• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      鋅對孕期暴露脂多糖Wistar大鼠雌性成年子代行為的影響及其機制

      2016-11-11 08:24:37左滿花黃德斌胡秀英
      食品科學(xué) 2016年1期
      關(guān)鍵詞:紋狀體子代母體

      左滿花,黃德斌,胡秀英,唐 俊

      鋅對孕期暴露脂多糖Wistar大鼠雌性成年子代行為的影響及其機制

      左滿花1,2,黃德斌1,胡秀英2,唐 俊3,*

      (1.湖北民族學(xué)院醫(yī)學(xué)院,湖北 恩施 445000;2.四川大學(xué)華西臨床醫(yī)學(xué)院,四川 成都 610041;3.恩施土家族苗族自治州中心醫(yī)院腎內(nèi)科,湖北 恩施 445000)

      目的:探討硫酸鋅(ZnSO4)注射液對孕期暴露于脂多糖(lipopolysaccharides,LPS)大鼠雌性成年子代的行為、神經(jīng)免疫功能的影響及其機制。方法:隨機將15 只孕期(孕期0~9.5 d)Wistar大鼠分為3 組,分別注射LP S和ZnSO4(LPS+Zn組)、LPS和無菌生理鹽水(saline,SAL)(LPS+SAL組)、SAL和SAL(SAL+SAL組)。產(chǎn)后81~86 d,從每窩選取2~3 只雌性成年子代(10~12 只/組),動情間期將大鼠放置在抑制性應(yīng)激反應(yīng)管道2 h,在最后5 min,播放不同音頻的超聲波,記錄大鼠保持寂靜的時間(寂靜期)。超聲波測試后,立即將雌性成年 子代放置在開放 場域中,測定其運動和焦慮狀態(tài)。開放場域行為測試后,立即取大鼠軀干 血,采用酶聯(lián)免疫吸附實驗(enzyme-linked immunosorbent assay,ELIS A)測定血清皮質(zhì)酮、腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)水平;采用高效液相色譜法(high performance liquid chromatography,HPLC)測定大鼠下丘腦和紋狀體的單胺及其代謝產(chǎn)物水平。結(jié)果:與LPS+SAL組、SAL+SAL組相比,LPS+Zn組的雌性成年子代大鼠呈現(xiàn)最大音頻寂靜持續(xù)時間延長(P<0.05或P<0.01)、行走距離延長(P<0.05或P<0.001)、平均速率加快(P<0.05或P<0.001)、自我梳理時間縮短(P<0.001或P<0.01)、紋狀體去甲腎上腺素代謝率降低(P<0.05或P<0.01)的特征。與LPS+SAL組相比,LPS+Zn組大鼠的血清皮質(zhì)酮水平降低(P<0.05)。結(jié)論:ZnSO4注射液作用于孕期遭受感染或炎癥的母體,在急性抑制應(yīng)激期后,其雌性成年子代應(yīng)激反應(yīng)減輕。即孕期為感染的母體注射ZnSO4也許是一個潛在的、有益的保護其子代行為的防治措施。

      鋅;孕期;大鼠;脂多糖;子代;應(yīng)激反應(yīng)

      孕期9.5 d正好是Wistar大鼠子代大腦和組織器官形成的關(guān)鍵時期。感染與機 體的免疫系統(tǒng)有關(guān),與妊娠晚期相比,妊娠早、中期的感染對子代神經(jīng)系統(tǒng)發(fā)育有強烈影響。在妊娠早、中期,感染導(dǎo)致母體免疫系統(tǒng)激活,阻礙細胞增殖、分化、遷移、靶區(qū)選擇、神經(jīng)元突觸成熟,甚至導(dǎo)致其成年子代的多形腦和行為異常[1-4]。脂多糖(lipopolysaccharide,LPS)為含糖和脂質(zhì)的化合物,是革蘭氏陰性細菌細胞壁中的一種成分,也是細菌內(nèi)毒素的主要成分。孕期進食太多高脂肪與高糖的食物會導(dǎo)致體內(nèi)LPS增多,對機體產(chǎn)生毒性。孕期暴露于LPS的母鼠,其子代紋狀體和嗅球中多巴胺能神經(jīng)元的功能會被削弱[5]。也有文獻研究證實[6-8]孕期暴露于LPS的大鼠,其子代在無外界刺激源的情況下,雌性子代的行為及血清皮質(zhì)酮不會受到影響,僅雄性子代表現(xiàn)異常。然而以上這些異常改變僅限于孕鼠感染LPS后,其子代在自然狀態(tài)下(無壓力源刺激)進行的機體、神經(jīng)免疫系統(tǒng)的監(jiān)測;而對施加外界壓力源刺激情況下,其雌性成年子代的行為、神經(jīng)免疫系統(tǒng)是否發(fā)生改變目前沒有研究報道。

      鋅(Zn)是生物所必需的一種微量元素,對生物的生長發(fā)育、免疫功能等起著重要的作用[9-10]。ZnSO4屬于無機鋅,較有機鋅難以被吸收[11],故不易導(dǎo)致機體中毒。因此,本實驗探究以ZnSO4注射液作用孕期暴露于LPS的大鼠,將其成年雌性子代在動情間期放置于急性抑制應(yīng)激管道后,播放不同音頻的超聲波,觀察ZnSO4注射液對其雌性成年子代應(yīng)激反應(yīng)的影響,探討其行為、神經(jīng)調(diào)節(jié)機制。

      1 材料與方法

      1.1 動物、材料與試劑

      15 只孕期Wistar大鼠,由湖北省實驗動物研究中心提供(生產(chǎn)許可證號:SCXK(鄂)2008-0005 ;使用許可證號:SYXK(鄂)2008-0014),體質(zhì)量226~266 g。

      ZnSO4、LPS(10 mg,2~8 ℃冷藏保存) 美國Sigma公司。

      無菌生理鹽水(saline,SAL,0.9%) 上海百特醫(yī)療用品有限公司;腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BD NF)酶聯(lián)免疫吸附(enzymelinked immunosorbent assay,ELISA)試劑盒 南京建成生物工程研究所。

      1.2 儀器與設(shè)備

      抑制性應(yīng)激反應(yīng)器材:直徑5 cm、長度可改變、兩端封閉,尾部有無數(shù)個小孔的可塑形圓柱型管道;開放場域:直徑90 cm、高28 cm,四周涂滿可水洗灰色顏料、圓形無蓋的木制箱子。

      HP1050型高效液相色譜(high performance liquid chromatography,HPLC)儀 美國Agilent公司;超聲波播放器 美國諾達思信息科技有限公司;FDR-AXP35攝影機 日本索尼公司。

      1.3 動物及分組

      將15 只孕期Wistar大鼠隨機分為3 組,每組5 只:兩實驗組孕鼠在孕期0~9.5 d(即從受孕到孕期9.5 d)均先接受LPS(100 μg/(kg?d))腹腔注射[12],其中一組1 h后接受ZnSO4(2 mg/(kg?d))頸后部皮下注射[13-14](LPS+Zn組),另一組1 h后接受SAL(0.2 mL/(100 g?d))頸后部皮下注射(LPS+SAL組),均連續(xù)進行9 d;對照組孕鼠同樣在孕期0~9.5 d先接受SAL(0.2 mL/(100 g?d))腹腔注射,1 h后再次接受SAL(0.2 mL/(100 g?d))頸后部皮下注射(SAL+ SAL組),連續(xù)進行9 d。孕鼠產(chǎn)后81~86 d,從每窩選取2~3 只成年雌性子代用來評估其應(yīng)激反應(yīng)行為[15]。

      1.4 方法

      1.4.1 雌性成年子代應(yīng)激行為超聲波檢測

      通過陰道涂片檢測,確定雌性成年子代動情期,在動情后期或動情間期,逐次把每只雌性子代放到抑制性應(yīng)激反應(yīng)管道2 h[16-17](直徑5 cm,長度可變)。在抑制期最后5 min,開始用超聲波播放器(22 kHz)播放諸如掠肉或足底電擊等令雌性成年子代厭惡的音樂[18-19],通過超聲波軟件(距離抑制性應(yīng)激管道1 cm)自動記錄最低頻率(kHz)和最大音頻寂靜持續(xù)時間(s)并進行分析。

      1.4.2 雌性成年子代場域行為檢測

      超聲波檢測后,立即進行場域?qū)嶒灒簩? 組中每只雌性成年子代單獨、逐次放置于木制圓形無蓋的箱子里(直徑90 cm、高28 cm),木制圓形的箱子放置在一個光線昏暗的小房間內(nèi),距離房間地面100 cm任一高處放置一架攝影機,借助Ethovision軟件自動或人工記錄5 min期間內(nèi)雌性成年子代的各種運動和焦慮參數(shù)[20-21]:行走距離(cm)、平均速率(cm/s)、自我梳理時間(s)、喂養(yǎng)次數(shù)。

      1.4.3 雌性成年子代血清皮質(zhì)酮、BDNF、單胺類及其代謝產(chǎn)物含量檢測

      開放場域行為檢測后,立即取雌性成年子代軀干血液,置離心管內(nèi),室溫條件下4 000 r/min離心10 min,取血清-70 ℃保存。一式兩份,按照ELISA試劑盒說明書方法測定皮質(zhì)酮和BDNF含量。

      采用HPLC法分析雌性成年子代下丘腦和紋狀體中的單胺類及其代謝產(chǎn)物含量。所測代謝產(chǎn)物有:去甲腎上腺素(norepinephrine,Nor)和香草扁桃酸(vanilmandelic acid,VMA)、3-甲氧基-4-羥基苯基乙二醇(3-methoxy-4-hydroxy-phenylglycol,MOPEG)、多巴胺(dopamine,DA)和3,4-二羥基苯乙酸(3,4-dihydroxyphenylacelic acid,DOPAC)、高香草酸(homovanillic acid,HVA)、5-羥色胺(5-hydroxytryptamine,5-HT)和5-羥吲哚乙酸(5-hydroxy indole acetic acid,5-HIAA)。

      1.5 統(tǒng)計分析方法

      所有數(shù)據(jù)均以±s表示,采用SPSS 17.0統(tǒng)計軟件對數(shù)據(jù)進行統(tǒng)計學(xué)分析,以單因素方差分析和組間SNK(Student-Newman-Keuls)法檢驗兩兩之間差異性,P<0.05為差異顯著,P<0.01為差異極顯著,P<0.001為差異高度顯著。

      2 結(jié)果與分析

      2.1 超聲波檢測結(jié)果

      圖1 不同組別的雌性成年子代大鼠在不同音頻的超聲波播放下的最長寂靜時間Fig.1 Maximal silence of adult female rat offsprings from different groups under different ultrasonic vocalizations

      如圖1所示,與LPS+SAL組相比,LPS+Zn組雌性成年子代的最大音頻寂靜持續(xù)時間顯著延長(P<0.05);與SAL+SAL組相比,LPS+Zn組雌性成年子代的最大音頻寂靜持續(xù)時間極顯著延長(P<0.01)。說明在產(chǎn)前以ZnSO4注射液作用于孕期暴露于LPS的母鼠,其雌性成年子代在急性抑制應(yīng)激反應(yīng)后,在相同音頻超聲波的刺激下最大音頻寂靜持續(xù)時間延長,降低了其子代的應(yīng)激反應(yīng)行為。

      2.2 場域行為檢測結(jié)果

      圖2 不同組別的成年雌性子代大鼠在開放場域中行為檢測結(jié)果Fig.2 Open field behavior of adult female rat offspring from different groups

      如圖2所示,與LPS+SAL組、SAL+SAL組相比,LPS+Zn組雌性成年子代行走距離和平均速率明顯增大(P<0.05或P<0.001),自我梳理時間明顯縮短(P<0.001或P<0.01),說明以ZnSO4注射液作用孕期暴露于LPS的母鼠,可以增加其雌性成年子代行走距離、提高其行走的平均速率,縮短其冰凍行為的時間[22]。

      2.3 雌性成年子代血清皮質(zhì)酮和BDNF含量

      圖3 不同組別成年雌性子代大鼠的血清皮質(zhì)酮和總BDNFF含量Fig.3 Serum corticosterone and total BDNF levels in adult female rat offspring from different groups

      如圖3所示,與LPS+SAL組相比,LPS+Zn組雌性成年子代血清皮質(zhì)酮含量顯著減少(P<0.05),說明在外界刺激源改變的情況下,ZnSO4注射液抑制了孕鼠下丘腦-垂體-腎上腺(hypothalamic-pituitary-adrenal,HPA)軸活性,降低雌性成年子代血清皮質(zhì)酮的分泌。

      2.4 雌性成年子代下丘腦和紋狀體中的單胺類及其代謝產(chǎn)物含量

      表1 雌性成年子代大鼠不同組織中單胺類及其代謝產(chǎn)物水平的變化(x±s =8)Table 1 The levels of monoamine and its metabolites in different tissues (x ± s, = 8)

      注:表中數(shù)據(jù)以組織濕質(zhì)量計;*. 與SAL+SAL組相比,差異顯著(P<0.05);**.與SAL+SAL組相比,差異極顯著(P<0.01);#. 與LPS+SAL組相比,差異顯著(P<0.05)。

      由表1可知,與SAL+SAL組相比,LPS+Zn組雌性成年子代紋狀體VMA含量和VMA/Nor明顯下降(P<0.01或P<0.05);與LPS+SAL組相比,LPS+Zn組雌性成年子代V M A代謝水平下降,差異顯著(P<0.05)。說明以ZnSO4注射液作用孕期暴露于LPS的母鼠,可以降低其雌性子代紋狀 體中Nor代謝產(chǎn)物VMA的水平和VMA/Nor。

      3 討 論

      孕期母體暴露于LPS,產(chǎn)生的促炎性細胞因子會在母體的血液循環(huán)和胎盤之間流動[23-25]。相關(guān)的文獻研究證實[26-27]:孕期暴露于LPS會導(dǎo)致大鼠病態(tài)行為、胎盤組織受損、受精卵種植(著床)損失率高、幼崽出生率降低、子代的行為和神經(jīng)免疫系統(tǒng)長期或短期受到一定的影響。Coyle的團隊研究報道[28-29]:孕期小鼠母體暴露于LPS,致使其體內(nèi)血清鋅含量較低,易導(dǎo)致其子代畸形;給母體補充適量的鋅可防止子代不良基因遺傳和行為異常。

      鋅屬于哺乳動物體內(nèi)最重要微量元素之一,參與一系列的生理、生化過程,如細胞的增殖和分化、生長和發(fā)育、參與酶的活性調(diào)解等[30]。孕期母體缺乏鋅會導(dǎo)致子代一些行為、功能異常的表現(xiàn),如學(xué)習(xí)和記憶能力的缺失[31]、成年期心血管和腎臟系統(tǒng)疾病的發(fā)生[32-33]。孕期在飲食中補充鋅或進行ZnSO4的腹腔注射,有益于其子代健康發(fā)育,包括認知發(fā)展[34]、合適體質(zhì)量保持[35]、胎兒心臟結(jié)構(gòu)和功能的成熟[36]。對其子代施加外界刺激源的情況下,加上產(chǎn)前母體暴露于過多的LPS,引起母體神經(jīng)免疫系統(tǒng)激活,釋放細胞因子[37-38],激活HPA軸,導(dǎo)致子代腦中糖皮質(zhì)激素產(chǎn)生增多,與本研究中LPS+SAL組雌性成年子代血清皮質(zhì)酮水平最高相符;加上機體LPS促進金屬硫蛋白(metallothionein,MT)產(chǎn)生,引起母體及胎兒體內(nèi)血清鋅含量降低,導(dǎo)致其體內(nèi)自由基產(chǎn)生過多,引起機體過氧化應(yīng)激反應(yīng),子代在其宏觀上表現(xiàn)為場域行為中自我梳理時間延長、明顯的焦慮狀態(tài),與本研究中LPS+SAL組雌性成年子代表現(xiàn)相符。鋅抗氧化和抗凋亡的特性可限制或抑制LPS作用于機體所導(dǎo)致的不良反應(yīng)[39-40]。本研究顯示:LPS+Zn組雌性成年子代的音頻較低、寂靜持續(xù)時間最長、行走距離最長、平均速率最高、自我梳理時間最短,表示在外界刺激源的情況下,其子代應(yīng)對應(yīng)激反應(yīng)行為最強。這與相關(guān)研究報道相符[41]:ZnSO4注射液治療孕期暴露于LPS的大鼠,通過血腦屏障和胎盤,調(diào)節(jié)其子代血清鋅含量,鋅誘導(dǎo)MT產(chǎn)生ZnMT復(fù)合物,在外界刺激源存在的情況下,拮抗機體遭受甲基汞產(chǎn)生的自由基對細胞膜通透性的破壞,降低膜外乳酸脫氫酶的活性,抑制自由基對機體造成的過氧化損傷,節(jié)省機體能量,減輕機體的過氧化應(yīng)激行為。

      BDNF是存在于大腦、中樞神經(jīng)系統(tǒng)及外周血液中的一種小分子質(zhì)量蛋白質(zhì),它管理著神經(jīng)元的存活、成型、發(fā)育和功能,在突觸產(chǎn)生和可塑性方面也起著關(guān)鍵作用[42]。腹腔注射ZnSO4[43]或飲食補充含鋅的食物[44]均可以影響B(tài)DNF的表達。相關(guān)研究顯示:鋅缺乏會損傷星形膠質(zhì)細胞,且星形膠質(zhì)細胞又是許多BDNF分泌的來源[45];鋅缺乏還會導(dǎo)致子代體內(nèi)BDNF分泌量降低[46],與本研究中LPS+SAL組雌性成年子代腦源性BDNF水平最低的結(jié)果相符。3 組雌性成年子代血液BDNF含量比較無統(tǒng)計學(xué)意義,因此目前還不能明確產(chǎn)前注射ZnSO4是否利于成年子代在施加外界應(yīng)激源挑戰(zhàn)的情況下BDNF的表達。

      鋅在腦中的分布是不均一的,以邊緣系統(tǒng)、皮質(zhì)部、齒狀回和海馬中含量較高,尤以海馬結(jié)構(gòu)和大腦皮層含量最高。下丘腦是調(diào)節(jié)內(nèi)臟活動和內(nèi)分泌活動的較高級神經(jīng)中樞所在。紋狀體除接受來自同側(cè)新紋狀體的神經(jīng)纖維以外,還接受來自大腦皮層的神經(jīng)纖維,其與隨意運動的穩(wěn)定、肌張力的維持以及肢體姿勢的調(diào)節(jié)活動密切相關(guān)。測量神經(jīng)系統(tǒng)激素代謝 產(chǎn)物的水平和神經(jīng)遞質(zhì)的比例,被認為是檢測此系統(tǒng)活性和激素轉(zhuǎn)換率的一種有效手段[47]。越在動物發(fā)育的 早期,神經(jīng)系統(tǒng)的可塑性也越明顯。鋅作為體內(nèi)200多種酶和功能蛋白質(zhì)的組成成分,勢必會影響神經(jīng)細胞的結(jié)構(gòu)和功能,在宏觀上表現(xiàn)為行為學(xué)的變化,即越在動物發(fā)育的早期,影響也越大。故本實驗在大鼠孕期0~9.5 d對其腹腔注射ZnSO4溶液,研究其雌性成年子代行為的表現(xiàn)。本實驗借助HPLC法檢測大鼠腦組織單胺類及其代謝產(chǎn)物含量,結(jié)果顯示,產(chǎn)前以ZnSO4注射液作用于LPS+Zn組大鼠,其雌性成年子代紋狀體中VMA水平和VMA/Nor下降。這一結(jié)果很好地支持了場域行為和血清HPA軸活性檢測結(jié)果:ZnSO4溶液通過胎盤提高了LPS +Zn組大鼠雌性成年子代機體血液中鋅的含量,間接抑制了LPS對HPA的激活,導(dǎo)致神經(jīng)免疫系統(tǒng)激素分泌量下降,降低了雌性成年子代的應(yīng)激反應(yīng)。

      4 結(jié) 論

      本實驗研究結(jié)果顯示,產(chǎn)前以ZnSO4注射液作用孕期暴露于LPS的大鼠,其成年雌性子代在受到急性抑制應(yīng)激后,其應(yīng)激反應(yīng)降低,從而減輕了對機體的不利影響。因此,母體若在孕期遭受感染或炎癥侵襲,及早補充微量元素鋅可能是一個潛在的有意 義措施。本實驗的結(jié)論為孕期婦女發(fā)生感染后防止胎兒畸形的研究提供了一定參考,即及早口服硫酸鋅也許是一個較好的舉措。

      [1] MEYER U, NYFFELER M, ENGLER A, et al. The time of prenatal immune challenge determines the specifi city of infl ammation-mediated brain and behavioral pathology[J]. Journal of Neuroscience, 2006, 26(18): 4752-4762. DOI:10.1523/JNEUROSCI.0099-06.2006.

      [2] MEYER U, YEE B K, FELDON J. The neurodevelopmental impact of prenatal infections at different times of pregnancy: the earlier the worse?[J]. Neuroscientist, 2007, 13(3): 241-256. DOI:10.1177/1073858406296401.

      [3] SAMUELSSON A M, JENNISCHE E, HANSSON H A, et al. Prenatal exposure to interleukin-6 results in infl ammatory neurodegeneration in hippocampus with NMDA/GABAA dysregulation and impaired spatial learning[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2006, 290(5): R1345-R1356. DOI:10.1152/ajpregu.00268.2005.

      [4] SHI L, FATEMI S H, SIDWELL R W, et al. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring[J]. Journal of Neuroscience, 2003, 23(1): 297-302.

      [5] KIRSTEN T B, LIPPI L L, BEVILACQUA E, et al. LPS exposure increases maternal corticosterone levels, causes placental injury andincreases IL-1β levels in adult rat offspring: relevance to autism[ J]. PLoS ONE, 2013, 8(12): e82244. DOI:10.1371/journal.pone.0082244.

      [6] KIRSTEN T B. Lipopolissacarídeo no início do período pré-natal como modelo experimental de autismo e prejuízos dopaminérgicos estriatais[D]. S?o Paulo: Universidade de S?o Paulo, 2012.

      [7] KIRSTEN T B, CHAVES-KIRSTEN G P, CHAIBLE L M, et al. Hypoactivity of the central dopaminergic system and autisticlike behavior induced by a single early prenatal exposure to lipopolysaccharide[J]. Journal of Neuroscience Research, 2012, 90(10): 1903-1912. DOI:10.1002/jnr.23089. Epub 2012 Jun 20.

      [8] TAYLOR P V, VEENEMA A H, PAUL M J, et al. Sexually dimorphic effects of a prenatal immune challenge on social play and vasopressin expression in juvenile rats[J]. Biology of Sex Differences, 2012, 3(1): 1-9. DOI:10.1186/2042-6410-3-15.

      [9] 龔毅, 胡曉波, 彭麗霞, 等. 鋅氨基酸螯合物的抑菌活性研究[J]. 食品科學(xué), 2009, 30(17): 84-87.

      [10] 李川, 朱科學(xué), 聶少平, 等. 蘇氨酸鋅對糖尿病大鼠肝臟損傷的保護作用[J]. 食品科學(xué), 2011, 32(19): 198-200.

      [11] 于昱. 不同形態(tài)鋅在肉仔雞小腸中的吸收特點及機理研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2008.

      [12] LENCZOWSKI M J P, van DAM A M, POOLE S, et al. Role of circulating endotoxin and interleukin-6 in the ACTH and corticosterone response to intraperitoneal LPS[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1997, 273(6): R1870-R1877.

      [13] CHUA J S C, COWLEY C J, MANAVIS J, et al. Prenatal exposure to lipopolysaccharide results in neurodevelopmental damage that is ameliorated by zinc in mice[J]. Brain, Behavior, and Immunity, 2012, 26(2): 326-336.

      [14] SUMMERS B L, ROFE A M, COYLE P. Prenatal zinc treatment at the time of acute ethanol exposure limits spatial memory impairments in mouse offspring[J]. Pediatric Research, 2006, 59(1): 66-71. DOI:10.1203/01.pdr.0000190573.23893.13.

      [15] GIOVANOLI S, ENGLER H, ENGLER A, et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice[J]. Science, 2013, 339: 1095-1099. DOI:10.1126/ science.1228261.

      [16] BUYNITSKY T, MOSTOFSKY D I. Restraint stress in biobehavioral research: recent developments[J]. Neuroscience & Biobehavioral Reviews, 2009, 33(7): 1089-1098. DOI:10.1016/ j.neubiorev.2009.05.004.

      [17] GUSTAFSSON J K, GREENWOOD-VAN MEERVELD B. Amygdala activation by corticosterone alters visceral and somatic pain in cycling female rats[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011, 300(6): G1080-G1085. DOI:10.1152/ajpgi.00349.2010.

      [18] RHODES M E, KENNELL J S, BELZ E E, et al. Rat estrous cycle influences the sexual diergism of HPA axis stimulation by nicotine[J]. Brain Research Bulletin, 2004, 64(3): 205-213. DOI:10.1016/ j.brainresbull.2004.06.011.

      [19] ANTONIADIS E A, MCDONALD R J. Discriminative fear conditioning to context expressed by multiple measures of fear in the rat[J]. Behavioural Brain Research, 1999, 101(1): 1-13. DOI:10.1016/ S0166-4328(98)00056-4.

      [20] TAKAHASHI N, KASHINO M, HIRONAKA N. Structure of rat ultrasonic vocalizations and its relevance to behavior[J]. PLoS ONE, 2010, 5(11): e14115. DOI:10.1371/journal.pone.0014115.

      [21] PATTI C L, FRUSSA-FILHO R, SILVA R H, et al. Behavioral characterization of morphine effects on motor activity in mice[J]. Pharmacology Biochemistry and Behavior, 2005, 81(4): 923-927. DOI:10.1016/j.pbb.2005.07.004.

      [22] SUDAKOV S K, NAZAROVA G A, ALEKSEEVA E V, et al. Estimation of the level of anxiety in rats: differences in results of openfi eld test, elevated plus-maze test, and Vogel’s confl ict test[J]. Bulletin of Experimental Biology and Medicine, 2013, 155(3): 295-297. DOI:10.1007/s10517-013-2136-y.

      [23] NOSEK K, DENNIS K, ANDRUS B M, et al. Context and straindependent behavioral response to stress[J]. Behavioral and Brain Functions, 2008, 4(23): 1-8. DOI:10.1186/1744-9081-4-23.

      [24] ASHDOWN H, DUMONT Y, NG M, et al. The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia[J]. Molecular Psychiatry, 2006, 11(1): 47-55. DOI:10.1038/sj.mp.4001748.

      [25] CAI Z, PAN Z L, PANG Y I, et al. Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration[J]. Pediatric Research, 2000, 47(1): 64-72. DOI:10.1203/00006450-200001000-00013.

      [26] URAKUBO A, JARSKOG L F, LIEBERMAN J A, et al. Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain[J]. Schizophrenia Research, 2001, 47(1): 27-36. DOI:10.1016/S0920-9964(00)00032-3.

      [27] KIRSTEN T B, TARICANO M, MAIORKA P C, et al. Prenatal lipopolysaccharide reduces social behavior in male offspring[J]. Neuroimmunomodulation, 2010, 17(4): 240-251. DOI:10.1159/000290040.

      [28] CAREY L C, BERBéE P L, COYLE P, et al. Zinc treatment prevents lipopolysaccharide-induced teratogenicity in mice[J]. Birth Defects Research Part A: Clinical and Molecular Teratology, 2003, 67(4): 240-245. DOI:10.1002/bdra.10035.

      [29] COYLE P, TRAN N, FUNG J N T, et al. Maternal dietary zinc supplementation prevents aberrant behaviour in an object recognition task in mice offspring exposed to LPS in early pregnancy[J]. Behavioural Brain Research, 2009, 197(1): 210-218. DOI:10.1016/ j.bbr.2008.08.022.

      [30] MARET W, SANDSTEAD H H. Zinc requirements and the risks and benefits of zinc supplementation[J]. Journal of Trace Elements in Medicine and Biology, 2006, 20(1): 3-18. DOI:10.1016/ j.jtemb.2006.01.006.

      [31] YU X D, JIN L M, ZHANG X H, et al. Effects of maternal mild zinc defi ciency and zinc supplementation in offspring on spatial memory and hippocampal neuronal ultrastructural changes[J]. Nutrition, 2013, 29(2): 457-461. DOI:10.1016/j.nut.2012.09.002.

      [32] TOMAT A L, de los áNGELES COSTA M, ARRANZ C T. Zinc restriction during different periods of life: influence in renal and cardiovascular diseases[J]. Nutrition, 2011, 27(4): 392-398. DOI:10.1016/j.nut.2010.09.010.

      [33] TOMAT A L, VEIRAS L C, AGUIRRE S, et al. Mild zinc defi ciency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology[J]. Nutrition, 2013, 29(3): 568-573. DOI:10.1016/j.nut.2012.09.008.

      [34] PIECHAL A, BLECHARZ-KLIN K, PYRZANOWSKA J, et al. Maternal zinc supplementation improves spatial memory in rat pups[J]. Biological Trace Element Research, 2012, 147(1/3): 299-308. DOI:10.1007/s12011-012-9323-y.

      [35] SAAKA M, OOSTHUIZEN J, BEATTY S. Effect of prenatal zinc supplementation on birthweight[J]. Journal of Health, Population, and Nutrition, 2009, 27(5): 619-631. DOI:10.3329/jhpn.v27i5.3638.

      [36] MERIALDI M, CAULFIELD L E, ZAVALETA N, et al. Randomized controlled trial of prenatal zinc supplementation and the development of fetal heart rate[J]. American Journal of Obstetrics and Gynecology, 2004, 190(4): 1106-1112. DOI:http://dx.doi.org/10.1016/ j.ajog.2003.09.072.

      [37] DISILVESTRO R A, COUSINS R J. Mediation of endotoxininduced changes in zinc metabolism in rats[J]. American Journal of Physiology-Endocrinology and Metabolism, 1984, 247(4): E436-E441.

      [38] 邱炳源, 徐樂焱. 鋅金屬硫蛋白預(yù)防甲基汞對細胞膜損傷作用的實驗研究[J]. 廣東微量元素科學(xué), 1999, 6(2): 15-18.

      [39] VALLEE B L, FALCHUK K H. The biochemical basis of zinc physiology[J]. Physiological Reviews, 1993, 73(1): 79-118.

      [40] MACKENZIE G G, ZAGO M P, AIMO L, et al. Zinc deficiency in neuronal biology[J]. IUBMB Life, 2007, 59(4/5): 299-307. DOI:10.1080/15216540701225966.

      [41] 徐樂焱, 邱炳源, 袁蘭, 等. 鋅金屬硫蛋白抗甲基汞對細胞膜構(gòu)象的影響[J]. 中國公共衛(wèi)生學(xué)報, 1997, 16(2): 117-118.

      [42] BINDER D K, SCHARFMAN H E. Brain-derived neurotrophic factor[J]. Growth Factors, 2004, 22(3): 123-131. DOI:10.1080/089771 90410001723308.

      [43] NOSEK K, DENNIS K, ANDRUS B M, et al. Context and straindependent behavioral response to stress[J]. Behavioral and Brain Functions, 2008, 4(23): 1-8. DOI:10.1186/1744-9081-4-23.

      [44] CORONA C, MASCIOPINTO F, SILVESTRI E, et al. Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction[J]. Cell Death & Disease, 2010, 1(10): e91. DOI:10.1038/cddis.2010.73.

      [45] MüLLER H W, JUNGHANS U, KAPPLER J. Astroglial neurotrophic and neurite-promoting factors[J]. Pharmacology & Therapeutics, 1995, 65(1): 1-18. DOI:10.1016/0163-7258(94)00047-7.

      [46] CHOWANADISAI W, KELLEHER S L, L?NNERDAL B. Maternal zinc deficiency reduces NMDA receptor expression in neonatal rat brain, which persists into early adulthood[J]. Journal of Neurochemistry, 2005, 94(2): 510-519. DOI:10.1111/j.1471-4159.2005.03246.

      [47] SIDER L H, HUCKE E E T S, FLORIO J C, et al. Influence of time of day on hypothalamic monoaminergic activity in early pregnancy: effect of a previous reproductive experience[J]. Psychoneuroendocrinology, 2003, 28(2): 195-206. DOI:10.1016/S0306-4530(02)00016-1.

      Effect and Underlying Mechanism of Prenatal Zinc Treatment on Stress Response in Adult Female Wistar Rat Offspring Exposed to Lipopolysaccharide during Pregnancy

      ZUO Manhua1,2, HUANG Debin1, HU Xiuying2, TANG Jun3,*
      (1. Medical College, Hubei University for Nationalities, Enshi 445000, China; 2. West China School of Medicine, Sichuan University, Chengdu 610041, China; 3. Department of Nephrology, the Central Hospital of Enshi Autonomous Prefecture, Enshi 445000, China)

      Objective: To explore the effects and underlying mechanisms of prenatal zinc treatment (zinc sulfate injection) for pregnant rats exposed to lipopolysaccharide on the behavior and neuroimmune system of their adult female offspring. Methods: Totally 15 Wistar rats were divided into 3 groups randomly and injected with lipopolysaccharide (LPS) plus zinc sulfate (LPS + Zn), LPS plus sterile saline (SAL) (LPS + SAL), and SAL plus SAL (SAL + SAL), respectively. Two or three female offspring during postnatal days 81–86 (n = 10–12 per group) were chosen. The offspring that were in diestrus or metestrus were placed in a restraint stress tube for 2 hours. In the fi nal 5 min of restraint stress, they were subjected to different ultrasonic vocalizations. The behavioral duration times and silence duration times were recorded. After the ultrasonic vocalization test, the rats were removed from the restraint tube and observed in an open fi eld to evaluate motor and anxiety parameters immediately. Immediately after the open fi eld test, trunk blood was collected in conical tubes, and serum corticosterone levels and brain derived neurotropic factor were evaluated by enzyme-linked immunosorbent assay (ELISA). The levels of monoamine and their turnover in the hypothalamus and striatum were determined by high-performance liquidchromatography (HPLC). Results: Longer silence time (P < 0.05, P < 0.01), longer travel distance (P < 0.05, P < 0.001), faster average response speed (P < 0.05, P < 0.001), shorter self-grooming time (P < 0.001, P < 0.01), and lower metabolic rate of norepinephrine in striatum (P < 0.05, P < 0.01) in the LPS + Zn group were observed when compared with the LPS + SAL and SAL + SAL groups. Lower levels of serum corticosterone (P < 0.05) in the LPS + Zn group were also found when compared with the LPS + SAL group. Conclusion: Prenatal zinc treatment has a potential beneficial effect on adult female rat offspring stricken with infectious/inflammatory processes during gestation by reducing the stress response.

      zinc; gestation; rat; lipopolysaccharide (LPS); offspring; stress response

      10.7506/spkx1002-6630-201601032

      R363

      A

      1002-6630(2016)01-0182-07

      左滿花, 黃德斌, 胡秀英, 等. 鋅對孕期暴露脂多糖Wistar大鼠雌性成年子代行為的影響及其機制[J]. 食品科學(xué), 2016, 37(1): 182-188. DOI:10.7506/spkx1002-6630-201601032. http://www.spkx.net.cn

      ZUO Manhua, HUANG Debin, HU Xiuying, et al. Effect and underlying mechanism of prenatal zinc treatment on stress response in adult female Wistar rat offspring exposed to lipopolysaccharide during pregnancy[J]. Food Science, 2016, 37(1): 182-188. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201601032. http://www.spkx.net.cn

      2015-03-11

      國家自然科學(xué)基金面上項目(81360654)

      左滿花(1980—),女,講師,博士研究生,研究方向為微量元素與健康。E-mail:39942922@qq.com

      *通信作者:唐?。?977—),男,主治醫(yī)師,碩士,研究方向為慢性腎臟病防治。E-mail:mailzuoi80@163.com

      猜你喜歡
      紋狀體子代母體
      蒲公英
      遼河(2021年10期)2021-11-12 04:53:58
      紋狀體A2AR和D2DR對大鼠力竭運動過程中蒼白球GABA和Glu釋放的調(diào)控研究
      火力楠優(yōu)樹子代測定與早期選擇
      24年生馬尾松種子園自由授粉子代測定及家系選擇
      杉木全同胞子代遺傳測定與優(yōu)良種質(zhì)選擇
      火力楠子代遺傳變異分析及優(yōu)良家系選擇
      紋狀體內(nèi)移植胚胎干細胞來源的神經(jīng)前體細胞可升高帕金森病小鼠紋狀體內(nèi)多巴胺含量
      1H-MRS檢測早期帕金森病紋狀體、黑質(zhì)的功能代謝
      磁共振成像(2015年7期)2015-12-23 08:53:04
      多胎妊娠發(fā)生的原因及母體并發(fā)癥處理分析
      補腎活血顆粒對帕金森病模型大鼠黑質(zhì)紋狀體bcl-2、bax表達的影響
      井研县| 青阳县| 都匀市| 太湖县| 乌鲁木齐市| 呼玛县| 察隅县| 新和县| 衡水市| 金坛市| 乌海市| 台安县| 象山县| 清苑县| 丽水市| 罗甸县| 裕民县| 平武县| 兴海县| 台北市| 容城县| 博湖县| 巴里| 抚宁县| 梧州市| 宾阳县| 广元市| 潜山县| 白水县| 峨边| 凤庆县| 诏安县| 务川| 伊春市| 临澧县| 同江市| 兖州市| 延吉市| 霍州市| 铜川市| 平阳县|