陳傳淼+胡宏伶
摘 要 本文提出了雙插值有限元法求解一類非線性拋物組,它對(duì)未知函數(shù)和系數(shù)都采用了插值,于是某些常數(shù)矩陣可一次性計(jì)算好,每時(shí)間層組裝剛度矩陣很簡(jiǎn)單.它是一種經(jīng)濟(jì)格式.
關(guān)鍵詞 非線性拋物組;有限元;雙插值;經(jīng)濟(jì)格式
中圖分類號(hào) O241.82 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1000-2537(2016)05-0081-02
Abstract The bi-interpolation finite element method for solving nonlinear parabolic systems is proposed, in which both unknowns and their coefficients are interpolated, so some constant matrixes can be computed in one time, whereas at each time level the assembly stiffness matrixes are very simple. This is an economic scheme.
Key words nonlinear parabolic systems; finte element method; bi-interpolation; economic scheme
隨著科學(xué)技術(shù)的發(fā)展,非線性拋物問(wèn)題出現(xiàn)在許多實(shí)驗(yàn)領(lǐng)域,如高溫傳輸、核聚變、半導(dǎo)體、超導(dǎo)、石油開(kāi)發(fā)、金融和圖像識(shí)別等.本文特別關(guān)注核聚變中的三溫計(jì)算問(wèn)題.
在經(jīng)典有限元法或有限體積法中,雖然有多種格式離散非線性拋物問(wèn)題.但數(shù)值求解的主要困難是計(jì)算工作量極其巨大.
1)每個(gè)時(shí)間層的離散工作量巨大.
2)牛頓法求解非線性方程組需3~4次線性化(計(jì)算切矩陣).
3)必須計(jì)算數(shù)千數(shù)萬(wàn)時(shí)間層.
三種困難交織在一起成為大規(guī)模求解的主要困難之一,因此發(fā)展高效算法有重要意義.
由此看到,雙插值有限元法有以下3個(gè)優(yōu)點(diǎn):
1) 像ICFEM一樣,矩陣Kijp,Mij可一次性算好,組裝Kij(U),Mij(U)很簡(jiǎn)單;
2) 對(duì)多未知變量方程組適用,只要系數(shù)a(u),b(u),c(u)與t,x無(wú)關(guān)即可.特別地,核聚變中的三溫方程正好可以變換為這種散度形式.
3) 如何高效求解非線性方程組(7),是另一個(gè)重要問(wèn)題[5],將在其他論文討論.
參考文獻(xiàn):
[1]ZLAMAL M. A finite element method of the nonlinear heat equation[J]. RAIRO Model Anal Numer, 1980,(14):203-216.
[2]CHEN C M, LARSSON S, ZHANG N Y. Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation[J]. IMA J Numer Anal, 1989,(9):507-524.
[3]陳傳淼,黃云清.有限元高精度理論[M].長(zhǎng)沙:湖南科技出版社,1995.
[4]陳傳淼.有限元超收斂構(gòu)造理論[M].長(zhǎng)沙:湖南科技出版社,2001.
[5]HU H L, CHEN C M, PAN K J. Time extrapolation algorithm for parabolic problems[J]. J Comput Math, 2014,32(2):183-194.
(編輯 HWJ)