畢卉+錢琛庚
摘 要:針對二階顯式TVD RungeKutta局部間斷Galerkin方法求解熱傳導方程的穩(wěn)定性問題,在方程的解是充分光滑的情況下,通過有限元分析的方法,在理論上嚴格的證明了對于任意非均勻正則網格和k次分段多項式間斷有限元空間,當CourantFriedrichsLewy (CFL)條件取為τ≤λμ-2h2時,算法是L2穩(wěn)定的,其中τ,h分別是時間步長和空間步長,μ,λ是與h,τ無關的常數。
關鍵詞:
RungKutta法;局部間斷Galerkin方法;穩(wěn)定性分析;熱傳導方程;L2穩(wěn)定
DOI:10.15938/j.jhust.2017.06.020
中圖分類號: O29
文獻標志碼: A
文章編號: 1007-2683(2017)06-0109-04
Abstract:To analyze the stability of the local discontinuous Garlerkin method for heat equation, where the time discretization is the explicit TVD RungeKutta method. For the sufficiently smooth solution case, when the finite element space is the kth order piecewise polynomial space on the regular meshes, we use the finite element analysis technique to proof the L2norm stability for hear equation under the CFL condition τ≤λμ-2h2, where τ,h are the time step and the length of the element respectively, and μ,λ are constants independent of h,τ.
Keywords:RungeKutta;finite element;stability analysis;partial differential equations;L2norm stability
0 引 言
間斷有限元是一類有限元空間取為間斷多項式空間的有限元方法,具有易于實現hp自適應性和靈活處理復雜計算區(qū)域等優(yōu)點。 該方法由Reed和Hill于1973年在求解穩(wěn)態(tài)的中子運輸方程時提出[1]。上世紀80年代末90年代初,Cockburn和Shu針對非線性發(fā)展型雙曲守恒律方程提出了TVD RungeKutta間斷有限元方法,詳細的討論了方程組以及多維問題[2-6]。 1998年,根據Bassi和Rebay對于粘性NavierStorkes 方程成功的計算結果[7],Cockburn和Shu又把這個方法推廣到了求解對流擴散方程,提出了局部間斷有限元思想[8]。 2002年,Yan和Shu針對含有高階空間導數的偏微分方程給出了局部間斷有限元算法[9]。 更多關于間斷有限元和局部間斷有限元的研究現狀可以查閱綜述性文獻[10-15]和專著[16] 。注意到,間斷有限元法只用于空間離散,在時間離散方面,對于熱傳導方程,可以采用顯式的時間離散格式[17],而高階問題則需要效率更高的隱式或半隱式格式[18]。 同時,隨著問題的深入,近年來關于間斷有限元和局部間斷有限元方法的穩(wěn)定性問題的研究也逐步展開。 2004年,Zhang 和Shu 首次給出了非線性雙曲守恒律方程的二階顯式TVD RungeKutta 間斷有限元方法的穩(wěn)定性分析[19]。2010年,Zhang和Shu討論了三階顯式TVD RungeKutta 間斷有限元解線性雙曲守恒律方程的L2穩(wěn)定性問題[20]。 2015年,Wang和Shu又討論了半隱式的RungeKutta 局部間斷有限元解非線性對流擴散方程時的穩(wěn)定性問題[21]。 由于全離散格式的復雜性,目前關于穩(wěn)定性分析的研究成果并不多。
3 結 論
本文證明了在時間和空間步長滿足τ≤(6-42)μ-2h2時,二階顯示TVD RungeKutta 局部間斷Galerkin方法是L2穩(wěn)定的。 在將來的工作中,我們會討論隱式或半隱式的時間離散方法結合局部間斷有限元法的穩(wěn)定性分析。
參 考 文 獻:
[1] REED W H, HILL T R. Triangular Mesh Methods for the Neutron Transport Equation[R].Los Alamos Scientific Lab. N. Mex.(USA), 1973.
[2] COCKBURN B, SHU Chiwang. The RungeKutta Local Projection DiscontinuousGalerkin Finite Element Method for Scalar Conservation Laws[J].RAIROModélisation Mathématique et Analyse Numérique 1991,25(3): 337-361.
[3] COCKBURN B, SHU C W. The RungeKutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws.II:General Framework[J]. Mathematics of Computation, 1989, 52(186): 411-435.endprint
[4] COCKBURN B, LIN S Y, SHU C W. The RungeKutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws III: Onedimensional Systems[J].Journal of Computational Physics, 1989, 84(1):90-113.
[5] COCKBURN B, HOU S, SHU C W. The RungeKutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws. IV:The Multidimensional Case[J]. Mathematics of Computation, 1990, 54(190): 545-581.
[6] COCKBURN B, SHU C W. The RungeKutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems[J]. Journal of Computational Physics, 1998, 141(2): 199-224.
[7] BASSI F, REBAY S. A Highorder Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible NavierStokes Equations[J].Journal of Computational Physics, 1997, 131(2): 267-279.
[8] COCKBURN B, SHU CW. The Local Discontinuous Galerkin Method for Timedependent Convectiondiffusion Systems[J]. SIAM J Numer Anal, 1998(35): 2440-2463.
[9] YAN J, SHU CW. Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives[J].J Sci Comput, 2002(17): 27-47.
[10]COCKBURN B, SHU C W. RungeKutta Discontinuous Galerkin Methods for Convectiondominated Problems[J]. Journal of Scientific Computing, 2001, 16(3): 173-261.
[11]SHU C W. A Brief Survey on Discontinuous Galerkin Methods in Computational Fluid Dynamics[J]. Advances in Mechanics, 2013(43): 541-554.
[12]XU Y, SHU C. Local Discontinuous Galerkin Methods for Three Classes of Nonlinear Wave Equations[J]. Journal of Computational Mathematics, 2004,22(2):250-274.
[13]SHU C W. Discontinuous Galerkin Methods: General Approach and Stability[J].Numerical Solutions of Partial Differential Equations, 2009: 149-201.
[14]SHU C W. Discontinuous Galerkin Method for Timedependent Problems: Survey and Recent Developments[M]. Springer International Publishing, 2014: 25-62.
[15]SHU C W. High Order WENO and DG Methods for Timedependent Convectiondominated PDEs: A Brief Survey of Several Recent Developments [J]. Journal of Computational Physics, 2016, 316: 598-613.
[16]HESTHAVEN J S, WARBURTON T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications[M]. Springer: Science & Business.Media, 2007.
[17]SHU C W, OSHER S. Efficient Implementation of Essentially Nonoscillatory Shockcapturing Schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471.
[18]XIA Y, XU Y, SHU CW. Efficient Time Discretization for Local Discontinuous Galerkin Methods[J]. Discrete and Continuous Dynamical Systems Series B, 2007, 8(3): 677.
[19]ZHANG Q, SHU C W. Error Estimates to Smooth Solutions of RungeKutta Discontinuous Galerkin Methods for Scalar Conservation Laws[J]. SIAM Journal on Numerical Analysis, 2004, 42(2): 641-666.
[20]ZHANG Q, SHU C W. Stability Analysis and a Priori Error Estimates of the Third Order Explicit RungeKutta Discontinuous Galerkin Method for Scalarconservation Laws[J]. SIAM Journal on Numerical Analysis, 2010, 48(3): 1038-1063.
[21]WANG H, SHU CW, ZHANG Q. Stability Analysis and Error Estimates of Local Discontinuous Galerkin Methods with Implicitexplicit Timemarching for Nonlinear Convectiondiffusion Problems[J]. Applied Mathematic and Computation, 2016, 272(2): 237-258.
(編輯:溫澤宇)endprint