陳紅永, 李上明
(中國(guó)工程物理研究院 總體工程研究所,四川 綿陽 621999)
?
軸向運(yùn)動(dòng)梁在軸向載荷作用下的動(dòng)力學(xué)特性研究
陳紅永, 李上明
(中國(guó)工程物理研究院 總體工程研究所,四川 綿陽 621999)
研究了軸向運(yùn)動(dòng)Timoshenko梁在軸向載荷作用下的振動(dòng)特性。首先通過考慮軸向拉壓載荷作用,根據(jù)Timoshenko梁理論和Hamilton原理建立了梁的橫向振動(dòng)控制微分方程,推導(dǎo)了簡(jiǎn)支-簡(jiǎn)支邊界條件下的梁的無量綱頻率隨軸向載荷的變化關(guān)系,采用新的無量綱化形式消除了無載荷作用下控制方程的奇異性。通過微分求積法進(jìn)行數(shù)值求解并對(duì)結(jié)果進(jìn)行驗(yàn)證,分析結(jié)果表明:無載荷作用下,長(zhǎng)細(xì)比越大,越易達(dá)到失穩(wěn)狀態(tài);在相同運(yùn)動(dòng)速度下,受壓狀態(tài)時(shí)比受拉狀態(tài)下更易達(dá)到失穩(wěn);臨界速度隨著軸向載荷的絕對(duì)值的增大而減小。通過研究探索了影響臨界速度和臨界載荷的因素以及兩者的關(guān)系,對(duì)于軸向受載運(yùn)動(dòng)系統(tǒng)設(shè)計(jì)具有一定指導(dǎo)意義。
軸向運(yùn)動(dòng)Timoshenko梁;軸向載荷;橫向振動(dòng);微分求積法
軸向運(yùn)動(dòng)系統(tǒng)在工業(yè)生產(chǎn)領(lǐng)域有著廣泛的應(yīng)用,比如在生產(chǎn)過程中的傳送帶、磁帶、帶鋸等,這些結(jié)構(gòu)很多可以簡(jiǎn)化為軸向運(yùn)動(dòng)梁模型,研究軸向運(yùn)動(dòng)梁模型的橫向振動(dòng)特性和動(dòng)力學(xué)行為,具有重要的工程實(shí)際意義。
對(duì)軸向運(yùn)動(dòng)系統(tǒng)的研究已經(jīng)有很多[1-11],以前多采用基于歐拉-伯努利梁理論建模,對(duì)于長(zhǎng)細(xì)比較低的梁模型來說并不精確,因?yàn)樗雎粤思羟凶冃魏徒孛孓D(zhuǎn)動(dòng)慣量的影響。SIMPSON[12]第一次引入了剪切效應(yīng),采用了特征值方法分析了固支條件下的軸向運(yùn)動(dòng)Timoshenko梁的自振頻率,并且發(fā)現(xiàn)了分叉現(xiàn)象的出現(xiàn)。TANG等[13]采用復(fù)模態(tài)方法分析了不同邊界條件下的軸向受拉的運(yùn)動(dòng)Timoshenko梁的自振頻率、模態(tài)以及臨界速度,這些研究對(duì)于載荷對(duì)自振頻率的影響并沒有進(jìn)行深入探討。對(duì)于軸向受壓梁的研究相對(duì)較少。BOKAIAN[14-15]研究了軸向受拉、壓作用對(duì)靜態(tài)Euler梁的影響。POURTAKDOUST等[16]研究了推力對(duì)于柔性制導(dǎo)導(dǎo)彈的自振特性影響,這些研究都是針對(duì)靜態(tài)梁,并沒有考慮軸向運(yùn)動(dòng)效應(yīng)。GHAYESH等[17]采用多尺度法通過引入轉(zhuǎn)動(dòng)慣量和溫度效應(yīng)研究了軸向運(yùn)動(dòng)梁的非線性橫向振動(dòng),王波[18]也采用多尺度法研究了運(yùn)動(dòng)三參數(shù)黏彈性梁的弱受迫振動(dòng),李成等[19]考察了非局部參數(shù)對(duì)固支和懸臂邊界條件下超薄梁的固有頻率和臨界速度的影響。Garlerkin法也被用于分析軸向運(yùn)動(dòng)的穩(wěn)定性[20-21],GUO等[22]等采用微分求積法(DQM)研究了軸向運(yùn)動(dòng)熱彈耦合梁的振動(dòng)特性,相比于其它方法,微分求積法具有收斂快計(jì)算量小的優(yōu)點(diǎn)。這些研究中同樣只考慮了模型受拉的情況或者完全沒有考慮軸向載荷的作用。
本文首先根據(jù)Timoshenko梁理論和Hamilton原理得到了軸向運(yùn)動(dòng)梁在是否考慮軸向載荷的情況下不同的控制方程,接著采用數(shù)值方法求解了其無量綱固有頻率并進(jìn)行了驗(yàn)證,通過分析結(jié)構(gòu)長(zhǎng)細(xì)比、軸向載荷系數(shù)以及軸向運(yùn)動(dòng)速度對(duì)系統(tǒng)的穩(wěn)定性的影響。
1.1 軸向受載梁的控制方程
不考慮縱向和橫向耦合,梁的動(dòng)能由橫向振動(dòng)動(dòng)能,截面轉(zhuǎn)動(dòng)動(dòng)能及剛體運(yùn)動(dòng)動(dòng)能構(gòu)成:
(1)
勢(shì)能包括軸向力做功、彎曲應(yīng)變能和剪切應(yīng)變能:
(2)
根據(jù)Hamilton原理[23]
(3)
式中:V(T)為梁的運(yùn)動(dòng)速度,N為軸向拉力,梁的橫向振動(dòng)位移W(X,T),梁的截面剛度為EI,剪切剛度為κGA(κ為截面剪切系數(shù)),截面轉(zhuǎn)動(dòng)慣量為ρI,梁長(zhǎng)度為L(zhǎng),單位長(zhǎng)度的質(zhì)量為ρA。Θ表示梁截面轉(zhuǎn)角,對(duì)Timoshenko梁模型,Θ=?W/?X+Ψ,Ψ為純剪切產(chǎn)生的剪切角。
將式(1)和(2)代入式(3)求解變分,不考慮軸力對(duì)軸向坐標(biāo)和時(shí)間的導(dǎo)數(shù),僅保留速度和加速度項(xiàng),由于變分項(xiàng)的任意性,變分項(xiàng)系數(shù)為0,則可得均勻梁的橫向振動(dòng)方程為:
(4)
(5)
式中:梁所受的彎矩和剪力為:
(6)
由式(4)可得:
(7)
將式(7)代入式(5),可得僅包含橫向振動(dòng)的控制方程為:
(8)
式中,下標(biāo)X和T分別表示對(duì)軸向坐標(biāo)X和時(shí)間T的導(dǎo)數(shù)。根據(jù)上述推導(dǎo)過程,同理可得受壓梁的控制方程。根據(jù)參數(shù)關(guān)系,將式(8)進(jìn)行無量綱化處理:
(9)
4k2vvtwxxt+5k2vtwxtt+k1vtwxxx+
(k4+δk1-k1v2)wxxxx-2k1vwxxxt-
(k1+k3+δk2-k2v2)wxxtt+
2k2vwxttt+k2wtttt=0
(10)
式中:k1、k2及k5包含剪切模量,表征剪切剛度,k3和k4分別表征扭轉(zhuǎn)系數(shù)及彎曲剛度;δ為載荷系數(shù):
為了消除這種奇異性的影響,對(duì)無載荷作用的情況進(jìn)行單獨(dú)分析。
1.2 無軸力作用控制方程
定義新的無量綱參數(shù)定義為
(11)
vt′wx+wtt+2v′wxt+v′2wxx+
4k1v′vt′wxxt+5k1vt′wxtt+k1vt′wxxx+
(k3-k1v′2)wxxxxx-2k1v′wxxxt-
(k1+k3-k1v′2)wxxtt+2k1v′wxttt+k1wtttt=0
(12)
若不考慮軸向運(yùn)動(dòng)速度,則相當(dāng)于求解方程:
wtt+wxx+k3wxxxx-
(k1+k3)wxxtt+k1wtttt=0
(13)
簡(jiǎn)支-簡(jiǎn)支邊界條件可表示為:
(14)
2.1 基于DQM方法的控制方程求解方法
文中采用DQM方法進(jìn)行控制方程式(10)及式(12) 的求解,求解主要過程如下:
根據(jù)微分求積法(DQM)[24],函數(shù)在某點(diǎn)的r階導(dǎo)數(shù)的值可以表示為在所有節(jié)點(diǎn)上函數(shù)值的加權(quán)和的形式:
(15)
(16)
采用不均勻網(wǎng)格點(diǎn)進(jìn)行劃分,為了處理高階邊界條件,引入δ方法在兩端節(jié)點(diǎn)處增加距離端點(diǎn)δL(約為10-4~10-6)兩個(gè)網(wǎng)格點(diǎn),并重新編號(hào):
x1=0,x2=δL,xn-1=1-δL,xn=1
k=3,4…,n-2
(17)
根據(jù)插值原理,采用Lagrange多項(xiàng)式確定權(quán)系數(shù),
(18)
高階權(quán)系數(shù)可以用以下關(guān)系來確定
(19)
則將式(12)~(16)代入控制方程式(8)和式(9)可得:
(20)
(21)
通過將簡(jiǎn)支-簡(jiǎn)支邊界條件以相同方法引入,可以將式(20)和式(21)轉(zhuǎn)化為矩陣形式為
(B(4)λ4+B(3)λ3+B(2)λ2+
B(1)λ+B(0))Φ=0
(22)
式中:B(p),p=0,1,2,3,4都為n階方陣,Φ=[φj]T,j=1,2,…,n。式(18)變?yōu)樗碾A廣義特征值求解問題,求解方程的廣義特征值即能得到無量綱頻率值。
2.2 數(shù)值方法驗(yàn)證
軸向受載靜態(tài)Euler梁的無量綱化控制方程為:
wxxxx-δwxx/k4-λ2w=0
(23)
根據(jù)軸向載荷與臨界壓力載荷的比值定義載荷系數(shù)為:
(24)
式中:μ為邊界條件系數(shù),簡(jiǎn)支-簡(jiǎn)支梁μ=π2。用數(shù)值尋根方法求解軸向受載梁的特征方程可以得到前4階特征值λ隨軸向壓力系數(shù)kN的變化,如圖1所示。
圖1 簡(jiǎn)支-簡(jiǎn)支梁前四階特征值隨載荷系數(shù)的變化Fig.1 The first four order eigenvalues of pinned-pinned beam VS. load factor
取載荷系數(shù)kN=-1~1,即載荷從臨界壓力到一倍于臨界壓力值的拉力狀態(tài)。從圖1中可以看出,各邊界條件下各階特征值都隨軸向載荷變大而變大,是因?yàn)檩S向壓力變小和拉力變大都使得結(jié)構(gòu)剛度變大,其橫向彈性振動(dòng)頻率變大。不同的是第二、三和四階特征值隨載荷增大緩慢變大,而第一階特征值當(dāng)載荷接近臨界載荷即kN=-1~11時(shí)迅速?gòu)?增大且變之后增速平緩。同時(shí)可以看出,當(dāng)?shù)竭_(dá)臨界壓力載荷時(shí)第一階彈性振動(dòng)固有頻率降為0,達(dá)到失穩(wěn)狀態(tài)。當(dāng)有軸力作用時(shí),根據(jù)無量綱化關(guān)系,可以得到無量綱頻率與系統(tǒng)原始固有頻率的關(guān)系:
(25)
對(duì)DQM方法計(jì)算得到的無軸向運(yùn)動(dòng)速度情況下簡(jiǎn)支-簡(jiǎn)支梁的前三階無量綱頻率進(jìn)行對(duì)比,根據(jù)Timoshenko給出的近似關(guān)系,可以將簡(jiǎn)支-簡(jiǎn)支邊界條件下的無量綱固有頻率根據(jù)式(25)轉(zhuǎn)化為相應(yīng)的Timoshenko梁的無量綱頻率[25],并進(jìn)行比較。結(jié)果如表1所示。
(26)
表1 無軸力情況下計(jì)算結(jié)果驗(yàn)證
對(duì)于考慮軸力作用的情況,根據(jù)式(22)所得的無量綱特征值,通過特征值與無量綱頻率之間的關(guān)系(25)式進(jìn)行相應(yīng)轉(zhuǎn)化,可以得到解析解與DQM解的對(duì)比關(guān)系,如圖2所示。
圖2 解析法與DQM方法求解簡(jiǎn)支-簡(jiǎn)支梁前兩階無量綱頻率的結(jié)果對(duì)比v=0Fig.2 Comparison of first two order natural frequencies of Analytical and DQM for pinned-pinned beam
圖3給出了簡(jiǎn)支-簡(jiǎn)支邊界條件下前3階無量綱頻率與運(yùn)動(dòng)速度的關(guān)系,以及前兩階固有頻率與載荷系數(shù)的關(guān)系。其中圖3(a)給出了無軸力情況下,不同長(zhǎng)細(xì)比的梁前三階固有頻率隨速度下降,當(dāng)長(zhǎng)細(xì)比從5變大到10時(shí),前三階頻率都下降,一階頻率失穩(wěn)的無量綱速度v′ 從0.174降低到0.091??梢姛o軸力情況下,結(jié)構(gòu)長(zhǎng)細(xì)比對(duì)固有頻率影響很大。
圖3(b)中給出了當(dāng)運(yùn)動(dòng)梁受到0.1和0.5倍臨界載荷的拉力和壓力情況下,前三階固有頻率隨速度的變化??梢钥闯霎?dāng)壓力和拉力絕對(duì)值相等時(shí),無量綱固有頻率相差較小,拉力大于壓力,對(duì)于一階頻率這種差別當(dāng)軸向載荷更大時(shí)更加明顯。簡(jiǎn)支-簡(jiǎn)支梁0.5倍拉力時(shí)臨界速度為1.7,0.5倍壓力時(shí)臨界速度降低為1.0??梢娸S向載荷值較大時(shí),對(duì)一階頻率影響明顯。
圖3(c)中給出了前兩階固有頻率在不同速度下與軸向載荷的關(guān)系。當(dāng)運(yùn)動(dòng)梁受到壓力作用時(shí),與軸向運(yùn)動(dòng)效應(yīng)耦合,會(huì)使得動(dòng)態(tài)失穩(wěn)點(diǎn)提前。表現(xiàn)為一階固有頻率降低為0,當(dāng)載荷繼續(xù)增大之后與2階固有頻率耦合,出現(xiàn)耦合模態(tài)顫振現(xiàn)象。當(dāng)運(yùn)動(dòng)速度從0~3變大,簡(jiǎn)支-簡(jiǎn)支梁的臨界載荷由原來的1倍臨界載荷變?yōu)?.2倍。對(duì)于受拉力的情況下,也會(huì)出現(xiàn)失穩(wěn)狀態(tài),也會(huì)出現(xiàn)像壓力狀態(tài)下的1階頻率降為0之后與2階耦合的情況,簡(jiǎn)支-簡(jiǎn)支梁在0.35處出現(xiàn)失穩(wěn),但是在1倍拉力內(nèi)未出現(xiàn)耦合現(xiàn)象。
圖3 簡(jiǎn)支-簡(jiǎn)支梁無量綱頻率與運(yùn)動(dòng)速度及載荷系數(shù)的關(guān)系Fig.3 The dimensionless complex frequencies vs. speed and load for pinned-pinned beam
通過推導(dǎo)軸向運(yùn)動(dòng)Timoshenko梁在有無軸向載荷作用下的控制方程,用數(shù)值求解方法求解并給出了簡(jiǎn)支梁軸向載荷和運(yùn)動(dòng)速度對(duì)梁模型固有頻率的影響,分析了臨界速度與載荷的關(guān)系,可以總結(jié)出如下結(jié)論:
(1) 無載荷作用下,梁模型長(zhǎng)細(xì)比越大,越易達(dá)到失穩(wěn)狀態(tài)。
(2) 簡(jiǎn)支梁固有頻率都隨著軸向載荷及軸向運(yùn)動(dòng)速度的增大而減小;在相同運(yùn)動(dòng)速度下,受壓狀態(tài)時(shí)比受拉力作用下更易達(dá)到失穩(wěn)狀態(tài)。
(3) 臨界速度隨著軸向載荷的絕對(duì)值的增大而減小。
[1] MOTE C D. A study of band saw vibrations [J]. Journal of the Franklin Institute,1965, 279: 430-444.
[2] WICKERT J A. Non-linear vibration of a traveling tensioned beam[J]. International Journal Non-Linear Mechanics,1992, 27: 503-517.
[3] HUANG J L, SU R K L, LI W H, et al.Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances[J]. Journal of Sound and Vibration,2011,330(3):471-485.
[4] CHEN L Q, TANG Y Q, LIN C W. Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko Beam[J]. Journal of Sound and Vibration, 2010,329(5):547-565.
[5] DING H, CHEN L Q. Galerkin methods for natural frequencies of high-speed axially moving beams[J], Journal of Sound and Vibration,2010, 329(17):3484-3494.
[6] DING H, ZHANG G C, CHEN L Q. Supercritical equilibrium solutions of axially moving beams with hybrid boundary conditions[J]. Mechanics Research Communications,2011, 38(1):52-56.
[7] GHAYESH M H. Nonliear forced dynamics of an axially moving viscoelastic beam with an internal resonance[J]. International Journal of Mechanical Sciences,2011,53(11):1022-1037.
[8] GHAYESH M H, KAFIABAD H A, REID T. Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam[J]. International Journal of Solids and Structures, 2012, 49(1):227-243.
[9] GHAYESH M H. Coupled longitudinal-transverse dynamics of an axially accelerating beam[J]. Journal of Sound and Vibration, 2012,331:5107-5124.
[10] GHAYESH M H. Subharmonic dynamics of an axially accelerating beam[J]. Archive of Applied Mechanics, 2012,82: 1169-1181.
[11] GHAYESH M H, AMABILI M. Steady-state transverse response of an axially moving beam with time-dependent axial speed[J]. International Journal of Non-Linear Mechanics, 2013, 49: 40-49.
[12] SIMPSON A. Transverse modes and frequencies of beams translating between fixed end supports[J].Journal of Mechanical Engineering Science, 1973, 15: 159-164.
[13] TANG Y Q, CHEN L Q, YANG X D. Natural frequencies modes and critical speeds of axially moving Timoshenko beams with different boundary conditions[J].International Journal of Mechanical Sciences, 2008, 50: 1448-1458.
[14] BOKAIAN A. Natural frequencies of beams under compressive axial loads[J]. Journal of Sound and Vibration,1988, 126: 49-65.
[15] BOKAIAN A. Natural frequencies of beams under tensile axial loads[J]. Journal of Sound and Vibration,1990, 142:481-498.
[16] POURTAKDOUST S H, ASSADIAN N. Investigation of thrust effect on the vibrational characteristics of flexible guided missiles[J].Journal of Sound and Vibration,2004, 272: 287-299.
[17] GHAYESH M H, KHADEM S E. Rotary inertia and temperature effects on non-linear vibration, steady-state response and stability of an axially moving beam with time-dependent velocity[J]. International Journal of Mechanical Sciences, 2008, 50: 389-404.
[18] 王波. 軸向運(yùn)動(dòng)三參數(shù)黏彈性梁弱受迫振動(dòng)的漸近分析[J].應(yīng)用數(shù)學(xué)和力學(xué),2012,33(6):771-780.
WANG Bo. Asymptotic analysis on weakly forced vibration of an axially moving viscoelastic beam constituted by standard linear solid model[J]. Applied Mathematics and Mechanics, 2012,33(6):771-780.
[19] 李成,姚林泉. 軸向運(yùn)動(dòng)超薄梁的非局部動(dòng)力學(xué)分析[J].工程力學(xué), 2013, 30(4): 366-372.
LI Cheng, YAO Linquan. Nonlocal dynamical analysis on axially travelling ultra-thin beam [J].Engineering Mechanics,2013, 30(4): 366-372.
[20] 張能輝,王建軍,程昌鈞. 軸向變速運(yùn)動(dòng)黏彈性弦線橫向振動(dòng)的復(fù)模態(tài)Galerkin方法[J]. 應(yīng)用數(shù)學(xué)和力學(xué),2007, 28(1): 1-8.
ZHANG Nenghui, WANG Jianjun, CHENG Changjun. Complex mode galerkin approach in transverse vibration of an axially accelerating viscoelastic string[J].Applied Mathematics and Mechanics, 2007, 28(1): 1-8.
[21] 陳紅永,陳海波, 張培強(qiáng). 軸向受壓運(yùn)動(dòng)梁橫向振動(dòng)特性的數(shù)值分析[J].振動(dòng)與沖擊,2014,33(24): 101-105.
CHEN Hongyong, CHEN Haibo, ZHANG Peiqiang. Numerical analysis of free vibration of an axially moving beam under compressive load [J]. Journal of Vibration and Shock, 2014, 33(24): 101-105.
[22] GUO X X, WANG Z M, WANG Y, et. al. Analysis of the coupled thermoelastic vibration for axially moving beam[J].Journal of Sound and Vibration, 2009, 325: 597-608.
[23] 邱吉寶,向樹紅,張正平. 計(jì)算結(jié)構(gòu)動(dòng)力學(xué)[M]. 合肥:中國(guó)科學(xué)技術(shù)大學(xué)出版社, 2009: 31-33.
[24] SUNG K J, CHARLES W B, ALFRED G S. Application of differential quadrature tostatic analysis of structural components [J].International Journal for Numerical Methods in Engineering, 1989, 28: 561-577.
[25] TIMOSHENKO S, YOUNG D H, WEAVER W. Vibration problems in engineering [M]. New York: John Wiley & Sons. Inc. Forth Edition. 432-434.
[26] SUN Y X, FANG D N, AI S K. Thermalelastic damping in micro-beam resonators [J]. International Journal of Solids and Structures,2006, 43: 3213-3229.
Dynamic characteristics of an axially moving Timoshenko beam under axial loads
CHEN Hongyong, LI Shangming
(Institute of Systems Engineering, CAEP, Sichuan 621999, China)
The effects of axial load on vibration characteristics of an axially moving Timoshenko beam were investigated. The governing differential equation for transverse vibration of the axially moving beam under axial load was established based on Timoshenko beam theory and Hamilton’s principle. The dynamic characteristics of the beam under axial load and pinned-pinned boundary conditions were investigated. The dimensionless frequencies of the beam versus axial load were calculated numerically using the differential quadrature method (DQM), and they were compared with the analytical solutions for verification. The results showed that under the condition of no load, the larger the slendness ratio of the beam, the easier the beam reaches unstable state; the beam reaches unstable state easier under compressive load than it does under tensile load; the critical speed of the beam decreases with increase in the absolute value of axial load. Through studying the influence factors and the relationship between the critical speed and the critical load of the beam, the results provided a guid for the design of axially moving systems under axial load.
axially moving Timoshenko beam; axial load; transverse vibration; differential quadrature method
國(guó)家自然科學(xué)基金面上項(xiàng)目(11272299)
2015-06-15 修改稿收到日期:2015-09-22
陳紅永 男,博士,助理研究員,1986年5月生
李上明 男,博士,副研究員,1978年7月生
O32
A
10.13465/j.cnki.jvs.2016.19.013