劉 鈺,韓 峰,陸希成
(西北核技術(shù)研究所,西安710024)
?
多態(tài)系統(tǒng)電磁脈沖易損性概率置信下限的貝葉斯估計(jì)
劉鈺,韓峰,陸希成
(西北核技術(shù)研究所,西安710024)
針對(duì)多態(tài)系統(tǒng)電磁脈沖易損性評(píng)估問(wèn)題,提出了基于貝葉斯理論的多態(tài)系統(tǒng)電磁脈沖易損性概率置信下限估計(jì)方法。分別基于貝葉斯方法及經(jīng)典統(tǒng)計(jì)方法,給出了多態(tài)系統(tǒng)電磁脈沖易損性概率置信下限及效應(yīng)實(shí)驗(yàn)達(dá)到給定狀態(tài)概率所需最小樣本量的計(jì)算方法。通過(guò)算例,對(duì)文中提出的方法進(jìn)行了驗(yàn)證和比較。在無(wú)信息先驗(yàn)條件下,貝葉斯方法與經(jīng)典方法計(jì)算結(jié)果較為接近,概率置信下限和所需最小樣本量的估計(jì)結(jié)果主要依賴(lài)于當(dāng)前實(shí)驗(yàn)信息;當(dāng)先驗(yàn)信息具有顯著傾向時(shí),若當(dāng)前實(shí)驗(yàn)信息與先驗(yàn)信息一致,則基于貝葉斯方法計(jì)算的概率置信下限更加準(zhǔn)確,且所需最小樣本量明顯少于經(jīng)典統(tǒng)計(jì)方法的計(jì)算結(jié)果。
貝葉斯方法;多態(tài)系統(tǒng);易損性;概率置信下限
隨著大規(guī)模集成電路的發(fā)展,電子設(shè)備的結(jié)構(gòu)越來(lái)越微型化、復(fù)雜化,電子系統(tǒng)抗電磁脈沖能力不斷降低[1-3],強(qiáng)電磁脈沖與孔縫、天線(xiàn)和線(xiàn)纜作用,極易使系統(tǒng)出現(xiàn)干擾、翻轉(zhuǎn)、擾亂、降級(jí)和損壞等多種效應(yīng)狀態(tài)[4-6],電磁脈沖輻射場(chǎng)已對(duì)現(xiàn)代電子設(shè)備的安全運(yùn)行構(gòu)成了一定的威脅[7-11]。
電子系統(tǒng)在給定電磁脈沖輻射水平作用下,各狀態(tài)的發(fā)生概率或概率置信下限,是表征電子系統(tǒng)電磁脈沖易損性或系統(tǒng)抗電磁脈沖能力的主要量化指標(biāo)[12-13]。隨著電子技術(shù)的發(fā)展,電子系統(tǒng)中的子系統(tǒng)或單元部件的功能不斷增強(qiáng),造價(jià)也不斷提高,進(jìn)行系統(tǒng)級(jí)電磁脈沖易損性分析時(shí),通常存在試驗(yàn)費(fèi)用昂貴和受試系統(tǒng)樣本數(shù)少的問(wèn)題,需要在小子樣條件下對(duì)系統(tǒng)的抗電磁脈沖能力做出較為準(zhǔn)確的評(píng)判。
近年來(lái),有關(guān)成敗型貝葉斯統(tǒng)計(jì)方法的研究已經(jīng)較為成熟[14-16],但能夠解決多態(tài)系統(tǒng)易損性概率置信下限估計(jì)問(wèn)題的小子樣統(tǒng)計(jì)分析方法仍較為缺乏。針對(duì)此問(wèn)題,本文提出了基于貝葉斯方法的多態(tài)系統(tǒng)電磁脈沖易損性概率置信下限估計(jì)方法。
1.1經(jīng)典統(tǒng)計(jì)方法
若系統(tǒng)存在K種功能狀態(tài),其狀態(tài)空間表示為{1,2,…,K},K∈Z+且K≥2。若K=2,多態(tài)型部件退化為成敗型部件。將部件完全失效狀態(tài)定義為狀態(tài)1,部件完全正常狀態(tài)定義為狀態(tài)K。且部件狀態(tài)滿(mǎn)足如下性質(zhì)[17]:
1)系統(tǒng)必須處于某種功能狀態(tài);
2)系統(tǒng)只能處于一種功能狀態(tài)。
(1)
對(duì)多項(xiàng)分布的概率密度函數(shù)進(jìn)行變換:
(2)
(3)
其中,f(yj|pj)為二項(xiàng)分布密度函數(shù);f(y′|p′)為K-1維多項(xiàng)分布,即
(4)
(5)
=f(yj|pj)
(6)
式(6)表明,f(y|p)關(guān)于第j個(gè)狀態(tài)的樣本數(shù)yj的邊緣概率分布服從二項(xiàng)分布,其概率密度函數(shù)為f(yj|pj),即多項(xiàng)分布的參數(shù)估計(jì)問(wèn)題可以簡(jiǎn)化為二項(xiàng)分布的參數(shù)估計(jì)問(wèn)題。
根據(jù)式(4),在n次試驗(yàn)中,單元器件功能處于狀態(tài)j的概率置信下限可由式(7)確定[21]:
(7)
其中,Ix(a,b)為不完全β函數(shù)[21]。
對(duì)給定的置信度γ,單元器件狀態(tài)j發(fā)生概率置信下限pjL可根據(jù)式(8)確定:
(8)
同樣,根據(jù)式(8),若給定置信度γ、狀態(tài)j發(fā)生概率達(dá)到預(yù)先給定的下限pjL及試驗(yàn)的總數(shù)n,可計(jì)算出實(shí)驗(yàn)中狀態(tài)j所需的最小樣本數(shù)yj。
1.2貝葉斯方法
設(shè)有n件產(chǎn)品進(jìn)行了實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果為y=[y1,y2,…,yk]T,其中,yk個(gè)樣本處于第k個(gè)狀態(tài),則試驗(yàn)數(shù)據(jù)yk服從多項(xiàng)分布式(1),設(shè)單元產(chǎn)品各狀態(tài)概率p={p1,…,pk}的先驗(yàn)分布服從Dirichlet分布,則
(9)
其中,α={α1,…,αK}是參數(shù)向量;αk>0,k=1,2,…,K。Γ(·)為Gamma函數(shù)[22]。
根據(jù)Bayes理論,則p的后驗(yàn)密度為
(10)
(11)
其中,π(pj|αj)為Beta分布密度函數(shù);π(p′|α′)為K-1維Dirichlet分布,即
(12)
(13)
若計(jì)算π(p|α)關(guān)于pj的邊緣概率分布,則
=π(pj|αj)
(14)
由式(14)可知,π(p|α)關(guān)于狀態(tài)j的發(fā)生概率pj的邊緣概率分布服從Beta分布,其概率密度函數(shù)為π(pj|αj)。因此,Dirichlet分布的參數(shù)估計(jì)問(wèn)題可以簡(jiǎn)化為Beta分布的參數(shù)估計(jì)問(wèn)題。
置信度為γ的狀態(tài)j發(fā)生概率置信下限pjL,可由式(15)確定[23]:
(15)
同樣,根據(jù)式(15),若給定置信度γ,狀態(tài)j發(fā)生概率達(dá)到預(yù)先給定的下限pjL及試驗(yàn)總數(shù)n,可計(jì)算給出實(shí)驗(yàn)中狀態(tài)j所需的最小樣本數(shù)yj。計(jì)算結(jié)果可用于設(shè)計(jì)評(píng)估單元器件在給定電磁作用水平下,各狀態(tài)發(fā)生概率達(dá)到預(yù)先設(shè)定下限的實(shí)驗(yàn)。
算例1:假設(shè)對(duì)某多態(tài)系統(tǒng)進(jìn)行實(shí)驗(yàn),設(shè)參與試驗(yàn)的器件總數(shù)為n,作用水平為x,實(shí)驗(yàn)后分別處于狀態(tài)1(失效)的個(gè)數(shù)為y1,狀態(tài)2(降級(jí))的個(gè)數(shù)為y2,狀態(tài)3(正常)的個(gè)數(shù)為y3。取n=5,置信度γ=0.9,分別根據(jù)經(jīng)典方法和Bayes方法對(duì)單元器件各狀態(tài)概率置信下限進(jìn)行計(jì)算,結(jié)果如表1所列,其中,Bayes方法1和Bayes方法2分別表示不同α取值情況下的計(jì)算結(jié)果。
計(jì)算結(jié)果表明,先驗(yàn)信息對(duì)計(jì)算結(jié)果有較大的影響,當(dāng)先驗(yàn)信息與當(dāng)前實(shí)驗(yàn)信息不相符時(shí),單元器件各狀態(tài)概率置信下限的計(jì)算結(jié)果與實(shí)驗(yàn)現(xiàn)象的直觀認(rèn)識(shí)有較大的出入,這說(shuō)明在應(yīng)用貝葉斯方法解決小樣本實(shí)驗(yàn)統(tǒng)計(jì)問(wèn)題時(shí),需要特別注意先驗(yàn)信息的選擇,在沒(méi)有更準(zhǔn)確的先驗(yàn)信息時(shí),可以選擇無(wú)偏向的Jeffreys無(wú)信息先驗(yàn),以保證對(duì)統(tǒng)計(jì)結(jié)論不帶人為主觀影響。
算例2 :仍以算例1的3種狀態(tài)情況為例,在給定置信度γ的情況下,計(jì)算驗(yàn)證單元器件失效概率達(dá)到預(yù)先給定的p1L時(shí),出現(xiàn)失效實(shí)驗(yàn)結(jié)果所需的最小樣本數(shù)y1。
表2列出了采用經(jīng)典方法對(duì)實(shí)驗(yàn)所需樣本量的計(jì)算結(jié)果(向上取整后的值)。由表2可以看出,單元器件失效概率p1L達(dá)到較高的要求時(shí),用經(jīng)典方法計(jì)算需要的驗(yàn)證實(shí)驗(yàn)次數(shù)較多,而實(shí)際上由于受到很多因素的限制,常常不可能進(jìn)行大量的實(shí)驗(yàn)。
表1γ=0.9,n=5時(shí),各狀態(tài)不同樣本量對(duì)應(yīng)的概率置信下限
表2γ=0.9時(shí),y1狀態(tài)結(jié)果所需最少試驗(yàn)次數(shù)(經(jīng)典方法)
表3列出了先驗(yàn)分布參數(shù)α=[0.5,0.5,0.5]時(shí),采用貝葉斯方法對(duì)實(shí)驗(yàn)所需樣本量的計(jì)算結(jié)果。由表3可以看出,在無(wú)信息先驗(yàn)情況下,單元器件失效概率達(dá)到預(yù)先給定的p1L時(shí),實(shí)驗(yàn)所需樣本量的計(jì)算結(jié)果與經(jīng)典方法相差不大,說(shuō)明無(wú)信息的先驗(yàn)分布并未對(duì)當(dāng)前實(shí)驗(yàn)信息帶來(lái)影響。
表3γ=0.9時(shí),y1狀態(tài)結(jié)果所需最少試驗(yàn)次數(shù)
表4列出了先驗(yàn)分布參數(shù)α=[10,1,2]時(shí),采用貝葉斯方法對(duì)實(shí)驗(yàn)所需樣本量的計(jì)算結(jié)果。
表4γ=0.9時(shí),y1狀態(tài)結(jié)果所需最少試驗(yàn)次數(shù)
α=[10,1,2]反映了對(duì)失效概率p1L的先驗(yàn)認(rèn)識(shí),根據(jù)Dirichlet分布均值的定義,p1L的先驗(yàn)均值估計(jì)[21]為
(16)
針對(duì)多態(tài)系統(tǒng)電磁脈沖易損性概率置信下限估計(jì)問(wèn)題進(jìn)行了研究,在實(shí)驗(yàn)樣本數(shù)據(jù)為小樣本多態(tài)型數(shù)據(jù)的情況下,建立了相應(yīng)的貝葉斯評(píng)估方法,具體內(nèi)容包括:
1) 基于經(jīng)典統(tǒng)計(jì)方法給出了多態(tài)系統(tǒng)電磁脈沖易損性概率置信下限及效應(yīng)實(shí)驗(yàn)達(dá)到給定狀態(tài)概率所需最小樣本量的計(jì)算方法。
2)給出了多態(tài)系統(tǒng)電磁脈沖易損性概率置信下限及效應(yīng)實(shí)驗(yàn)達(dá)到給定狀態(tài)概率所需最小樣本量的貝葉斯方法。
3) 通過(guò)算例對(duì)文中提出的方法進(jìn)行了驗(yàn)證和比較。在無(wú)信息先驗(yàn)條件下,貝葉斯方法與經(jīng)典方法計(jì)算結(jié)果較為接近,此時(shí),概率置信下限和所需最小樣本量的估計(jì)結(jié)果主要依賴(lài)于當(dāng)前實(shí)驗(yàn)信息;當(dāng)先驗(yàn)信息具有顯著傾向時(shí),若當(dāng)前實(shí)驗(yàn)信息與先驗(yàn)信息一致,則基于貝葉斯方法的概率置信下限計(jì)算結(jié)果更加準(zhǔn)確,且所需最小樣本量明顯少于經(jīng)典統(tǒng)計(jì)方法。應(yīng)用貝葉斯方法時(shí),對(duì)先驗(yàn)信息應(yīng)進(jìn)行嚴(yán)格的甄別,避免引入不符合實(shí)際的人為主觀假設(shè),以至于影響對(duì)效應(yīng)實(shí)驗(yàn)數(shù)據(jù)的統(tǒng)計(jì)分析結(jié)論。
[1]NITSCH D, CAMP M, SABATH F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 380-389.
[2]喬登江. 高功率電磁脈沖、 強(qiáng)電磁效應(yīng)、 電磁兼容、 電磁易損性及評(píng)估概論[J]. 現(xiàn)代應(yīng)用物理, 2013, 4(3): 219-224. (QIAO Deng-jiang. Introduction to HPEMP, IEME, EMC, and EM susceptibility and its assessments[J]. Modern Applied Physics, 2013, 4(3): 219-224.)
[3]王建國(guó), 牛勝利, 張殿輝, 等. 高空核爆炸效應(yīng)參數(shù)手冊(cè)[M]. 北京: 原子能出版社, 2010.(WANG Jian-guo, NIU Sheng-li, ZHANG Dian-hui, et al. Parameter Handbook of High Altitude Nuclear Explosion Effects [M]. Beijing: Atomic Energy Press, 2010.)
[4]孟凡寶. 高功率超寬帶電磁脈沖技術(shù)[M]. 北京: 國(guó)防工業(yè)出版社, 2011. (MENG Fan-bao. High Power EM Pulse Technology[M]. Beijing: National Defense Industry Press, 2011.)
[5]GIRI D V, TESCHE F M. Classification of intentional electromagnetic environments (IEME) [J]. IEEE Trans Electromagn Compat, 2004, 46(3): 322-328.
[6]王建國(guó), 劉國(guó)治, 周金山. 微波孔縫線(xiàn)性耦合函數(shù)研究[J]. 強(qiáng)激光與粒子束, 2003, 15(11): 1 093-1 099.(WANG Jian-guo, LIU Guo-zhi, ZHOU Jin-shan. Investigations on function for linear coupling of microwaves into slots[J]. High Power Laser and Particle Beams, 2003, 15(11): 1 093-1 099.)
[7]HOAD R, CATER N J, HERKE D, et al. Trends in EM susceptibility of IT equipment [J]. IEEE Trans Electromagn Compat, 2004, 46(3): 390-395.
[8]GENENDER E, GARBE H, SABATH F. Probabilistic risk analysis technique of intentional electromagnetic interference at system level [J]. IEEE Trans Electromagn Compat, 2014, 56(1): 200-207.
[9]RADASKY W A, BAUM C E, WIK M W. Introduction to the special issue on high-power electromagnetics (HPEM) and intentional electromagnetic interference (IEMI)[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 314-321.
[10]GREASON W D, CASTLE G S P. The effects of electrostatic discharge on microelectronic devices: A review [J]. IEEE Trans Ind Appl, 1984, 20(2): 247-252.
[11]CAMP M, GARBE H. Susceptibility of personal computer systems to fast transient electromagnetic pulses[J]. IEEE Trans Electromagn Compat, 2006, 48(4): 829-834.
[12]韓峰, 王建國(guó), 喬登江. 對(duì)數(shù)正態(tài)分布場(chǎng)合下產(chǎn)品加固性能的Bayes評(píng)估方法[J]. 應(yīng)用概率統(tǒng)計(jì), 2009, 25(4): 433-440.(HAN Feng, WANG Jian-guo, QIAO Deng-jiang. Bayesian assessment for product’s radiation hardening performance under Lognormal distribution [J]. Chinese Journal of Applied Probability and Statistics, 2009, 25(4): 433-440.)
[13]CAMP M, GERTH H, GARBE H,et al.Predicting the breakdown behavior of microcontrollers under EMP/UWB impact using a statistical analysis[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 368-379.
[14]孫蓓云, 周輝, 陳向躍, 等. 基于Weibull分布的電磁脈沖損傷函數(shù)Bayesian分析技術(shù)[J]. 核電子學(xué)與探測(cè)技術(shù), 2009, 29(6): 1 363-1 365.(SUN Bei-yun, ZHOU Hui, CHEN Xiang-yue, et al. Bayesian analysis for EMP damaged function based on Weibull distribution [J]. Nuclear Electronics & Detection Technology, 2009, 29(6): 1 363-1 365.)
[15]MARTZ H F, WALLER R A. Bayesian reliability analysis of complex series/parallel systems of binomial subsystems and components [J]. Technometrics, 1990, 32(4): 407-416.
[16]MARTZ H F, WALLER R A, FICKAS E T. Bayesian reliability analysis of series systems of binomial subsystems and components [J]. Technometrics, 1988, 30(2): 143-154.
[17]LI C Y, CHEN X, YI X S, et al. Interval-valued reliability analysis of multi-state systems [J]. IEEE Trans Reliab, 2011, 60(1): 323-330.
[18]LISNIANSKI A, ELMAKIAS D, LAREDO D,et al. A multi-state Markov model for a short-term reliability analysis of a power generating unit [J]. Reliability Engineering and System Safety, 2012, 98(1): 1-6.
[19]DING Y, ZUO M J, LISNIANSKI A, et al. Fuzzy multi-state systems: General definitions, and performance assessment [J]. IEEE Trans Reliab, 2008, 57(4): 589-594.
[20]DESTERCKE S, SALLAK M. An extension of universal generating function in multi-state systems considering epistemic uncertainties [J]. IEEE Trans Reliab, 2013, 62(2): 504-514.
[21]周源泉, 翁朝曦. 可靠性評(píng)定[M]. 北京: 科學(xué)出版社, 1990. (ZHOU Yuan-quan, WENG Chao-xi. Reliability Assessment [M]. Beijing: Science Press, 1990.)
[22]LI M Y, LIU J, LI J, et al. Bayesian modeling of multi-state hierarchical systems with multi-level information aggregation [J]. Reliability Engineering and System Safety, 2014, 124(1): 158-164.
[23]蔡洪, 張士峰, 張金槐. Bayes試驗(yàn)分析與評(píng)估[M]. 長(zhǎng)沙: 國(guó)防科技大學(xué)出版社, 2004. (CAI Hong, ZHANG Shi-feng, ZHANG Jin-huai. Bayes Test Analysis and Evaluation [M]. Changsha: National University of Defense Technology Press, 2004.)
Susceptibility Assessment of Multi-State System to EMP with Lower Confidence Limit of Probability Based on Bayesian Method
LIU Yu,HAN Feng,LU Xi-cheng
(Northwest Institute of Nuclear Technology,Xi’an710024,China)
An assessment method of the lower confidence limit of probability based on Bayesian theory, which can be used in the susceptibility assessment of the electronic system to electromagnetic pulse (EMP), is proposed. According to the multi-state phenonmenon of the electronic system and the feature of its EMP effects, the derivations of full probability formula from multinomial and Dirichlet distribution are discussed. The lower confidence limit of each system state probability and the least number of trials with given probability can be determined by using the proposed method. A case demonstrates that, the differences between the results of the proposed method and the classical statistical method are not significant with the non-information prior. But when the prior information is strictly according to the sample information of current experiments, the accuracy of the estimation of each system state probability is improved and the requirement of the number of trials is reduced by the proposed method.
Bayesian method;multi-state system;susceptibility;lower confidence limit of probability
2016-05-12;
2016-07-12
國(guó)家自然科學(xué)基金重點(diǎn)資助項(xiàng)目(61231003); 國(guó)家自然科學(xué)基金青年基金資助項(xiàng)目(61201090)
劉鈺(1982- ),男,陜西西安人,助理研究員,博士研究生,主要從事系統(tǒng)輻射效應(yīng)評(píng)估研究。
E-mail:liuyu05@nint.ac.cn
TN07;N945.17
A
2095-6223(2016)031201(6)