• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      BOUNDEDNESS FOR SOME SCHRDINGER TYPE OPERATORS ON MORREY SPACES WITH VARIABLE EXPONENT RELATED TO CERTAIN NONNEGATIVE POTENTIALS

      2016-12-07 08:58:56WANGMinSHULishengQUMengCHENGMeifang
      數(shù)學雜志 2016年6期
      關鍵詞:交換子安徽師范大學王敏

      WANG Min,SHU Li-sheng,QU Meng,CHENG Mei-fang

      (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

      WANG Min,SHU Li-sheng,QU Meng,CHENG Mei-fang

      (School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

      In this paper,the boundedness of some Schrdinger type operators and the commutators is considered.Using the boundedness of them on Lpspace,we obtain the boundedness of some schrdinger type operators and the commutators on Morrey with variable exponents.

      Morrey spaces;commutators;Schrdinger type operators;variable exponent

      2010 MR Subject Classification:42B20;42B35

      Document code:AArticle ID:0255-7797(2016)06-1149-11

      1 Introduction

      In this paper,we consider the schrdinger differential operator

      where V(x)is a nonnegative potential belonging to the reverse Hlder class Bqfor q≥

      A nonnegative locally Lqintegrable function V(x)on Rnis said to belong to Bq(q>1) if there exists a constant C>0 such that the reverse Hlder inequality

      holds for every ball in Rn,see[1].

      Shen[1]established Lpestimates for schrdinger type operators with certain potentials.Kurata,Nishigaki and Sugano[2]considered the boundedness of integral operators on generalized Morrey spaces and its application to Schrdinger operators.Recently,paper[3] by Tang and Dong proved the boundedness of some Schrdinger type operators on Morrey spaces related to certain nonnegative potentials.

      It is well known that function spaces with variable exponents were intensively studied during the past 20 years,due to their applications to PDE with non-standard growth conditions and so on,we mention e.g.[4,5].A great deal of work was done to extend the theory of potential,singular type operators and their commutators on the classical Lebesgue spaces to the variable exponent case(see[6-8]).Also,many results about potential,singular type operators and their commutators were studied on Morrey Spaces with variable exponent(see [9-12]).Hence,it will be an interesting problem whether we can establish the boundedness of some schrdinger type operators on Morrey spaces with variable exponent related to certain nonnegative potentials.The main purpose of this paper is to answer the above problem.

      To meet the requirements in the next sections,here,the basic elements of the theory of the Lebsegue spaces with variable exponent are briefly presented.

      Let p(·):Rn→[1,∞)be a measurable function.The variable exponent Lebesgue space Lp(·)(Rn)is defined by

      Lp(·)(Rn)is a Banach space with the norm defined by

      We denote p-:=ess

      Let P(Rn)be the set of measurable function p(·)on Rnwith value in[1,∞)such that 1<p-≤p(·)≤p+<∞.

      where the supremum is taken over all balls B containing x.B(Rn)is the set of p(·)∈P(Rn) satisfying the condition that M is bounded on Lp(·)(Rn).

      We say a function p(·):Rn-→R is locally log-Hlder continuous at the origin,if there exists a constant C such that

      for all x∈Rn.If,for some p(∞)∈R and C>0,there holds

      for all x∈Rn,then we say p(·)is log-Hlder continuous at infinity.

      Definition 1.1[9]For any p(·)∈B(Rn),let kp(·)denote the supremum of those q>1 such that p(·)/q∈B(Rn).Let ep(·)be the conjugate of kp'(·).

      Definition 1.2[9]Let p(·)∈L∞(Rn)and 1<p(x)<∞.A Lebesgue measurable function u(x,r):Rn×(0,∞)→(0,∞)is said to be a Morrey weight function for Lp(·)(Rn) if there exists a constant C>0 such that for any x∈Rnand r>0,u fulfills

      We denote the class of Morrey weight functions by Wp(·).

      Next we define the Morrey spaces with variable exponent related to the nonnegative potential V.

      For x∈Rn,the function mV(x)is defined by

      Definition 1.3 Let p(·)∈B(Rn),u(x,r)∈Wp(·)and-∞<α<∞.For f∈(Rn)and V∈Bq(q>1),we say the Morrey spaces with variable exponent related to the nonnegative potential V is the collection of all function f satisfying

      In particular,when α=0 or V=0,the spaces(Rn)is the Morrey spaces with variable exponent Mp(·),u(Rn)introduced in[9].It is easy to see thatMp(·),u(Rn)for α>0 and Mp(·),u(Rn)?(Rn)for α<0.If p(x)is a constant, u(x,r)=rλand λ∈[0,n/p),we have

      Now it is in this position to state our results.

      for any k∈N,where Ckdenotes a positive constant depend on k.In the rest of this paper, we always assume that T is one of the schrdinger type operators?(-△+V)-1?,?(-△+ V)-1/2and(-△+V)-1/2?with V∈Bn.

      Theorem 1.1 Suppose V∈Bn,-∞<α<∞,p(x)∈B(Rn).If u∈Wp(·),then

      Let b∈BMO(see its definition in[14]),we define the commutator of T by

      Theorem 1.2 Suppose V∈Bn,b∈BMO,-∞<α<∞,p(x)∈B(Rn).If

      then

      Remark 1 We can easily show that u fulfills(1.3)implies u∈Wp(·)

      Next,we consider the boundedness of fractional integrals related to schrdinger operators.

      The L-fractional integral operator is defined by

      By Lemma 3.3 in[15],one can get the kernel Kβ(x,y)of Iβsatisfy the following inequality

      for any k∈N and 0<β<n.

      Theorem 1.3 Suppose V∈Bn/2,-∞<α<∞,p(x),q(x)∈B(Rn)satisfy p+<If exists q0satisfying

      Remark 2 Wq(·)?Wp(·).Indeed,for j≥0,by inequality(2.3)in the next section,we have

      Therefore,using inequality(1.1),we obtain Wq(·)?Wp(·).

      Let b∈BMO,we define the commutator of Iβby[b,Iβ]f=bIβf-Iβ(bf).

      Theorem 1.4 Suppose V∈Bn/2,b∈BMO,-∞<α<∞,p(·)∈

      If p+<and

      then

      For brevity,C always means a positive constant independent of the main parameters and may change from one occurrence to another.B(x,r)={y∈Rn:|x-y|<r},χBkbe the characteristic function of the set Bkfor k∈Z.|S|denotes the Lebesgue measure of S.The exponent p'(x)means the conjugate of p(x),that is,1/p'(x)+1/p(x)=1.

      2 Proofs of Theorems

      In order to prove our result,we need some conclusions as follows.

      Lemma 2.1[16]Let p(·)∈P(Rn).Then the following conditions are equivalent:

      (1)p(·)∈B(Rn);

      (2)p'(·)∈B(Rn);

      (3)p(·)/q∈B(Rn)for some 1<q<p-;

      (4)(p(·)/q)'∈B(Rn)for some 1<q<p-.

      Lemma 2.1 ensures that kp(·)is well-defined and satisfies 1<kp(·)≤p-.Moreover, p+≥ep(·).

      Lemma 2.2[17]If p(·)∈P(Rn),then for all f∈Lp(·)(Rn)and all g∈Lp'(·)(Rn)we have

      where rp:=1+1/p--1/p+.

      Lemma 2.3[6]If p(·)∈B(Rn),then there exists C>0 such that for all balls B in Rn,

      Lemma 2.4[9]Let p(x)∈B(Rn)and 1<p-≤p+<∞.There exist C1,C2>0 such that for any B∈B,

      Lemma 2.5[9]Let p(x)∈B(Rn).For any 1<q<kp(·)and 1<s<kp'(·),there exist constants C1,C2>0 such that for any x0∈Rnand r>0,we have

      The next lemma can be get by inequality(1.4)and Corollary 2.12 in[6].

      Lemma 2.6[6]Let β>0,p(x),q(x)∈P(Rn)satisfy p+<.If exists q0satisfyingfor some C>0.

      Theorem 1 in[8]and inequality(1.4)are rewrited as the following lemma.

      Lemma 2.7 Suppose that p(·)∈.then we have

      for f∈Lp(·)(Rn)and b∈BMO(Rn).

      Using Corollary 2.5 and Corollary 2.10 in[6]and the inequality(1.2),we can get the following result.

      Lemma 2.9[18]Let k be a positive integer.Then we have that for all b∈BMO(Rn) and all i,j∈Z with i>j,

      Lemma 2.10[1,3]Suppose V∈Bqwith q≥n/2.Then there exist positive constants C and k0such that

      (1)mV(x)~mV(y)if|x-y|≤

      (2)mV(y)≤C(1+|x-y|mV(x))kOmV(x);

      (3)mV(y)≥

      We will give the proofs of Theorems 1.3 and 1.4 below.The arguments for Theorems 1.1 and 1.2 are similar,we omit the details here.

      Proof of Theorem 1.3 Without loss of generality,we may assume that α<0.Let f∈Mp(·),u.For any z∈Rnand r>0,we write f(x)=f0(x)+fj(x),where f0= fχB(z,2r),fj=fχB(z,2j+1r)B(z,2jr)for j≥1.Hence we have

      By Lemma 2.6,we obtain

      Because inequality(1.1)and Lemma 2.5 imply that u(x,r)≥Cu(x,2r).Therefore,we obtain

      Furthermore,for any j≥1,x∈B(z,r)and y∈B(z,2j+1r)B(z,2jr),we note that |x-y|≥|y-z|-|x-z|>C2jr.Thus we get

      Using Lemma 2.10,we derive the estimate

      Thus we get that

      Lemma 2.2 ensures that

      for some constant C>0.

      Subsequently,taking the norm‖·‖Lq(·)(Rn),we have

      Applying Lemma 2.3 with B=B(z,2j+1r),we obtain

      Using the above inequality on(2.2),we obtain

      In view of the fact that for any ball B,we have

      Lemma 2.4 implies that

      for some constants C1>C2>0 independent of B.

      Hence using(2.3)with B=B(z,2j+1r),we have

      Therefore

      Thus we arrive at the inequality

      Taking k=(-[α]+1)(k0+1),we obtain

      As u∈Wq(·)and α<0,we have

      Proof of Theorem 1.4 Without loss of generality,we may assume that α<0.Let f∈Mp(·),u.For any z∈Rnand r>0,write f(x)=f0(x)+fj(x),where f0=fχB(z,2r), fj=fχB(z,2j+1r)B(z,2jr)for j≥1.Hence we have

      First,we estimate D1.

      Lemma 2.7 shows that‖[b,Iβ]f0‖Lq(·)(Rn)≤C‖b‖BMO‖f0‖Lp(·)(Rn).Thus,we find that

      because inequality(1.1)and Lemma 2.5 imply that u(z,2r)≤Cu(z,r).

      Next,we estimate D2.

      For any j≥1,x∈B(z,r)and y∈B(z,2j1r)B(z,2jr),we note that|x-y|≥|y-z|-|x-z|>C2jr.Using inequality(2.1)and Lemma 2.2,we obtain

      Subsequently,taking the norm‖·‖Lq(·)(Rn)and using Lemma 2.9,we have

      The arguments here are quite similar to the proof of Theorem 1.3,so we have

      Taking k=(-[α]+1)(k0+1),we obtain

      As u fulfills(1.3)and α<0,we obtain

      Consequently we have proved Theorem 1.4.

      References

      [1]Shen Z.Lpestimates for Schrdinger operators with certain potentials[J].Ann.Inst.Fourier(Grenoble),1995,45(2):513-546.

      [2]Kurata K,Nishigaki S,Sugano S.Boundedness of integral operators on generalized Morrey spaces and its application to Schrdinger operators[J].Proc.Amer.Math.Soc.,2000,128(4):1125-1134.

      [3]Tang L,Dong J.Boundedness for some Schrdinger type operators on Morrey spaces related to certain nonnegative potentials[J].J.Math.Anal.Appl.,2009,355(1):101-109.

      [4]Chen Y,Levine S,Rao M.Variable exponent,linear growth functionals in image restoration[J]. SIAM J.Appl.Math.,2006,66(4):1383-1406.

      [6]Cruz-Uribe D,Fiorenza A,Martell J M,et al.The boundedness of classical operators on variable Lpspaces[J].Ann.Acad.Sci.Fenn.Math.,2006,31(1):239-264.

      [7]Huang A,Xu J.Multilinear singular integrals and commutators in variable exponent Lebesgue spaces[J].Appl.Math.J.Chin.Univ.,2010,25(1):69-77.

      [8]Izuki M.Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent[J]. Rend.Circ.Mat.Palermo.,2010,59(3):461-472.

      [9]Ho K P.The fractional integral operators on Morrey spaces with variable exponent on unbounded domains[J].Math.Inequal.Appl.,2013,16:363-373,.

      [10]Almeida A,Hasanov J,Samko S.Maximal and potential operators in variable exponent Morrey spaces[J].Geor.Math.J.,2008,15:195-208.

      [11]Xuan Z,Shu L.Boundedness for commutators of Caldern-Zygmund operator on morrey spaces with variable exponent[J].Anal.The.Appl.,2013,29(2):128-134.

      [12]Kokilashvili V,Meskhi A.Boundedness of maxmial and singular operators in Morrey spaces with variable exponent[J].Armenian Math.J.,2008,1:18-28.

      [13]Nekvinda A.Hardy-Littlewood maximal operator on Lp(x)(Rn)[J].Math.Inequal.Appl.,2004,7: 255-265.

      [14]Stein E M.Harmonic analysis:real-variable methods,orthogonality,and oscillatory integrals[M]. Princeton,NJ:Princeton Univ.Press,1993.

      [15]Tang L.Weighted norm inequalities for Schrdinger type operators[J].Forum Math.:2013,27(4): 2491-2532.

      [16]Diening L.Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces[J].Bulletin des Sci.Math.,2005,129(8):657-700.

      [18]Izuki M.Boundedness of commutators on Herz spaces with variable exponent[J].Rend.Circ.Mat. Palermo,2010,59(2):199-213.

      王敏,束立生,瞿萌,程美芳

      (安徽師范大學數(shù)學計算機科學學院,安徽蕪湖241003)

      本文考慮了一類Schrdinger型算子和其交換子的有界性問題.利用其在Lp空有界性間上的,獲得了一類Schrdinger型算子和其交換子在變指數(shù)Morrey空間上的有界性.

      Morrey空間;交換子;Schrdinger型算子;變指數(shù)

      MR(2010)主題分類號:42B20;42B35O174.2

      ?date:2014-04-15Accepted date:2014-09-15

      Supported by NSFC(11201003);University NSR Project of Anhui Province (KJ2014A087)and Anhui Provincial Natural Science Foundation(1408085MA01).

      Biography:Wang Min(1990-),male,born at Wuwei,Anhui,postgraduate,major in harmonic analysis.

      猜你喜歡
      交換子安徽師范大學王敏
      Ap(φ)權,擬微分算子及其交換子
      《安徽師范大學學報》(人文社會科學版)第47卷總目次
      Improvement of English Listening Teaching in Junior MiddleSchool Guided by Schema Theory
      魅力中國(2018年4期)2018-07-30 11:11:44
      Hemingway’s Marriage in Cat in the Rain
      Electricity supplier era of packaging design Current Situation and Prospects
      東方教育(2017年1期)2017-04-20 02:52:09
      變指標Morrey空間上的Marcinkiewicz積分及交換子的有界性
      與Schr?dinger算子相關的交換子的L~p-有界性
      《安徽師范大學學報( 自然科學版) 》2016 年總目次
      Marcinkiewicz積分交換子在加權Morrey空間上的有界性
      Bromate formation in bromide-containing waters irradiated by gamma rays?
      沁源县| 闵行区| 开远市| 青海省| 确山县| 阳朔县| 大邑县| 左权县| 平定县| 易门县| 独山县| 洛阳市| 绵竹市| 洪湖市| 三门峡市| 上饶市| 孟连| 太康县| 托克逊县| 东丰县| 长兴县| 虎林市| 沾化县| 黔西县| 浙江省| 罗源县| 泗洪县| 涟源市| 和龙市| 珲春市| 南宫市| 康乐县| 新乡县| 城口县| 大理市| 大足县| 和政县| 封丘县| 内丘县| 凤山县| 临城县|