(qū)和差—中等烴源巖區(qū)。研究區(qū)內(nèi)單井取芯段巖芯精細(xì)解剖研究表明,烴源巖與砂體縱向組合關(guān)系表現(xiàn)為由三角洲外前緣亞相區(qū)的厚層泥巖夾薄層砂巖向三角洲內(nèi)前緣亞相逐漸過渡為厚層砂巖夾薄層泥巖的組合形態(tài)(圖9,10)。不同烴源巖質(zhì)量范圍內(nèi),砂體含油特征不同,好—最好烴源巖區(qū)主要處于三角洲外前緣亞相的沉積環(huán)境,泥巖發(fā)育,泥巖內(nèi)部包裹遠(yuǎn)砂壩、席狀砂砂體,受沉積、成巖作用,這些砂體物性差,含油級(jí)別低,以油跡和油斑顯示為主,但是由于這些砂體發(fā)育在好—最好烴源巖內(nèi)部,油氣就近運(yùn)聚,導(dǎo)致砂體含油普遍(圖9)。差—中等烴源巖區(qū)主要處于三角洲內(nèi)前緣亞相的沉積環(huán)境,該區(qū)河口壩、遠(yuǎn)砂壩砂體發(fā)育,砂體間夾薄層泥巖,雖然這些泥質(zhì)巖生烴條件變差,但是砂體總體物性好,呈現(xiàn)含油級(jí)別較高的特征,以油斑和油浸為主,同時(shí)受沉積成巖作用控制,儲(chǔ)層含油非均質(zhì)性強(qiáng),物性較差的砂體多以干層為主。造成這種含油現(xiàn)象的原因一方面是因?yàn)樯绑w與烴源巖直接接觸,砂體獲得油氣更方便、高效,另一方面是生排烴強(qiáng)度大的烴源巖區(qū),生烴增壓產(chǎn)生的超壓使油氣向附近砂體運(yùn)移的動(dòng)力更充足[29-31],在該類烴源巖區(qū)內(nèi)油氣相對(duì)更易于進(jìn)入致密的砂體內(nèi)聚集[32-33],烴源巖生烴的同時(shí)伴隨地層壓力增大,油氣運(yùn)聚的動(dòng)力也在增加,由于砂體橫向連續(xù)性好,縱向隔夾層發(fā)育,好—最好烴源巖區(qū)的油氣通過連通性好的席狀砂、遠(yuǎn)砂壩砂體不斷側(cè)向運(yùn)移至差—中等烴源巖區(qū)的河口壩、遠(yuǎn)砂壩砂體內(nèi),所以烴源巖質(zhì)量對(duì)致密砂巖儲(chǔ)層含油性控制起到至關(guān)重要的作用。
烴源巖生排烴模擬研究表明,齊家凹陷高臺(tái)子油層在四方臺(tái)子組—嫩江組沉積末期,烴源巖開始陸續(xù)成熟,鏡質(zhì)組反射率達(dá)到0.75%,烴源巖開始排烴,但此時(shí)生烴轉(zhuǎn)化率在12%左右,轉(zhuǎn)化率低,烴源巖尚未大量排烴[34],到了明水組沉積末期,隨著埋深增加,烴源巖鏡質(zhì)組反射率達(dá)到0.9%以上,干酪根烴轉(zhuǎn)化率快速增加,此時(shí)轉(zhuǎn)化率可達(dá)70%以上,烴源巖進(jìn)入快速排烴階段,高密度的干酪根轉(zhuǎn)化為低密度的油,使孔隙流體發(fā)生膨脹[35],烴源巖生烴產(chǎn)生的壓力也在不斷增大[36]。齊家凹陷古壓力恢復(fù)表明,明水組沉積末期生烴增壓產(chǎn)生的剩余壓力普遍超過10 MPa,凹陷內(nèi)部好—最好烴源巖區(qū)剩余壓力可達(dá)15~20 MPa,生烴增壓產(chǎn)生的體積膨脹力足以達(dá)到烴源巖破裂壓力發(fā)生幕式排烴進(jìn)入儲(chǔ)層,為致密油提供物質(zhì)基礎(chǔ),在生烴增壓為主要的成藏動(dòng)力條件下,不同烴源巖質(zhì)量范圍內(nèi)的砂體表現(xiàn)出不同的含油特征。
好—最好烴源巖區(qū),烴源巖厚度較大,有機(jī)碳含量一般在1.3%~2.5%,最高可達(dá)3.3%,鏡質(zhì)體反射率一般在0.9%~1.1%,排油強(qiáng)度超過300×104t/km2。取芯井巖芯砂體含油性統(tǒng)計(jì),該區(qū)砂體含油率一般在80%以上,在泥巖包裹的物性很差的薄層粉砂巖、泥質(zhì)粉砂巖等巖性基本都見含油顯示(圖9),含油級(jí)別一般為油跡和油斑。如圖9中1 985~1 987 m處,雖然砂巖物性很差,孔隙度平均在4.1%、滲透率平均在0.025×10-3μm2,但是緊鄰砂體上下的泥質(zhì)巖有機(jī)碳含量超過2%、鏡質(zhì)體反射率大于1%,生油條件很好,為鄰近砂體提供豐富的石油來源。實(shí)測(cè)巖芯物性統(tǒng)計(jì),油跡顯示的砂巖儲(chǔ)層孔隙度平均在4%,也就是好—最好烴源巖區(qū)的砂體含油下限可低至4%左右,部分孔隙度小于4%、受泥質(zhì)膠結(jié)重的砂巖為干層或見熒光顯示,如1 998.5 m和1 999.7 m處泥質(zhì)粉砂巖,實(shí)測(cè)孔隙度分別為3.6%和3%,巖芯未見含油顯示,表明雖然上下泥巖具有很好的生烴條件,但是砂體物性太差,石油依然難以進(jìn)入砂體聚集。實(shí)際巖芯充注實(shí)驗(yàn)也表明,當(dāng)孔隙度大于3.8%、空氣滲透率大于0.018×10-3μm2,用模擬原油可充注進(jìn)入砂體,說明鄰近好—最好烴源巖區(qū)的砂體具備的這種“先天優(yōu)勢(shì)”,使得油氣在生烴增壓下更易于克服阻力進(jìn)入砂體,優(yōu)先成藏。
差—中等烴源巖發(fā)育區(qū),有機(jī)碳含量一般在0.9%~1.5%,鏡質(zhì)體反射率一般在0.75%~0.9%,排油強(qiáng)度一般小于150×104t/km2,隨著烴源巖生油能力變?nèi)酰艧N強(qiáng)度變小,石油運(yùn)聚動(dòng)力變?nèi)酰瑹N源巖對(duì)砂體含油性控制也變?nèi)?,石油難以進(jìn)入物性更差的砂體。如圖10中2 135~2 135.7 m處的鈣質(zhì)粉砂巖發(fā)育段,實(shí)測(cè)孔隙度平均為6.1%、滲透率為0.04×10-3μm2,其上覆的泥質(zhì)巖有機(jī)碳含量為0.95%、鏡質(zhì)體反射率為0.75%,進(jìn)入成熟階段,但是由于砂體被鈣質(zhì)膠結(jié)導(dǎo)致物性差,加之石油運(yùn)聚動(dòng)力不足,砂體未見含油顯示。2 159 m處的鈣質(zhì)粉砂巖、泥質(zhì)粉砂巖均未見含油顯示的原因亦是如此。通過該區(qū)取芯井巖芯觀察統(tǒng)計(jì)表明,差—中等烴源巖區(qū)砂體含油顯示孔隙度下限一般在6%左右,泥質(zhì)粉砂巖、鈣質(zhì)粉砂巖等物性差的砂體,即使緊鄰成熟烴源巖,砂體也很難見到含油跡象,即使含油也多為熒光顯示,基本無勘探價(jià)值,砂體含油性受巖性及物性影響更為明顯,說明該區(qū)砂體內(nèi)的石油應(yīng)主要來自好—最好烴源巖區(qū)。
綜合以上分析,高臺(tái)子油層致密砂巖儲(chǔ)層現(xiàn)今含油顯示特征是在沉積微相、成巖作用及烴源巖演化過程控制下綜合作用的結(jié)果。青山口組高臺(tái)子油層沉積時(shí)期,齊家地區(qū)在三角洲前緣亞相沉積環(huán)境下堆積了大套厚層的砂泥巖互層沉積體,砂巖與泥巖空間上呈互層狀緊密相鄰,隨著地層埋藏的進(jìn)一步加深,到了明水組沉積末期,受沉積、成巖作用影響,儲(chǔ)層整體進(jìn)入致密,其中三角洲外前緣相帶的席狀砂砂體薄、泥質(zhì)含量較高,最先進(jìn)入致密化,內(nèi)前緣相帶河口壩、遠(yuǎn)砂壩砂體相對(duì)厚度大,砂體中部物性較好,為油氣聚集提供了較好的儲(chǔ)集空間。明水組沉積末期烴源巖進(jìn)入大規(guī)模生排烴階段,好—最好烴源巖區(qū)油氣大量生成,在生烴增壓作用下,石油優(yōu)先充注附近致密的席狀砂、遠(yuǎn)砂壩砂體,使該區(qū)砂體呈現(xiàn)普遍含油特征,受物性控制,砂體含油級(jí)別不高。差—中等烴源巖區(qū)生烴強(qiáng)度小、運(yùn)聚動(dòng)力弱、油源充足性變差,隨著生烴的持續(xù)進(jìn)行,由于砂體連通性好,石油從好—最好烴源巖區(qū)沿著砂體向內(nèi)前緣河口壩、遠(yuǎn)砂壩砂體繼續(xù)充注,石油主要聚集在物性相對(duì)好的部位,而物性差的泥質(zhì)和鈣質(zhì)膠結(jié)重的砂體則石油難以進(jìn)入,形成現(xiàn)今砂體含油特征。
圖7 齊家地區(qū)高臺(tái)子油層致密儲(chǔ)層“四史”演化Fig.7 "Four history" evolution mode of tight reservoir of Gaotaizi oil reservoir in Qijia sag
圖8 齊家地區(qū)高臺(tái)子油層致密儲(chǔ)層典型井取芯含油剖面與儲(chǔ)層分析參數(shù)Fig.8 Coring oiliness section and reservoir parameters of typical tight reservoir well of Gaotaizi oil reservoir in Qijia sag
圖9 齊家凹陷高臺(tái)子油層好—最好烴源巖區(qū)典型井含油性剖面Fig.9 Oil bearing section of typical well in good and excellent source rock area of Gaotaizi oil reservoir in Qijia sag
圖10 齊家凹陷高臺(tái)子油層差—中等烴源巖區(qū)典型井含油性剖面Fig.10 Oil-bearing section of typical well in poor and medium source rock area of Gaotaizi oil reservoir in Qijia sag
齊家凹陷高臺(tái)子油層致密砂巖儲(chǔ)層在多因素控制下,石油近源差異聚集,有利部位富集,使儲(chǔ)層呈現(xiàn)不同的含油特征,多套含油層系平面上錯(cuò)疊連片分布,形成主體“甜點(diǎn)區(qū)”(圖11)。“甜點(diǎn)區(qū)”主要分布在成熟烴源巖范圍內(nèi)部,以北部河口壩、遠(yuǎn)砂壩砂體發(fā)育區(qū)物性好、含油級(jí)別高、含油層累計(jì)厚度大,向南部及邊部,受烴源巖質(zhì)量、沉積微相及成巖作用影響,砂體變薄、含油性變差,砂體含油厚度變薄。綜合考慮后期水平井鉆探及大規(guī)模穿層體積壓裂等工程需要,以孔隙度、含油砂巖累計(jì)厚度為主要指標(biāo),將致密油“甜點(diǎn)區(qū)”分為兩類,有利勘探面積共約2 000 km2。I類“甜點(diǎn)區(qū)”主要分布在河口壩、遠(yuǎn)砂壩微相沉積砂體內(nèi),該區(qū)孔隙度大于8%、含油級(jí)別以油浸、油斑粉砂巖為主、含油砂巖累計(jì)厚度整體超過30 m,估算資源潛力約1×108t,該區(qū)雖然烴源巖質(zhì)量相對(duì)較差,但是砂體物性好、含油砂巖累計(jì)厚度大,致密儲(chǔ)層段一般采用直井縫網(wǎng)壓裂技術(shù)就可以達(dá)到工業(yè)油流,這部分資源是現(xiàn)實(shí)可動(dòng)用的資源;II類“甜點(diǎn)區(qū)”主要分布在遠(yuǎn)砂壩及席狀砂微相沉積砂體內(nèi),孔隙度為4%~8%、含油砂巖累計(jì)厚度大于5 m以上,估算致密油資源潛力約為0.5×108t,雖然該區(qū)烴源巖質(zhì)量好,砂體含油普遍,但是由于砂體單層厚度薄、泥質(zhì)含量較高、物性差,含油級(jí)別低,多為油斑、油跡含油顯示,石油動(dòng)用難度高,該類甜點(diǎn)資源是下一步通過水平井積極探索力爭(zhēng)實(shí)現(xiàn)可動(dòng)用的資源。
圖11 齊家凹陷高臺(tái)子油層致密砂巖儲(chǔ)層甜點(diǎn)區(qū)綜合評(píng)價(jià)圖Fig.11 Comprehensive evaluation chart of “sweet spot” area of tight sandstone reservoir of Gaotaizi oil reservoir in Qijia sag
松遼盆地北部齊家凹陷青山口組高臺(tái)子油層成熟烴源巖內(nèi)發(fā)育大面積的三角洲前緣相砂體,砂體物性差,屬于特低孔超低滲儲(chǔ)層,為致密油聚集提供廣泛的載體。致密砂巖含油性主要受沉積微相、成巖作用和烴源巖質(zhì)量的綜合控制。其中,沉積微相控制砂體含油富集程度,河口壩及遠(yuǎn)砂壩成因砂體物性好、含油級(jí)別高,油氣最為富集。成巖作用強(qiáng)化了儲(chǔ)層非均質(zhì)性程度,使油氣差異聚集。烴源巖質(zhì)量控制砂體含油普遍程度,好—最好烴源巖區(qū)生油強(qiáng)度大、油氣運(yùn)聚動(dòng)力充足,雖然砂體薄、物性差,但砂體普遍含油,差—中等烴源巖區(qū)砂體厚度大,物性總體好,但受烴源巖質(zhì)量及成巖作用控制,主要以砂體中部物性好的層段含油為主,干砂層增多。在沉積微相、成巖作用及烴源巖綜合控制下,“甜點(diǎn)區(qū)”主要分布在研究區(qū)的中南部,參考含油層厚度和孔隙度,將甜點(diǎn)區(qū)分為兩類,合計(jì)資源潛力約1.5×108t,展現(xiàn)該區(qū)良好的勘探前景。
References)
1 鄒才能,陶士振,侯連華,等. 非常規(guī)油氣地質(zhì)[M]. 北京:地質(zhì)出版社,2011:1-310. [Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventional Petroleum Geology[M]. Beijing: Geological Publishing House, 2011: 1-310.]
2 孫贊東,賈承造,李相方,等. 非常規(guī)油氣勘探與開發(fā)(上冊(cè))[M]. 北京:石油工業(yè)出版社,2011:1-150. [Sun Zandong, Jia Chengzao, Li Xiangfang, et al. Unconventional Oil & Gas Exploration and Development: Upper Volume[M]. Beijing: Petroleum Industry Press, 2011: 1-150.]
3 張君峰,畢海濱,許浩,等.國(guó)外致密油勘探開發(fā)新進(jìn)展及借鑒意義[J].石油學(xué)報(bào),2015,36(2):127-137.[Zhang Junfeng, Bi Haibin, Xu Hao, et al. New progress and reference significance of overseas tight oil exploration and development[J]. Acta Petrolei Sinica, 2015,36(2):127-137.]
4 張威,劉新,張玉瑋.世界致密油及其勘探開展現(xiàn)狀[J].石油科技論壇,2013(1):41-44.[Zhang Wei, Liu Xin, Zhang Yuwei. Worldwide tight oil and its current exploration & development conditions[J]. Oil Forum, 2013(1):41-44.]
5 杜金虎,劉合,馬德勝,等. 試論中國(guó)陸相致密油有效開發(fā)技術(shù)[J]. 石油勘探與開發(fā),2014,41(2):198-205. [Du Jinhu, Liu He, Ma Desheng, et al. Discussion on effective development techniques for continental tight oil in China[J]. Petroleum Exploration and Development, 2014, 41(2): 198-205.]
6 龐雄奇,周新源,董月霞,等. 含油氣盆地致密砂巖類油氣藏成因機(jī)制與資源潛力[J]. 中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2013,37(5):28-37,56. [Pang Xiongqi, Zhou Xinyuan, Dong Yuexia, et al. Formation mechanism classification of tight sandstone hydrocarbon reservoirs in petroliferous basin and resources appraisal[J]. Journal of China University of Petroleum: Edition of Natural Science, 2013, 37(5): 28-37, 56.]
7 楊華,李士祥,劉顯陽. 鄂爾多斯盆地致密油、頁巖油特征及資源潛力[J]. 石油學(xué)報(bào),2013,34(1):1-11. [Yang Hua, Li Shixiang, Liu Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1-11.]
8 賈承造,鄭民,張永峰. 中國(guó)非常規(guī)油氣資源與勘探開發(fā)前景[J]. 石油勘探與開發(fā),2012,39(2):129-136. [Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.]
9 賈承造,鄒才能,李建忠,等. 中國(guó)致密油評(píng)價(jià)標(biāo)準(zhǔn)、主要類型、基本特征及資源前景[J]. 石油學(xué)報(bào),2012,33(3):343-350. [Ja Chengzao, Zou Caineng, Li Jianzhong, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350.]
10 鄒才能,張國(guó)生,楊智,等. 非常規(guī)油氣概念、特征、潛力及技術(shù)——兼論非常規(guī)油氣地質(zhì)學(xué)[J]. 石油勘探與開發(fā),2013,40(4):385-399,454. [Zou Caineng, Zhang Guosheng, Yang Zhi, et al. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 2013, 40(4): 385-399, 454.]
11 鄒才能,趙文智,張興陽,等. 大型敞流坳陷湖盆淺水三角洲與湖盆中心砂體的形成與分布[J]. 地質(zhì)學(xué)報(bào),2008,82(6):813-825. [Zou Caineng, Zhao Wenzhi, Zhang Xingyang, et al. Formation and distribution of shallow-water deltas and central-basin sandbodies in large open depression lake Basins[J]. Acta Geologica Sinica, 2008, 82(6): 813-825.]
12 樓章華,蘭翔,盧慶梅,等. 地形、氣候與湖面波動(dòng)對(duì)淺水三角洲沉積環(huán)境的控制作用——以松遼盆地北部東區(qū)葡萄花油層為例[J]. 地質(zhì)學(xué)報(bào),1999,73(1):83-92. [Lou Zhanghua, Lan Xiang, Lu Qingmei. Controls of the topography, climate and lake level fluctuation on the depositional environment of a shallow-water delta——a case study of the Cretaceous Putaohua reservoir in the northern part of Songliao Basin[J]. Acta Geologica Sinica, 1999, 73(1): 83-92.]
13 張美華. 三角洲在坳陷盆地沉積中所占比例研究[J]. 沉積與特提斯地質(zhì),2014,34(3):44-51. [Zhang Meihua. Porportions of deltas in downwarped basin deposits[J]. Sedimentary Geology and Tethyan Geology, 2014, 34(3): 44-51.]
14 鄒才能,陶士振,張響響,等. 中國(guó)低孔滲大氣區(qū)地質(zhì)特征、控制因素和成藏機(jī)制[J]. 中國(guó)科學(xué)(D輯):地球科學(xué),2009,39(11):1607-1624. [Zou Caineng, Tao Shizhen, Zhang Xiangxiang, et al. Geologic characteristics, controlling factors and hydrocarbon accumulation mechanisms of China’s large gas provinces of low porosity and permeability[J]. Science China (Seri. D): Earth Sciences, 2009, 39(11): 1607-1624.]
15 李建忠,鄭民,陳曉明,等. 非常規(guī)油氣內(nèi)涵辨析、源—儲(chǔ)組合類型及中國(guó)非常規(guī)油氣發(fā)展?jié)摿J]. 石油學(xué)報(bào),2015,36(5):521-532. [Li Jianzhong, Zheng Min, Chen Xiaoming, et al. Connotation analyses, source-reservoir assemblage types and development potential of unconventional hydrocarbon in China[J]. Acta Petrolei Sinica, 2015, 36(5): 521-532.]
16 閆偉鵬,楊濤,馬洪,等. 中國(guó)陸相致密油成藏模式及地質(zhì)特征[J]. 新疆石油地質(zhì),2014,35(2):131-136. [Yan Weipeng, Yang Tao, Ma Hong, et al. The tight oil accumulation model and geological characteristics in continental sedimentary basins of China[J]. Xinjiang Petroleum Geology, 2014, 35(2): 131-136.]
17 黃福喜,楊濤,閆偉鵬,等. 中國(guó)致密油儲(chǔ)層儲(chǔ)集性能主控因素分析[J]. 成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2014,41(5):538-547. [Huang Fuxi, Yang Tao, Yan Weipeng, et al. Analysis of dominant factors affecting tight oil reservoir properties of China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2014, 41(5): 538-547.]
18 李德生. 松遼盆地的油氣形成和分布特征[J]. 大慶石油地質(zhì)與開發(fā),1983,2(2):81-89. [Li Desheng. The geological characteristics of hydrocarbon generation and distribution in the Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 1983, 2(2): 81-89.]
19 王占國(guó),呂茜,李景坤. 松遼盆地北部黑帝廟油層烴源巖條件初步探討[J]. 大慶石油地質(zhì)與開發(fā),2005,24(1):35-37. [Wang Zhanguo, Lü Qian, Li Jingkun. Hydrocarbon source rock condition of Heidimiao reservoir in northern Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2005, 24(1): 35-37.]
20 付秀麗. 松遼盆地北部齊家地區(qū)高臺(tái)子油層沉積體系展布及其成藏分析[J]. 成都理工大學(xué)學(xué)報(bào):自然科學(xué)版,2014,41(4):422-427. [Fu Xiuli. Distribution of Gaotaizi oil Layers and accumulation analysis in Qijia area of northern Songliao Basin, China[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2014, 41(4): 422-427.]
21 林鐵鋒,張慶石,張金友,等. 齊家地區(qū)高臺(tái)子油層致密砂巖油藏特征及勘探潛力[J]. 大慶石油地質(zhì)與開發(fā),2014,33(5):36-43. [Lin Tiefeng, Zhang Qingshi, Zhang Jinyou, et al. Characteristics and exploration potential for Gaotaizi tight sandstone oil reservoirs in Qijia area[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(5): 36-43.]
22 侯啟軍,馮志強(qiáng),馮子輝,等. 松遼盆地陸相石油地質(zhì)學(xué)[M]. 北京:石油工業(yè)出版社,2009:1-90. [Hou Qijun, Feng Zhiqiang, Feng Zihui, et al. Continental Petroleum Geology in Songliao Basin[M]. Beijing: Petroleum Industry Press, 2009: 1-90.]
23 黃薇,張順,梁江平,等. 松遼盆地沉積地層與成藏響應(yīng)[J]. 大慶石油地質(zhì)與開發(fā),2009,28(5):18-22. [Huang Wei, Zhang Shun, Liang Jiangping, et al. Sedimentary strata and hydrocarbon accumulation response of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2009, 28(5): 18-22.]
24 李易隆,賈愛林,何東博. 致密砂巖有效儲(chǔ)層形成的控制因素[J]. 石油學(xué)報(bào),2013,34(1):71-82. [Li Yilong, Jia Ailing, He Dongbo. Control factors on the formation of effective reservoirs in tight sands: examples from Guang’an and Sulige gasfields[J]. Acta Petrolei Sinica, 2013, 34(1): 71-82.]
25 王艷忠,操應(yīng)長(zhǎng). 車鎮(zhèn)凹陷古近系深層碎屑巖有效儲(chǔ)層物性下限及控制因素[J]. 沉積學(xué)報(bào),2010,28(4):752-761. [Wang Yanzhong, Cao Yingchang. Lower property limit and controls on deep effective clastic reservoirs of Paleogene in Chezhen depression[J]. Acta Sedimentologica Sinica, 2010, 28(4): 752-761.]
26 王秀平,牟傳龍,貢云云,等. 蘇里格氣田Z30區(qū)塊下石盒子組8段儲(chǔ)層成巖演化與成巖相[J]. 石油學(xué)報(bào),2013,34(5):883-895. [Wang Xiuping, Mu Chuanlong, Gong Yunyun, et al. Diagenetic evolution and facies of reservoirs in Member 8 of Permian Xiashihezi Formation in the Z30 block of Sulige gasfield[J]. Acta Petrolei Sinica, 2013, 34(5): 883-895.]
27 朱如凱,鄒才能,張鼐,等. 致密砂巖氣藏儲(chǔ)層成巖流體演化與致密成因機(jī)理——以四川盆地上三疊統(tǒng)須家河組為例[J]. 中國(guó)科學(xué)D輯:地球科學(xué),2009,39(3):327-339. [Zhu Rukai, Zou Caineng, Zhang Nai, et al. Diagenetic fluids evolution and genetic mechanism of tight sandstone gas reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China[J]. Science China (Seri. D): Earth Sciences, 2009, 39(3): 327-339.]
28 林景曄,許立群,楊輝. 石油聚集成藏的物理學(xué)原理——毛—浮方程[J]. 大慶石油地質(zhì)與開發(fā),2008,27(1):22-25. [Lin Jingye, Xu Liqun, Yang Hui. Physical principle of petroleum accumulation and reservoir forming—capillary-buoyancy equation[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(1): 22-25.]
29 李明誠(chéng),李劍. “動(dòng)力圈閉”—低滲透致密儲(chǔ)層中油氣充注成藏的主要作用[J]. 石油學(xué)報(bào),2010,31(5):718-722. [Li Mingcheng, Li Jian. “Dynamic trap”: A main action of hydrocarbon charging to form accumulations in low permeability-tight reservoir[J]. Acta Petrolei Sinica, 2010, 31(5): 718-722.]
30 鄒才能,朱如凱,吳松濤,等. 常規(guī)與非常規(guī)油氣聚集類型、特征、機(jī)理及展望——以中國(guó)致密油和致密氣為例[J]. 石油學(xué)報(bào),2012,33(2):173-187. [Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.]
31 趙衛(wèi)衛(wèi),李得路,查明. 陸相斷陷盆地砂巖透鏡體油藏成藏過程物理模擬[J]. 石油實(shí)驗(yàn)地質(zhì),2012,34(4):438-444,450. [Zhao Weiwei, Li Delu, Cha Ming. Physical simulation of sand lens reservoir formation in continental rifted basin[J]. Petroleum Geology & Experiment, 2012, 34(4): 438-444, 450.]
32 陳冬霞,龐雄奇,邱楠生,等. 砂巖透鏡體成藏機(jī)理[J]. 地球科學(xué),2004,29(4):483-488. [Chen Dongxia, Pang Xiongqi, Qiu Nansheng, et al. Accumulation and filling mechanism of lenticular sandbody reservoirs[J]. Earth Science, 2004, 29(4): 483-488.]
33 隋鳳貴. 濁積砂體油氣成藏主控因素的定量研究[J]. 石油學(xué)報(bào),2005,26(1):55-59. [Sui Fenggui. Quantitative study on key control factors for reservoir formation in turbidity sand[J]. Acta Petrolei Sinica, 2005, 26(1): 55-59.]
34 霍秋立,曾花森,張曉暢,等. 松遼盆地北部青山口組一段有效烴源巖評(píng)價(jià)—圖版的建立及意義[J]. 石油學(xué)報(bào),2012,33(3):379-384. [Huo Qiuli, Zeng Huasen, Zhang Xiaochang, et al. An evaluation diagram of effective source rocks in the First member of Qingshankou Formation in northern Songliao Basin and its implication[J]. Acta Petrolei Sinica, 2012, 33(3): 379-384.]
35 郭小文,何生,鄭倫舉,等. 生油增壓定量模型及影響因素[J]. 石油學(xué)報(bào),2011,32(4):637-644. [Guo Xiaowen, He Sheng, Zheng Lunju, et al. A quantitative model for the overpressure caused by oil generation and its influential factors[J]. Acta Petrolei Sinica, 2011, 32(4): 637-644.]
36 馬衛(wèi),王東良,李志生,等. 湖相烴源巖生烴增壓模擬實(shí)驗(yàn)[J]. 石油學(xué)報(bào),2013,34(S1):65-69. [Ma Wei, Wang Dongliang, Li Zhisheng, et al. A simulation experiment of pressurization during hydrocarbon generation from lacustrine source rocks[J]. Acta Petrolei Sinica, 2013, 34(S1): 65-69.]
Main Controlling Factors of Oilliness Property of Tight Sandstone Reservoir within Source Rock in Continental Depression Basin: A case of Gaotaizi oil reservoir in Qijia sag of central depression area in northern Songliao Basin
ZHANG JinYou
(Research Institute Petroleum Exploration & Development of Daqing Oilfield Co., Ltd., Daqing, Heilongjiang 163712, China)
Typical tight sandstone oil within hydrocarbon source rocks is considered in Gaotaizi oil-layer of Qingshankou Formation in Qijia Sag, located in central depression area of northern Songliao Basin. Macro- and micro-analysis of oil-bearing property and in-depth study of the main controlling factors have been carried out in reservoir, which show that oil-bearing property of the reservoir of Gaotaizi oil-layer is mainly controlled by sedimentary micro-facies, diagenesis and quality of source rock. Favorable sedimentary microfacies controls oil enrichment in reservoir. Macro pore throats are developed in sandbodies of mouth bars and distal sandbars, where the physical properties are good enough to provide preferential pathways for migration and meanwhile relatively developed storage space can also provide more entrapment habitats. The sedimentary micro-facies is the critical geological factor controlling the distribution of “sweet spots” within Gaotaizi oil-layer. Diagenesis controls the differential distribution of hydrocarbon, and mechanical compaction and cementation led to tightness of reservoir before the large-scale migration-accumulation. While in local sandstones with weak cementation and heavy corrosion developed macro pores and throats. In the later charging process differential entrapment took place in the reservoir sandstones, having different levels of shows. Source rock quality controls the level of oil occurrence within reservoir. Good-excellent quality source rock can provide abundant hydrocarbon and powerful charging dynamics. And, therefore the hydrocarbon can be migrated to and accumulated in reservoir within the source rocks. So, the shows are common even though the sand bodies may be thin and with bad physical properties, showing that the low-limits of physical properties are relatively low. While in bad-middle quality source rock area the sand bodies are thick with better physical properties, but the oil-bearing property is controlled by the combination of source rock quality, sedimentation and diagenesis. So the shows are commonly bad, only the middle part with good physical properties of sand bodies bear oil and more dry sand bodies are discovered, too. “Sweet spot” zones are principally distributed in the mature source rock area where multiple series of oil-layers are staggered and overlapped. A conclusion can be drawn that in the mid-north oil-bearing sand bodies are of thick cumulative thickness and good physical properties, but to the south they get worse. In all the “sweet spot” zones 1.5×108t of resources can be estimated, which offers exciting exploration prospect.
non-marine depression basin; Qijia sag; Gaotaizi oil-layer; tight sandstone; oil-bearing property; controlling factor
1000-0550(2016)05-0991-12
10.14027/j.cnki.cjxb.2016.05.018
2015-10-15; 收修改稿日期: 2016-01-25
國(guó)家科技重大專項(xiàng)(2011ZX05001-001);中國(guó)石油天然氣股份公司重大科技專項(xiàng)(2012E2603-01)[Foundation: National Sciences and Technology Major Projects, No. 2011ZX05001-001; China National Petroleum Corporation Major Science and Technology Projects, No. 2012E2603-01]
張金友 男 1983年出生 工程師 石油成藏綜合研究、井位部署及儲(chǔ)量評(píng)價(jià) E-mail:zhangjinyou@petrochina.com.cn
P618.13
A