郭婷婷,徐友根*
北京理工大學(xué) 信息與電子學(xué)院,北京 100081
非圓特征恢復(fù)特征空間投影魯棒波束形成
郭婷婷,徐友根*
北京理工大學(xué) 信息與電子學(xué)院,北京 100081
提出了一種利用非圓特征恢復(fù)思想的魯棒波束形成方法。該方法在特征空間投影技術(shù)的基礎(chǔ)上,進(jìn)一步利用波束形成器輸出的非圓特征參數(shù)構(gòu)造代價(jià)函數(shù),通過角度搜索使代價(jià)函數(shù)最大化來修正主瓣中心指向,在保證魯棒性的同時(shí)盡可能提升波束形成器的輸出性能。同時(shí),該方法不需要設(shè)置用戶參數(shù),且適用于任意階非圓信號(hào),對(duì)于旁瓣干擾信號(hào)的非圓特性不敏感,具有廣泛的應(yīng)用背景。最后分別針對(duì)二階非圓信號(hào)情形和高階非圓信號(hào)情形進(jìn)行了仿真,仿真結(jié)果驗(yàn)證了該方法的有效性和優(yōu)越性。
魯棒波束形成;特征空間投影;非圓特征恢復(fù);角度搜索;高階非圓信號(hào)
魯棒自適應(yīng)波束形成技術(shù)的主要目的是避免系統(tǒng)和模型誤差(例如期望信號(hào)導(dǎo)向矢量誤差、有限抽樣效應(yīng)等)引起的期望信號(hào)相消現(xiàn)象。由于魯棒波束形成在雷達(dá)、聲吶、無線通信、生物醫(yī)學(xué)以及地震探測(cè)等領(lǐng)域都有廣泛的應(yīng)用[1-7],針對(duì)各種實(shí)際場(chǎng)合中環(huán)境、信號(hào)和陣列模型誤差的魯棒自適應(yīng)波束形成技術(shù)一直是陣列信號(hào)處理領(lǐng)域的研究熱點(diǎn)[8-14]。其中,對(duì)角加載技術(shù)是得到最廣泛應(yīng)用的一種魯棒自適應(yīng)波束形成方法,Vorobyov、Li和Lorenz等相繼提出來能夠根據(jù)導(dǎo)向矢量不確定集的范圍來選取最優(yōu)參數(shù)的最差情況性能最優(yōu)化(Worse-Case Performance Optimization,WCPO)[3]、魯棒 Capon波束形成(Robust Capon Beamforming,RCB)[4]和魯棒最小方差波束形成 (Robust Minimum Variance Beamforming,RMVB)[7]等方法。由于這些方法需要知道與期望信號(hào)導(dǎo)向矢量不確定集范圍相關(guān)的先驗(yàn)知識(shí)來確定用戶參數(shù),實(shí)用性仍然值得探討,因此研究者們開始關(guān)注無需用戶參數(shù)的“全自動(dòng)”對(duì)角加載魯棒波束形成方法,如基于嶺回歸法(Hoerl,Kennard,and Baldwin,HKB)[8]、基于收縮運(yùn)算的廣義線性聯(lián)合(General Linear Combination,GLC)[9]、基于功率匹配思想的半路(Midway,MW)[10]等方法。但總體而言,這些方法性能相比需用戶參數(shù)的RCB、WCPO等方法較差,因此,研究性能更好的無需用戶參數(shù)的全自動(dòng)對(duì)角加載方法仍具有重要的研究意義。
近年來,非圓信號(hào)廣泛應(yīng)用在實(shí)際系統(tǒng)中,利用信號(hào)非圓特性的波束形成方法受到了較多的關(guān)注。實(shí)際中常用信號(hào)一般都具有Q(Q≥2)階非圓特性,例如調(diào)幅(Amplitude Modulation,AM),二進(jìn)制相移鍵控(Binary Phase Shift Keying,BPSK)、幅 度 鍵 控 (Amplitude Shift Keying,ASK)、正交振幅調(diào)制(Quadrate Amplitude Modulation,QAM)以及高斯最小頻移鍵控(Gaussian Minimum Shift Keying,GMSK)信號(hào)等,因此利用信號(hào)非圓特征的波束形成方法具有廣泛的實(shí)際應(yīng)用背景,然而現(xiàn)有研究多集中在盲波束形成[15-16]和二階 非 圓 信 號(hào)[17-21]。 例 如 文 獻(xiàn) [21]提出了一類非圓特征恢復(fù)對(duì)角加載(Noncircularity Restoral for Diagonal Loading,NRDL)方法,該方法無需用戶參數(shù),性能較RCB、WCPO等方法更優(yōu)越,但是當(dāng)干擾非圓率較大時(shí)該方法性能受損。這些方法對(duì)于多進(jìn)制數(shù)字相位調(diào)制(Multiple phase shift keying MPSK)、QAM 等高階非圓信號(hào)情形不再適用,應(yīng)用場(chǎng)合都受到一定限制。近幾年,對(duì)于調(diào)制信號(hào)非圓特性的研究取得了新的進(jìn)展[22-25],非圓特征的概念擴(kuò)展至高階,相應(yīng)的高階非圓特征參數(shù)也有了嚴(yán)格定義[22-23]。
本文提出了一種基于任意階(Q≥2階)非圓信號(hào)的特征空間投影(Noncircularity Restoral Eigenspace Projection,NREP)魯棒波束形成方法。其主要思想是先對(duì)存在誤差的導(dǎo)向矢量向信號(hào)加干擾子空間進(jìn)行投影,并將投影后獲得的矢量作為估計(jì)的信號(hào)的導(dǎo)向矢量,進(jìn)而利用角度搜索修正期望信號(hào)入射角度,能夠在保證魯棒性的同時(shí)盡可能提升波束形成器輸出性能,應(yīng)用背景也不再局限于BPSK、非均衡四相移鍵控(Unbalanced Quadrature Phase Shift Keying,UQPSK)等二階非圓信號(hào),而是擴(kuò)展至正交相移鍵控(Quadrature Phase Shift Keying,QPSK)、QAM等更高階非圓信號(hào),因此更具實(shí)用意義。
首先,介紹高階非圓特征參數(shù)的定義。對(duì)于一個(gè)零均值復(fù)隨機(jī)信號(hào)s(t),其Q階非圓特征參數(shù)為
接著,考慮一個(gè)由N個(gè)陣元組成的均勻線陣,假設(shè)有M+1個(gè)遠(yuǎn)場(chǎng)窄帶信號(hào)入射至該陣列,其中第一個(gè)信號(hào)s0(t)為非圓期望信號(hào),入射角度為θ0;其他M 個(gè)信號(hào)為任意非圓特性的干擾信號(hào),入射角度為,則陣列的輸出矢量為
式中:a(θ0)為期望信號(hào)導(dǎo)向矢量;a(θm)為第m 個(gè)干擾信號(hào)的導(dǎo)向矢量;n(t)為噪聲矢量。為簡(jiǎn)單起見,一般記a(θ0)為a0,a(θm)為am。由于是均勻線陣,有
12N為陣元位置坐標(biāo)。另外除非特別說明,一般假設(shè)期望信號(hào)、干擾信號(hào)、噪聲均為互不相關(guān)的零均值隨機(jī)過程,且假設(shè)噪聲為加性(二階)圓白噪聲。
波束形成器的輸出可表示為式中:w為加權(quán)向量。
NREP算法是在基于特征空間投影(Eeigenspace Projection,EP)魯棒波束形成算法的基礎(chǔ)上提出,因此首先介紹EP算法的原理。
已知,Capon波束形成器加權(quán)向量的設(shè)計(jì)準(zhǔn)則為
對(duì)Rx進(jìn)行矩陣特征值分解可得
式中:Us=[u1u2… uM+1],Un=[uM+2uM+3… uN],Us列向量為大特征值對(duì)應(yīng)的特征矢量,張成的空間為信號(hào)加干擾子空間;Un列向量為小特征值對(duì)應(yīng)的特征矢量,張成的空間為噪聲子空間;Λs列向量為大特征值對(duì)應(yīng)的特征值;Λn列向量為小特征值對(duì)應(yīng)的特征值。將式(7)代入式(6),則Capon的最優(yōu)權(quán)矢量可寫為
為了消除導(dǎo)向矢量失配引起的一系列問題,將存在誤差的導(dǎo)向矢量向信號(hào)加干擾子空間進(jìn)行投影,將投影后獲得的矢量作為估計(jì)的信號(hào)的導(dǎo)向矢量。定義投影后的導(dǎo)向矢量為
至此,即可獲得EP算法的最優(yōu)加權(quán)矢量為式中:[θ1,θ2]為包含期望信號(hào)實(shí)際方向θ0在內(nèi)的一個(gè)角度區(qū)域,需滿足干擾方向θm[θ1,θ2],m=1,2,…,M,[θ1,θ2]的區(qū)域范圍可利用期望信號(hào)標(biāo)稱方位角(與θ0之間存在誤差)來確定,例如令可通過實(shí)際系統(tǒng)的等效指向誤差范圍來確定。
接著,考慮利用非圓特征恢復(fù)的思想確定期望信號(hào)方位角,利用使波束形成器輸出非圓率盡可能地接近期望信號(hào)的非圓率準(zhǔn)則來建立代價(jià)函數(shù),有
再根據(jù)式(1),可以得到式(12)中Q 階非圓參數(shù)的估計(jì)為
式中:
由式(12)求得珋θ0后,代入式(10),可得NREP方法的最優(yōu)權(quán)矢量為
考慮一個(gè)陣元間距為信號(hào)半波長(zhǎng)的均勻線陣,陣元數(shù)為10,期望信號(hào)入射角的標(biāo)稱值為0°,干擾信號(hào)入射方向分別為30°和-40°,信干比(SINR)為-20dB。
實(shí)驗(yàn)1 期望信號(hào)為二階非圓信號(hào)時(shí),波束形成器輸出信干噪比(Output Signal to Interference plus Noise Ratio,OSINR)性能比較。
令期望信號(hào)非圓率為1,干擾信號(hào)非圓率分別為1和0。假設(shè)期望信號(hào)實(shí)際入射角度為5°(指向誤差為5°),角度搜索區(qū)域均為[-5°,5°](Δθ=5°),搜索步進(jìn)為0.2°,固定快拍數(shù)(Snapshot Number)為100,波束形成器的輸出信干噪比隨輸入干信噪比(Input Signal to Interference plus Noise Ratio,ISINR)變化趨勢(shì)如圖1(a)所示;固定信噪比為20dB,波束形成器輸出信干噪比隨快拍數(shù)變化趨勢(shì)如圖1(b)所示。
圖1 ρ0=1、ρ1=1和ρ2=0時(shí)輸出信干噪比(OSINR)性能變化曲線Fig.1 Output signal to interference plus noise ratio(OSINR)comparison whenρ0=1,ρ1=1,ρ2=0
實(shí)驗(yàn)2 期望信號(hào)為高階非圓信號(hào)時(shí),波束形成器輸出信干噪比性能比較。
首先,令期望和干擾信號(hào)均為QPSK信號(hào),其余條件同上。波束形成器的輸出信干噪比隨輸入信噪比變化趨勢(shì)如圖2(a)所示;波束形成器輸出信干噪比隨快拍數(shù)變化趨勢(shì)如圖2(b)所示。
然后,令期望信號(hào)為QPSK信號(hào),干擾信號(hào)分別為QPSK信號(hào)和BPSK信號(hào)。波束形成器的輸出信干噪比隨輸入信噪比變化趨勢(shì)如圖3(a)所示;波束形成器輸出信干噪比隨快拍數(shù)變化趨勢(shì)如圖3(b)所示。
最后,令期望信號(hào)二階非圓率為0.5,干擾信號(hào)二階非圓率分別為1和0。波束形成器的輸出信干噪比隨輸入信噪比變化趨勢(shì)如圖4(a)所示;波束形成器輸出信干噪比隨快拍數(shù)變化趨勢(shì)如圖4(b)所示。
圖2 ρ0=ρ1=ρ2=0時(shí)OSINR性能變化曲線Fig.2 OSINR comparison whenρ0=ρ1=ρ2=0
圖3 ρ0=0、ρ1=0和ρ2=1時(shí)OSINR性能變化曲線Fig.3 OSINR comparison whenρ0=0,ρ1=0,ρ2=1
圖4 ρ0=0.5、ρ1=1和ρ2=0時(shí)OSINR性能變化曲線Fig.4 OSINR comparison whenρ0=0.5,ρ1=1,ρ2=0
綜上仿真結(jié)果表明,NREP方法相對(duì)RCB、NRDL等方法在二階非圓和高階非圓條件下都有明顯的性能優(yōu)勢(shì),同時(shí)波束形成器的輸出性能對(duì)干擾的非圓特性不敏感。
1)本文提出的NREP方法與NRDL、RCB等方法相比,雖然都能應(yīng)用于高階非圓信號(hào),但輸出性能優(yōu)勢(shì)顯著。
2)與僅利用期望信號(hào)二階非圓特性的波束形成方法相比,NREP可有效應(yīng)用于高階非圓信號(hào),且對(duì)于旁瓣干擾信號(hào)的非圓特性不敏感,具有更加廣泛的應(yīng)用前景。
3)與EP方法相比,輸出性能的提升是由于利用非圓特征恢復(fù)準(zhǔn)則提高了期望信號(hào)導(dǎo)向矢量的可靠性,更好地解決了指向誤差所帶來的影響,因此對(duì)于期望信號(hào)存在較大指向誤差的場(chǎng)合,NREP方法會(huì)有更明顯的性能優(yōu)勢(shì)。
4)由于需利用高階統(tǒng)計(jì)信息,需較大采樣數(shù)保證統(tǒng)計(jì)信息的準(zhǔn)確性,因此NREP方法更適用于采樣數(shù)和指向誤差較大的環(huán)境。
[1] GERSHMAN A B.Robust adaptive beamforming in sensor arrays[J].International Journal of Electronics and Communications,1999,53(6):305-314.
[2] GERSHMAN A B.Robust adaptive beamforming:An overview of recent trends and advances in the field [C]/Proceedings of International Conference on Antenna Theory and Techniques,2003:30-35.
[3] VOROBYOV S A,GERSHMAN A B,LUO Z Q.Robust adaptive beamforming using worst-case performance optimization:A solution to the signal mismatch problem [J].IEEE Transactions on Signal Processing,2003,51(2):313-324.
[4] LI J,STOICA P,WANG Z S.On robust Capon beamforming and diagonal loading[J].IEEE Transactions on Signal Processing,2003,51(7):1702-1715.
[5] LORENZ R G,BOYD S P.Robust beamforming in GPS arrays[C]/Proceedings of the Institute of Navigation,2001:409-427.
[6] LORENZ R G,BOYD S P.Robust minimum variance beamforming[C]/37th Asilomar Conference on Signals,Systems,and Computers,2003:1345-1352.
[7] LORENZ R G,BOYD S P.Robust minimum variance beamforming[J].IEEE Transactions on Signal Processing,2005,53(5):1684-1696.
[8] SENLEN Y,ABRAHAMSSON R,STOICA P.Automatic robust adaptive beamforming via ridge regression[J].Signal Processing,2007,2(1):33-49.
[9] DU L,STOICA P.Fully automatic computation of diagonal loading levels for robust adaptive beamforming [J].IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):449-458.
[10] STOICA P,LI J,TAN X.On spatial power spectrum and signal estimation using the Pisarenko framework [J].IEEE Transactions on Signal Processing,2008,56(10):5109-5119.
[11] ARASH K,VOROBYOV S A,HASSANIEN A.Robust adaptive beamforming based on steering vector estimation with as little as possible prior information [J].IEEE Transactions on Signal Processing,2012,60 (6):2974-2987.
[12] GU Y,LESHEM A.Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation [J].IEEE Transactions on Signal Processing,2012,60(7):3881-3885.
[13] JIA W M,JIN W,ZHOU S H,et al.Robust adaptive beamforming based on a new steering vector estimation algorithm [J].Signal Processing,2013,93(9):2539-2542.
[14] GU Y J,GOODMAN N A,HONG S H,et al.Robust adaptive beamforming based on interference covariance matrix sparse resconstruction [J].Signal Processing,2014,96(5):375-381.
[15] GALY J,ADNET C.Blind separation of non-circular sources[C]/Proceedings of 10th IEEE Workshop on Statistical Signal and Array Processing.Piscataway,NJ:IEEE Press,2000:315-318.
[16] XU Y G,LIU Z W.Noncircularity restoral for multi-antenna adaptive blind beamforming [J].Multidimensional Systems and Signal Processing,2010,21(2):133-160.
[17] CHEVALIER P,BLIN A.Widely linear MVDR beamformers for the reception of an unknown signal corrupted by noncircular interferences[J].IEEE Transactions on Signal Processing,2007,55(11):5323-5336.
[18] WANG G H,LIE J P,SEE C-M S.A robust approach to optimum widely linear MVDR beamformer[C]/Proceedings of IEEE Conference on Acoustics,Speech and Signal Processing (ICASSP).Piscataway,NJ:IEEE Press,2012:2593-2596.
[19] STEINWANDT J,HAARDT M.Optimal widely-linear distributed beamforming for relay networks[C]/Proceedings of IEEE Conference on Acoustics,Speech and Signal Processing (ICASSP).Piscataway,NJ:IEEE Press,2013:4215-4241.
[20] XU D Y,HUANG L,XU X,et al.Widely linear MVDR beamformers for noncircular signals based on time-averaged second-order noncircularity coefficient estimation[J].IEEE Transactions on Vehicular Technology,2013,62(7):3219-3227.
[21] XU Y G,MA J Y,LIU Z W,et al.A class of diagonally loaded robust capon beamformers for noncircular signals of interest[J].Signal Processing,2014,94(1):670-680.
[22] ERIKSSON J,OLLILA E,KOIVUNEN V.Essential statistics and tools for complex random variables [J].IEEE Transactions on Signal Processing,2010,58(10):5400-5408.
[23] OLLILA E,ERIKSSON J,KOIVUNEN V.Complex elliptically symmetric random variables—generation,characterization,and circularity test[J].IEEE Transactions on Signal Processing,2011,59(1):58-69.
[24] RYTEL-ANDRIANIK R.On circularity of complex-valued radar signals [C]/Signal Processing Symposium,2013:1-6.
[25] 馬靜艷.利用信號(hào)非圓特征的魯棒波束形成算法研究[D].北京:北京理工大學(xué),2014:76-87.MA J Y.Noncircularity exploitation in roubst adaptive beamforming[D].Beijing:Beijing Institute of Technology,2014:76-87(in Chinese).
Noncircularity restoral eigenspace projection robust beamforming
GUO Tingting,XU Yougen*
School of Information and Electronics,Beijing Institute of Technology,Beijing 100081,China
A new robust beamformer exploiting noncircularity restoral of desired signal is proposed.The new approach is based on the eigenspace projection,further uses the noncircularity coefficient of the beamformer output to construct the cost function and modifies the pointing direction of the main beam via azimuth searching to maximize the noncircularity coefficient of the beamformer output,so that it could improve the output performance of beamformer while the robustness is guaranteed.The new method doesn’t need to set user parameters,and it is applicable for the Qth(Q≥2)order noncircular modulated signal.At the same time,the new method is not sensitive to the noncircularity of the sidelobe interference signal,which is widely used in practice.At the end of this paper,the simulations for the case of second order noncircular signal and the case of high order noncircular signal were carried out,and the results verify the validity and superiority of the proposed approach.
robust beamforming;eigenspace projection;noncircularity restoral;azimuth searching;high-order noncircular signal
2015-10-12;Revised:2015-11-19;Accepted:2015-12-31;Published online:2016-01-06 15:55
URL:www.cnki.net/kcms/detail/11.1929.V.20160106.1555.010.html
s:National Natural Science Foundation of China(61331019,61490691)
V219;TN911.7
A
1000-6893(2016)09-2833-06
10.7527/S1000-6893.2015.0366
2015-10-12;退修日期:2015-11-19;錄用日期:2015-12-31;網(wǎng)絡(luò)出版時(shí)間:2016-01-06 15:55
www.cnki.net/kcms/detail/11.1929.V.20160106.1555.010.html
國(guó)家自然科學(xué)基金 (61331019,61490691)
*通訊作者.Tel.:010-68912606 E-mail:yougenxu@bit.edu.cn
郭婷婷,徐友根.非圓特征恢復(fù)特征空間投影魯棒波束形成[J].航空學(xué)報(bào),2016,37(9):28332-838.GUOT T ,XUY G .Noncircularity restoral eigenspace projection robust beamforming[J].Acta Aeronautica et Astronautica Sinica,2016,37(9):28332-838.
郭婷婷 女,碩士。主要研究方向:陣列信號(hào)處理。Tel:010-68912606
E-mail:gtt_2016@163.com
徐友根 男,博士,副教授,博士生導(dǎo)師。主要研究方向:陣列信號(hào)處理。
Tel:010-68912606
E-mail:yougenxu@bit.edu.cn
*Corresponding author.Tel.:010-68912606 E-mail:yougenxu@bit.edu.cn