章希睿,劉志文,王亞昕,徐友根
(北京理工大學 信息與電子學院,北京 100081)
?
四元數(shù)域主特征空間投影魯棒自適應波束形成
章希睿,劉志文,王亞昕,徐友根
(北京理工大學 信息與電子學院,北京 100081)
針對常規(guī)四元數(shù)域波束形成器在模型誤差條件下的性能退化問題,提出基于拉伸三極子雙平行陣列的四元數(shù)域主特征空間投影魯棒自適應波束形成方法. 相比現(xiàn)有四元數(shù)域最劣態(tài)最優(yōu)化魯棒波束形成器,該方法無需求解具有高計算復雜度的凸優(yōu)化問題,且不涉及用戶參數(shù)的優(yōu)化設置,更易于實現(xiàn). 仿真結果表明,所提出的波束形成器可有效克服信號相消問題,能夠以較低的計算成本獲取優(yōu)于四元數(shù)域最劣態(tài)最優(yōu)化魯棒自適應波束形成器的性能,且其優(yōu)勢在高信噪比和短快拍條件下尤為顯著.
魯棒自適應波束形成;電磁矢量傳感器陣列;四元數(shù);主特征空間投影
自適應波束形成技術可廣泛應用于雷達、聲納、無線通信、語音信號處理以及超聲成像等領域,并已取得許多重要成果與進展[1-5]. 面對當今日益復雜多變的電磁環(huán)境,僅利用信號幅度、相位、頻率和波形等信息已遠遠不夠,將具有極化分集特性的電磁矢量傳感器應用于自適應波束形成技術中就顯得十分必要. 在文獻[6-7]中,交叉偶極子和三極子首次被應用于自適應陣列系統(tǒng),可有效抑制與期望信號具有相同或相近入射角的干擾源. 此后,基于全電磁矢量傳感器的自適應波束形成方法輸出信干噪比性能得到定量研究[8-9].
近年來,基于四元數(shù)的電磁矢量傳感器陣列信號處理方法受到廣泛關注[10-14]. 在信號波達方向估計方面,文獻[15-16]中首次基于雙分量傳感器陣列構建四元數(shù)信號模型,并在此基礎上提出四元數(shù)域多重信號分類方法;另外,旋轉不變信號參數(shù)估計技術亦被推廣至四元數(shù)域[17]. 在自適應波束形成方面,經典的最小方差無畸變波束形成器在四元數(shù)框架下得以研究[18-19]. 隨后,利用兩路干擾及噪聲對消思想,文獻[20]中提出一種具有聯(lián)合結構且能夠抑制單個強相干干擾的四元數(shù)域波束形成算法. 最近,最劣態(tài)最優(yōu)化波束形成器亦被推廣到四元數(shù)域[21-23].
本文研究基于主特征空間投影的四元數(shù)域魯棒自適應波束形成算法,由于僅涉及樣本協(xié)方差矩陣的特征分解運算,因而比上面提及的四元數(shù)域最劣態(tài)最優(yōu)化波束形成器更易于實現(xiàn).
考慮如圖1所示的由2N個拉伸三極子天線所構成的雙平行陣列,對陣列進行空域子陣劃分:子陣1包括所有位于y軸的偶極子,子陣2則包括所有位于y′軸的偶極子. 兩個子陣的輸出矢量可寫為
(1)
(2)
建立下述拉伸三極子雙平行陣列四元數(shù)信號模型:
(3)
利用K次獨立數(shù)據(jù)快拍,可得到四元數(shù)域陣列輸出樣本協(xié)方差矩陣為
(4)
(5)
利用拉格朗日乘數(shù)法,可得Q-Capon之最優(yōu)權矢量為
(6)
(7)
(8)
(9)
稱之為四元數(shù)域主特征空間投影魯棒自適應波束形成器(QPEP). 與現(xiàn)有波束形成器相比,QPEP只需要進行四元數(shù)特征分解,無需求解凸優(yōu)化問題,且不涉及用戶參數(shù)的選取.
采用由6個拉伸三極子構成的雙平行陣列(即N=3),其中拉伸間隔以及每兩個拉伸三極子間的距離均設置為信號半波長. 假設有1個期望信號與2個非相干干擾從y-z平面入射至陣列,此時所有入射信號的方位角均為90°,而俯仰角分別為5°、30°和60°;信干比固定為-20 dB;蒙特卡羅獨立實驗次數(shù)設置為100. 另外,在考慮導向矢量誤差的實驗中,將各種模型誤差歸結為真實導向矢量和標稱導向矢量之間的誤差矢量e,且其范數(shù)‖e‖為(0,2]區(qū)間里滿足均勻分布的隨機數(shù). 仿真實驗共比較3種四元數(shù)域波束形成器的性能:本文提出的QPEP算法、Q-Capon算法[18]以及用戶參數(shù)ε=2的QWCCB算法[21-22],其中求解QWCCB算法最優(yōu)權矢量采用了SeDuMi工具包[25]與YALMIP求解器[26];此外,最優(yōu)輸出SINR曲線“OPT-SINR”亦作為性能基準出現(xiàn)在仿真圖中.
3.1 波束方向圖
本實驗旨在驗證所提出的QPEP算法在面對模型失配誤差時的有效性. 為了繪制一維波束方向圖,假定入射信號的極化參數(shù)相同,僅存在俯仰角差異;本實驗中,輸入SNR和快拍數(shù)分別設置為10 dB和50次. 圖2所示的仿真結果表明,QPEP算法可有效解決模型失配問題,不僅在兩個干擾處(30°和60°)形成零陷,還在期望信號俯仰角5°處形成主瓣;相比之下,Q-Capon算法則發(fā)生了期望信號相消問題:在期望信號5°處亦形成零陷. QPEP算法面對模型失配誤差時的魯棒性主要歸因于基于四元數(shù)域的特征空間投影使得信號特征空間與噪聲特征空間具有更強的正交性. 除此之外,四元數(shù)域樣本協(xié)方差矩陣所隱含的數(shù)據(jù)平滑過程也是該法可應對模型失配誤差的又一因素.
3.2 輸出信干噪比曲線
通過比較各種方法在存在導向矢量誤差時的輸出信干噪比性能,本實驗驗證了QPEP算法在同時面對導向矢量誤差和協(xié)方差矩陣有限采樣誤差時具備的更高魯棒性. 圖3(a)和圖3(b)所示的仿真結果顯示,QPEP算法在魯棒性和收斂速度方面均為最優(yōu),其優(yōu)勢在高信噪比和短快拍條件下尤為明顯. 相比而言,Q-Capon算法在高信噪比條件下性能較差,這是因為當期望信號導向矢量不能精確已知時,Q-Capon算法會產生信號相消問題,隨著輸入信噪比的增加,信號相消問題越明顯,從而導致輸出信干噪比下降.
3.3 單次運行時間
本實驗旨在考察QPEP、QWCCB與Q-Capon 3種算法在相同硬件及軟件條件下(Intel i3雙核處理器,主頻3.30 GHz,內存4 GB;Matlab仿真軟件)的單次運行時間隨快拍數(shù)和傳感器個數(shù)變化的曲線. 圖4(a)顯示,當采用10個拉伸三極子時,QWCCB算法運行1次需要近0.3 s,而QPEP和Q-Capon算法運行1次則分別需要0.03 s和0.06 s;圖4(b)則說明,3種算法的計算復雜度主要取決于傳感器的個數(shù),幾乎不受快拍數(shù)的影響.
本文研究了基于拉伸三極子雙平行陣列的四元數(shù)域主特征空間投影魯棒自適應波束形成方法. 首先,與此前基于極化匹配子陣劃分的建模方法不同,本文以空域子陣劃分的方式構建新型四元數(shù)模型;所提出的四元數(shù)域主特征空間投影方法利用Q-Capon波束形成器權矢量屬于信號加干擾主特征空間的本征結構,對噪聲子空間泄漏現(xiàn)象進行截斷處理,最終達到提升波束形成器魯棒性的目的;該算法為無需求解凸優(yōu)化問題與選取用戶參數(shù)的硬約束類方法,較現(xiàn)有軟約束類方法更易于實現(xiàn).
[1] Monzingo R A,Miller T W. Introduction to adaptive arrays[M]. New York: Wiley,1980.
[2] Johnson D H,Dudgeon D E. Array signal processing: concepts and techniques,signal processing series[M]. Englewood Cliffs,USA: Prentice Hall,1993.
[3] Van Trees H L. Optimum array processing[M]. New York: Wiley,2002.
[4] Zhang L,Liu W,Li J. Low-complexity distributed beamforming for relay networks with real-valued implementation[J]. IEEE Transactions on Signal Processing,2013,61(20):5039-5048.
[5] Wang Z S,Li J,Wu R B. Time-delay-and time-reversal-based robust capon beamformers for ultrasound imaging[J]. IEEE Transactions on Medical Imaging,2005,24(10):1308-1322.
[6] Compton R T. On the performance of a polarization sensitive adaptive array[J]. IEEE Transactions on Antennas and Propagation,1981,29(5):718-725.
[7] Compton R T. The tripole antenna: an adaptive array with full polarization flexibility[J]. IEEE Transactions on Antennas and Propagation,1981,29(6):944-952.
[8] Nehorai A,Ho K C,Tan B T G. Minimum-noise-variance beamformer with an electromagnetic vector sensor[J]. IEEE Transactions on Signal Processing,1999,47(3):601-618.
[9] Xu Y G,Liu T,Liu Z W. Output SINR of MV beamformer with one EM vector sensor of non-identical electric and magnetic noise power[C]∥IEEE International Conference on Signal Processing. Beijing, China: IEEE Press, 2004:419-422.
[10] Reed I S,Mallett J D,Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems,1974,AES-10(6):853-863.
[11] Chang L,Yeh C C. Performance of DMI and eigenspace-based beamformers[J]. IEEE Transactions on Antennas and Propagation,1992,40(11):1336-1347.
[12] Feldman D D,Griffiths L J. A projection approach for robust adaptive beamforming[J]. IEEE Transactions on Signal Processing,1994,42(4):867-876.
[13] Li J,Stoica P. Robust adaptive beamforming[M]. Hoboken,New Jersey: Wiley,2005.
[14] Vorobyov S A,Gershman A B,Luo Z Q. Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing,2003,51(2):313-324.
[15] Miron S,Le Bihan N,Mars J I. High resolution vector-sensor array processing using quaternions[C]∥IEEE/SP 13th Workshop on Statistical Signal Processing. Bordeau,F(xiàn)rance: IEEE Press, 2005:918-923.
[16] Miron S,Le Bihan N,Mars J I. Quaternion-MUSIC for vector-sensor array processing[J]. IEEE Transactions on Signal Processing,2006,54(4):1218-1229.
[17] Gong X F,Xu Y G,Liu Z W. Quaternion ESPRIT for direction finding with a polarization sensitive array[C]∥IEEE International Conference on Signal Processing. Beijing, China: IEEE, 2008:378-381.
[18] Gou X M,Xu Y G,Liu Z W,et al. Quaternion-Capon beamformer using crossed-dipole arrays[C]∥IEEE International Symposium on Microwave,Antenna,Propagation,and EMC Technologies for Wireless Communications. Beijing, China: IEEE, 2011:34-37.
[19] Tao J W,Chang W X. The MVDR beamformer based on hypercomplex processes[C]∥IEEE International Conference on Computer Science and Electronics Engineering. Hangzhou, China: IEEE, 2012:273-277.
[20] Tao J W,Chang W X. A novel combined beamformer based on hypercomplex processes[J]. IEEE Transactions on Aerospace and Electronic Systems,2013,49(2):1276-1289.
[21] Zhang X R,Liu W,Xu Y G,et al. Quaternion-based worst case constrained beamformer based on electromagnetic vector-sensor arrays[C]∥IEEE International Conference on Acoustics,Speech,and Signal Processing. [S.l.]: IEEE, 2013:4149-4153.
[22] Zhang X R,Liu W,Xu Y G,et al. Quaternion-valued robust adaptive beamformer for electromagnetic vector-sensor arrays with worst-case constraint[J]. Signal Processing. Vancouver, Canada: IEEE, 2014,104:274-283.
[23] Zhang X R,Liu Z W,Liu W,et al. Quasi-vector-cross-product based direction finding algorithm with a spatially stretched tripole[C]∥IEEE Region 10 Conference (TENCON). Xi’an,China: IEEE,2013:1-4.
[24] Lee H C. Eigenvalues and canonical forms of matrices with quaternion coefficients[C]∥Proceedings of Royal Irish Academy. Ireland: Royal Zrish Acaderny, 1949(52):253-260.
[25] Sturm J F. Using SeDuMi 1.02,a MATLAB toolbox for optimization over symmetric cones[J]. Optimization Methods and Software,1998,11(1-4):625-653.
[26] Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB [C]∥IEEE International Symposium on Computer Aided Control Systems Design. Taipei,China: IEEE, 2004:284-289.
(責任編輯:劉芳)
Quaternion-Valued Robust Adaptive Beamforming Based on Principal Eigenspace Projection
ZHANG Xi-rui,LIU Zhi-wen,WANG Ya-xin,XU You-gen
(School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China)
Based on the principal eigenspace projection in the quaternion domain,a robust adaptive beamforming scheme was proposed with a dual-parallel array of spatially stretched tripole antennas,to tackle the performance degradation of quaternion-based adaptive beamformers in the presence of model mismatch errors. Compared with the quaternion-based worst-case constrained beamformer,the presented method does not need convex optimization and user-parameter selection. Numerical simulations show that the proposed method can tackle the signal self-nulling problem effectively,and significantly outperforms the quaternion-based worst-case constrained beamformer in the case of high SNRs and small sample sizes with reduced computational complexity.
robust adaptive beamforming; electromagnetic vector-sensor array; quaternion; principal eigenspace projection
2015-03-21
國家自然科學基金資助項目(61331019,61490691)
章希睿(1984—),男,博士生,E-mail:xrzhang@bit.edu.cn.
劉志文(1962—),男,教授,博士生導師,E-mail:zwliu@bit.edu.cn.
TN 971.1
A
1001-0645(2016)07-0755-05
10.15918/j.tbit1001-0645.2016.07.018