莫凌,吳江平,張?jiān)?,邢巧,林彰文,羅孝俊,麥碧嫻
1. 海南省環(huán)境科學(xué)研究院,海口 570100 2. 中國(guó)科學(xué)院廣州地球化學(xué)研究所 有機(jī)地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣州 510640 3. 華南師范大學(xué) 生命科學(xué)學(xué)院,廣州 510631
?
電子垃圾拆解地翠鳥(niǎo)對(duì)多氯聯(lián)苯的累積及風(fēng)險(xiǎn)評(píng)估
莫凌1,吳江平2,,張?jiān)?,邢巧1,林彰文1,羅孝俊2,麥碧嫻2
1. 海南省環(huán)境科學(xué)研究院,???570100 2. 中國(guó)科學(xué)院廣州地球化學(xué)研究所 有機(jī)地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣州 510640 3. 華南師范大學(xué) 生命科學(xué)學(xué)院,廣州 510631
粗獷的電子垃圾拆解活動(dòng)已造成當(dāng)?shù)匾吧锒嗦嚷?lián)苯(PCBs)嚴(yán)重污染,但PCBs在野生鳥(niǎo)類中的生物累積特征及潛在的毒害作用研究較少。本研究采集了廣東省某電子垃圾拆解地翠鳥(niǎo)(Alcedo atthis)及其食物(各種小型魚(yú)類)樣品,研究翠鳥(niǎo)對(duì)PCBs的累積特征、生物放大效應(yīng)及毒性風(fēng)險(xiǎn)。翠鳥(niǎo)肌肉中PCBs中值含量為220 μg·g-1脂重,比其他報(bào)道值高1~3個(gè)數(shù)量級(jí)。計(jì)算的生物放大因子(BMF)顯示,大部分PCB單體的BMF值都大于1,表明翠鳥(niǎo)對(duì)PCBs具有生物放大效應(yīng)。計(jì)算的共面PCBs毒性當(dāng)量(TEQs)范圍為39~23 600 pg·g-1濕重,已經(jīng)達(dá)到或超過(guò)了影響某些鳥(niǎo)類生殖或發(fā)育障礙的報(bào)道值。上述結(jié)果表明,電子垃圾拆卸活動(dòng)已經(jīng)造成了當(dāng)?shù)卮澍B(niǎo)PCBs嚴(yán)重污染,PCBs污染物對(duì)電子垃圾拆解地翠鳥(niǎo)及其他野生生物的毒性效應(yīng)尚需進(jìn)一步研究。
多氯聯(lián)苯;鳥(niǎo)類;生物積累;生物放大;電子垃圾
Received 14 November 2015 accepted 22 December 2015
多氯聯(lián)苯(polychlorinated biphenyls,PCBs)是一類人工合成的多氯芳香烴類化合物。由于PCBs具有物理化學(xué)性質(zhì)穩(wěn)定、耐熱性、電絕緣性等特點(diǎn),常用作熱載體、絕緣材料、溶劑等廣泛添加于電子電器等產(chǎn)品中[1]。這些產(chǎn)品在使用過(guò)程中或廢棄后PCBs很容易進(jìn)入到環(huán)境。研究證實(shí),PCBs在環(huán)境中具有持久性、可生物累積性和較高的生物毒性[2-3]。2001年5月,PCBs被列入《斯德哥爾摩公約》持久性有機(jī)污染物(POPs)首批受控名單,在全球禁用[4]。
隨著PCBs的禁用,全球PCBs主要生產(chǎn)和使用地區(qū)(主要為北美和歐洲)環(huán)境中PCBs含量顯著下降[5]。然而,作為全球廢棄電子電器產(chǎn)品(電子垃圾)主要集中地亞洲和非洲一些國(guó)家環(huán)境中PCBs含量卻有上升的趨勢(shì)[5-6]。PCBs在電子垃圾集中地的環(huán)境行為及其生態(tài)風(fēng)險(xiǎn)評(píng)估已引起了廣泛關(guān)注。我們的初步研究發(fā)現(xiàn),廣東省某電子垃圾拆解地野生魚(yú)類體內(nèi)的PCBs含量很高[7],這些污染物是否傳遞到高營(yíng)養(yǎng)級(jí)生物(如食魚(yú)鳥(niǎo))及其對(duì)這些生物可能的毒害作用尚不清楚。本研究在廣東省某電子垃圾拆解地同時(shí)采集了翠鳥(niǎo)(Alcedo atthis)及其食物(3種小型魚(yú)類)樣品,通過(guò)測(cè)定這些樣品中PCBs的含量,研究了翠鳥(niǎo)對(duì)PCBs的生物放大效應(yīng),并評(píng)估了這些污染物對(duì)翠鳥(niǎo)潛在的毒性效應(yīng)。
1.1 樣品采集與前處理
翠鳥(niǎo)是一種食魚(yú)性鳥(niǎo)類,主要是以其棲息地附近水體中各種小型魚(yú)類為食[8]。翠鳥(niǎo)(A. atthis)樣品(n = 22)于2010年5月到2010年7月在廣東省某電子垃圾拆解地池塘邊用網(wǎng)捕法采集,鳥(niǎo)類采集經(jīng)廣東省林業(yè)局批準(zhǔn)。同時(shí)在池塘中采集了中國(guó)斗魚(yú)(Macropodus opercularis,n = 9)、食蚊魚(yú)(Gambusia affinis,n = 11)和馬口魚(yú)(Opsariichthys bidens,n = 9) 3種小型魚(yú)類。鳥(niǎo)類樣品采集后用N2進(jìn)行安樂(lè)死。所有樣品低溫運(yùn)輸至實(shí)驗(yàn)室后,-20 ℃冷凍保存待分析。
翠鳥(niǎo)樣品解剖后,取肌肉組織。每種魚(yú)類樣品(整魚(yú)樣)隨機(jī)混合成3個(gè)混合樣。取約4 g翠鳥(niǎo)肌肉組織和8 g魚(yú)類樣品,冷凍干燥并混勻后,加入回收率指示物CB 30、CB 65和CB 204后,用正己烷/丙酮混合溶劑(1/1,V/V)索氏抽提48 h。抽提液一部分用于測(cè)定脂肪含量(重量法)。余下抽提液濃縮至1 mL左右,經(jīng)凝膠滲透色譜柱(GPC)去除脂肪和其他干擾物。洗脫液濃縮至1~2 mL后,過(guò)復(fù)合硅膠柱(酸性硅膠:中性硅膠=8:8)凈化,最后濃縮定容至200 μL,加入內(nèi)標(biāo)(CB 24、CB 82和CB 198)。樣品的抽提及凈化具體方法參見(jiàn)文獻(xiàn)[7]。
1.2 儀器測(cè)定
75種PCBs單體用安捷倫氣相色譜質(zhì)譜聯(lián)用儀(Agilent 6890 GC-5975B Series MS)測(cè)定。采用EI源、選擇性離子掃描模式(SIM),使用色譜柱DB-5MS (60 m × 0.25 mm i.d.,0.25 μm film thickness;J&W Scientific, Folsom,CA)進(jìn)行分離。選擇無(wú)分流進(jìn)樣,進(jìn)樣量為1 μL。載氣為高純氦氣,柱流速為1.50 mL·min-1。升溫程序:起始溫度120 ℃,6 ℃·min-1升溫至180 ℃,1 ℃·min-1升溫至240 ℃,然后6 ℃·min-1升溫至290 ℃并保留17 min。進(jìn)樣口、離子源溫度和界面溫度分別為290 ℃、250 ℃和290 ℃。目標(biāo)化合物采用內(nèi)標(biāo)法(6點(diǎn)校正曲線)定量。
1.3 質(zhì)量保證與質(zhì)量控制(QA/QC)
QA/QC體系主要包括回收率指示物添加、程序空白、加標(biāo)空白、基質(zhì)加標(biāo)、樣品重復(fù)樣測(cè)定等。程序空白樣中有少量PCB 118和PCB 138檢出,實(shí)際樣品進(jìn)行了相應(yīng)扣除。樣品中PCB 30、PCB 65和PCB 204的回收率分別為83% ± 16%、94% ±17%和94% ± 15%,定量結(jié)果未經(jīng)回收率校正??瞻准訕?biāo)和基質(zhì)加標(biāo)中PCBs單體(20種PCBs)的回收率范圍分別為75%~107%和75%~104%。樣品平行樣中所有目標(biāo)化合物的相對(duì)標(biāo)準(zhǔn)偏差均小于15%。PCBs的最低檢測(cè)限(LOQs)按方法空白中各單體的含量平均值加3倍標(biāo)準(zhǔn)偏差計(jì)算。對(duì)于空白中沒(méi)有檢測(cè)出的目標(biāo)化合物,按5倍信噪比(S/N)計(jì)算。樣品中PCBs的檢測(cè)限為0.01~0.20 μg·g-1脂重。
1.4 生物放大因子(BMF)計(jì)算
普通翠鳥(niǎo)體內(nèi)中各PCB單體的生物放大因子(BMF)按照下式計(jì)算:
BMF=C翠鳥(niǎo)/C食物
式中C翠鳥(niǎo)為化合物在翠鳥(niǎo)中的濃度,單位為μg·g-1脂重,C食物為翠鳥(niǎo)食物(3種小魚(yú))中對(duì)應(yīng)化合物的濃度,單位為μg·g-1脂重。
1.5 毒性當(dāng)量(TEQ)計(jì)算
利用聯(lián)合國(guó)衛(wèi)生組織提出的鳥(niǎo)類二噁英類化合物毒性當(dāng)量因子(TEFs)[7],計(jì)算了幾種主要的共面PCB單體(包括PCB 77、PCB 81、PCB 105、PCB 114、PCB 118、PCB 123、PCB 126、PCB 156、PCB 167和PCB 169)的毒性當(dāng)量(TEQ)。其計(jì)算公式如下:
TEQ= ∑(PCBi×TEFi)
式中PCBi和TEFi分別為某種共面PCB單體的濃度(pg·g-1濕重)和其TEF。
2.1 PCBs的含量與組成
翠鳥(niǎo)及3種小型魚(yú)類體內(nèi)7種指示性PCBs及75種PCB單體總含量(ΣPCBs)見(jiàn)表1。翠鳥(niǎo)肌肉中ΣPCBs的濃度范圍為4.0~3 300 μg·g-1脂重(中值濃度為220 μg·g-1脂重)。目前,僅有一篇文獻(xiàn)報(bào)道了華南某自然保護(hù)區(qū)(中值1 800 ng·g-1脂重)和農(nóng)村區(qū)域(中值410 ng·g-1脂重)普通翠鳥(niǎo)中PCBs的含量[7]。但已有不少研究報(bào)道了其他食魚(yú)性鳥(niǎo)類肌肉中PCBs的含量。Luo等[9]研究的電子垃圾區(qū)池鷺肌肉中的PCBs的含量達(dá)到了120 000 ng·g-1脂重。比利時(shí)的牛背鷺肌肉中的濃度達(dá)到90 000 ng·g-1脂重[10]。Tanabe等[11]報(bào)道了采集于南印度濕地和沿海區(qū)域的白胸翡翠(翠鳥(niǎo))肌肉中PCBs殘留濃度為400 ng·g-1脂重。Kunisne等[12]報(bào)道的日本北海道黑尾鷗肌肉濃度為2 700~11 000 ng·g-1脂重。采自日本Lake Biwa湖區(qū)和羅馬尼亞Danube Delta區(qū)域的普通鸕鶿肌肉中PCBs的濃度分別為2 900~7 700 000和700 ng·g-1脂重[12-14]。Braune等[15]研究了加拿大西部秋沙鴨和普通潛鳥(niǎo)胸部肌肉中PCBs的殘留情況,這2種鳥(niǎo)類中PCBs的殘留濃度為1.1~1 000 ng·g-1脂重。Elliott等[16]測(cè)定了英國(guó)、哥倫比亞和加拿大鵲鴨和棕脅秋沙鴨肌肉中PCBs含量,其濃度分別為1 600 ng·g-1脂重和78 ng·g-1脂重。相比于前人報(bào)道的食魚(yú)性鳥(niǎo)類肌肉中PCBs的殘留濃度,本研究翠鳥(niǎo)PCBs含量與日本Lake Biwa湖區(qū)的鸕鶿和中國(guó)電子垃圾拆解地池鷺相當(dāng)(范圍為4.0~3 300 μg·g-1脂重),但高于其他報(bào)道值1~3個(gè)數(shù)量級(jí)。翠鳥(niǎo)肌肉中PCBs含量也高于采集于同一電子垃圾拆卸區(qū)的其他7種水生鳥(niǎo)類(1 800~18 000 ng·g-1脂重)和1種陸生鳥(niǎo)類(7 300 ng·g-1脂重)以及華南某保護(hù)區(qū)4種陸生鳥(niǎo)類(45~1 770 ng·g-1脂重)肌肉中PCBs含量[9, 17-19]。雖然監(jiān)測(cè)的PCBs單體總數(shù)量的不同,會(huì)影響本文翠鳥(niǎo)中PCBs的殘留濃度與其他研究鳥(niǎo)類中濃度的對(duì)比,但是這些結(jié)果也初步表明,電子垃圾拆解地翠鳥(niǎo)已經(jīng)受到PCBs嚴(yán)重污染。此外,諸多因素如食性和攝食量、遷移性和生態(tài)位(營(yíng)養(yǎng)級(jí))等會(huì)影響不同鳥(niǎo)類對(duì)PCBs的累積。
表1 電子垃圾拆卸區(qū)翠鳥(niǎo)及3種小型魚(yú)類中PCBs含量(單位:μg·g-1脂重)
注:9 (3)表示樣品的個(gè)數(shù),括號(hào)里面的數(shù)字表示混合后樣品的數(shù)量;3.5 (2.2~5.9)表示中值和范圍;∑PCBs表示75個(gè)PCBs單體的總濃度。
Note: 9 (3) is the number of individual samples collected; figures in brackets indicate analyses number of pooled samples when individual were pooled; 3.5 (2.2~5.9) means median and range; ∑PCBs is the sum concentrations of the 75 PCB congeners examined.
圖1 電子垃圾拆卸區(qū)翠鳥(niǎo)和其食物中PCBs的同系物分布模式Fig. 1 Congener profiles of PCBs in the kingfishers and their prey fish species collected from an e-waste recycling site
圖2 翠鳥(niǎo)/魚(yú)類的3種捕食關(guān)系中PCBs的BMFs值Fig. 2 Biomagnification factors (BMFs) for PCB congeners derived from the three predator/prey pairs
翠鳥(niǎo)及其食物(3種小魚(yú))中PCBs同系物組成模式如圖1所示。翠鳥(niǎo)肌肉中CB 118是最主要的同系物,占ΣPCBs的16% ± 1.5%。CB 28/31、CB 153、CB 101和CB 138也是主要的同系物,共占ΣPCBs的47% ± 1.0%。翠鳥(niǎo)的食物與翠鳥(niǎo)有著相似的PBDEs同系物分布模式,其中CB 118、CB 153、CB 101和CB 138是最主要的同系物。本研究普通翠鳥(niǎo)肌肉中的PCB同系物組成特征與之前報(bào)道的華南某自然保護(hù)區(qū)和農(nóng)村區(qū)域普通翠鳥(niǎo)中PCBs的同系物相同[7],都以CB 118、CB 28/31和CB 153為最主要同系物。本研究翠鳥(niǎo)體內(nèi)PCBs同系物組成與電子垃圾拆卸區(qū)其他水生鳥(niǎo)類PCBs同系物組成也基本相同,都是以5~6氯等低氯代的PCBs單體為主[9],但與陸生鳥(niǎo)類PCB的同系物組成特征(主要是以5~8氯為主PCBs單體為主)具有較大的差異[17, 20]。水生鳥(niǎo)類和陸生鳥(niǎo)類生活環(huán)境和食性的不同,可能是導(dǎo)致這種差異的主要原因。相對(duì)于高氯代的PCB單體,低氯代的PCBs具有較高的水溶性,更容易在水生生物體內(nèi)富集,造成翠鳥(niǎo)體內(nèi)較高含量的低氯代PCB單體。
表2 電子垃圾拆卸區(qū)普通翠鳥(niǎo)中共面PCBs的毒性當(dāng)量值(單位:pg·g-1濕重)
表3 文獻(xiàn)報(bào)道的PCBs的TEQs對(duì)鳥(niǎo)類的毒性參考值
2.2 PCBs的生物放大
為了調(diào)查PCBs單體在普通翠鳥(niǎo)食物鏈中可能的生物放大效應(yīng),我們計(jì)算了這些化合物的生物放大因子(BMFs)(圖2)。大部分的PCB單體的BMF值都大于1(ΣPCBs的平均BMF值為1.1~2.5),表明翠鳥(niǎo)對(duì)這些PCB單體產(chǎn)生了生物放大效應(yīng)。通過(guò)對(duì)比PCB單體在3種捕食關(guān)系中的BMFs發(fā)現(xiàn),翠鳥(niǎo)/中國(guó)斗魚(yú)和翠鳥(niǎo)/食蚊魚(yú)之間BMF值都大于1,而PCB少數(shù)單體(CB 49、CB87/115、CB110、CB156、CB190/170)在翠鳥(niǎo)/馬口魚(yú)之間BMF值小于1,通過(guò)查詢文獻(xiàn),普通翠鳥(niǎo)其食物中99%都是以2.3 cm左右小型淡水魚(yú)類(最大也能達(dá)到12.5 cm)[8],但是本次樣品中馬口魚(yú)的平均長(zhǎng)度為7.0[21],較其他2種魚(yú)類長(zhǎng)。因此,馬口魚(yú)可能不是翠鳥(niǎo)的主要食物之一,不同魚(yú)類在翠鳥(niǎo)食物中的比例可能是造成這種差異的原因。本研究計(jì)算的PCBs的BMF值與之前報(bào)道的華南某自然保護(hù)區(qū)普通翠鳥(niǎo)對(duì)這些污染物的BMF值基本相似(ΣPCBs的平均BMF值為1.1~1.4)[7]。Drouillard等[22]采用腸道累積放大的方法預(yù)測(cè)了環(huán)鴿(Streptopelia risoria)對(duì)PCBs的生物放大效果,預(yù)測(cè)的BMF范圍為18.5~33.8,高于我們當(dāng)前的研究值。野外實(shí)驗(yàn)條件和實(shí)驗(yàn)室預(yù)測(cè)條件的差別以及物種間對(duì)于PCBs不同的累積特性,可能是導(dǎo)致不同研究BMF值不盡相同的主要原因。
2.3 TEQ值
目前還未見(jiàn)PCBs對(duì)于翠鳥(niǎo)的毒性風(fēng)險(xiǎn)評(píng)價(jià)數(shù)據(jù)。我們計(jì)算了幾種主要的共面PCB單體(包括CB 77、CB 81、CB 105、CB 114、CB 118、CB 123、CB 156和CB 167)的毒性當(dāng)量(TEQ),并通過(guò)對(duì)比TEQs對(duì)其他水生鳥(niǎo)類的毒性參考值(TRVs)或風(fēng)險(xiǎn)評(píng)估的閾值,評(píng)估PCBs對(duì)普通翠鳥(niǎo)潛在的毒害作用。計(jì)算的TEQs范圍為39~24 000 pg·g-1濕重,平均值為3 700 pg·g-1濕重(表2)。較多研究報(bào)道了TEQs對(duì)鳥(niǎo)類的TRVs(表3),超過(guò)這些參考值將對(duì)鳥(niǎo)類產(chǎn)生胚胎死亡和發(fā)育障礙等方面的影響[23]。與這些結(jié)果比較,電子垃圾拆卸區(qū)翠鳥(niǎo)體內(nèi)的TEQs含量超過(guò)了大部分水生鳥(niǎo)類的TRV值。這一結(jié)果預(yù)示著電子垃圾拆卸區(qū)翠鳥(niǎo)體內(nèi)的PCBs可能對(duì)其生殖和發(fā)育方面帶來(lái)潛在的毒害作用。
[1] Safe S, Hutzinger O. Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): Biochemistry, toxicology, and mechanism of action [J]. Critical Reviews in Toxicology, 1984, 13(4): 319-395
[2] Fischer L J, Seegal R F, Ganey P E, et al. Symposium overview: Toxicity of non-coplanar PCBs [J]. Toxicological Sciences, 1998, 41(1): 49-61
[3] Jones K C, de Voogt P. Persistent organic pollutants (POPs): State of the science [J]. Environmental Pollution, 1999, 100(3): 209-221
[4] United Nations Environment Programme. The Stockholm Convention on Persistent Organic Pollutants (POPs) [R/OL]. Switzerland, 2001. http://chm.pops.int/Convention/ThePOPs/The12InitialPOPs/tabid/296/Default.aspx
[5] Breivik K, Gioia R, Chakraborty P, et al. Are reductions in industrial organic contaminants emissions in rich countries achieved partly by export of toxic wastes? [J]. Environmental Science & Technology, 2011, 45(21): 9154-9160
[6] Zhang K, Schnoor J L, Zeng E Y. E-waste recycling:Where does it go from here? [J]. Environmental Science & Technology, 2012, 46(20): 10861-10867
[7] Mo L, Wu J P, Luo X J, et al. Using the kingfisher (Alcedo atthis) as a bioindicator of PCBs and PBDEs in the Dinghushan Biosphere Reserve, China [J]. Environmental Toxicology and Chemistry, 2013, 32(7): 1655-1662
[8] Kasahara S, Katoh K. Food-niche differentiation in sympatric species of kingfishers, the common kingfisher Alcedo atthis and the greater pied kingfisher Ceryle lugubris [J]. Ornithological Science, 2008, 7(2): 123-134
[9] Luo X J, Zhang X L, Liu J, et al. Persistent halogenated compounds in waterbirds from an e-waste recycling region in South China [J]. Environmental Science & Technology, 2009, 43(2): 306-311
[10] Jaspers V L B, Covaci A, Voorspoels S, et al. Brominated flame retardants and organochlorine pollutants in aquatic and terrestrial predatory birds of Belgium:Levels, patterns, tissue distribution and condition factors [J]. Environmental Pollution, 2006, 139(2): 340-352
[11] Tanabe S, Senthilkumar K, Kannan K, et al. Accumulation features of polychlorinated biphenyls and organochlorine pesticides in resident and migratory birds from South India [J]. Archives of Environmental Contamination and Toxicology, 1998, 34(4): 387-397
[12] Kunisue T, Higaki Y, Isobe T, et al. Spatial trends of polybrominated diphenyl ethers in avian species: Utilization of stored samples in the environmental specimen bank of ehime university (es-bank) [J]. Environmental Pollution, 2008, 154(2): 272-282
[13] Covaci A, Gheorghe A, Hulea O, et al. Levels and distribution of organochlorine pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in sediments and biota from the Danube Delta, Romania [J]. Environmental Pollution, 2006, 140(1): 136-149
[14] Kubota A, Iwata H, Tanabe S, et al. Levels and toxicokinetic behaviors of PCDD, PCDF, and coplanar PCB congeners in common cormorants from Lake Biwa, Japan [J]. Environmental Science & Technology, 2004, 38(14): 3853-3859
[15] Braune B M, Malone B J, Burgess N M, et al. Chemical residues in waterfowl and gamebirds harvsted in Canada, 1987-95 [J]. Canadian Wildlife Service Technical Report, 1999, 326(1): 392-432
[16] Elliott J E, Martin P A. Chlorinated hydrocarbon contaminants in grebes and seaducks wintering on the coast of British Columbia, Canada: 1988-1993 [J]. Environmental Monitoring and Assessment, 1998, 53(2): 337-362
[17] Sun Y X, Hao Q, Zheng X B, et al. PCBs and DDTs in light-vented bulbuls from Guangdong Province, South China: Levels, geographical pattern and risk assessment [J]. Science of the Total Environment, 2014, 490(15): 815-821
[18] Zhang X L, Luo X J, Liu H Y, et al. Bioaccumulation of several brominated flame retardants and dechlorane plus in waterbirds from an e-waste recycling region in South China: Associated with trophic level and diet sources [J]. Environmental Science & Technology, 2010, 45(2): 400-405
[19] Peng Y, Wu J P, Tao L, et al. Contaminants of legacy and emerging concern in terrestrial passerines from a nature reserve in South China: Residue levels and inter-species differences in the accumulation [J]. Environmental Pollution, 2015, 203(1): 7-14
[20] Chen D, Zhang X L, Mai B X, et al. Polychlorinated biphenyls and organochlorine pesticides in various bird species from northern China [J]. Environmental Pollution, 2009, 157(7): 2023-2029
[21] Mo L, Wu J P, Luo X J, et al. Bioaccumulation of polybrominated diphenyl ethers, decabromodiphenyl ethane, and 1,2-bis(2,4,6-tribromophenoxy) ethane flame retardants in kingfishers (Alcedo atthis) from an electronic waste-recycling site in South China [J]. Environmental Toxicology and Chemistry, 2012, 31(9): 2153-2158
[22] Drouillard K G, Paterson G, Liu J, et al. Calibration of the gastrointestinal magnification model to predict maximum biomagnification potentials of polychlorinated biphenyls in a bird and fish [J]. Environmental Science & Technology, 2012, 46(18): 10279-10286
[23] United States Environmental Protection Agency (US EPA). Analyses of Laboratory and Field Studies of Reproductive Toxicity in Birds Exposed to Dioxin-like Compounds for Use in Ecological Risk Assessment [R]. Washington DC: National Center for Environmental Assessment Office of Research and Development, 2003
[24] United States Environmental Protection Agency (US EPA). Analyses of Laboratory and Field Studies of Reproductive Toxicity in Birds Exposed to Dioxin-like Compounds for Use in Ecological Risk Assessment [R]. Washington DC: US EPA, 2003
[25] Hoffman D J, Melancon M J, Klein P N, et al. Comparative developmental toxicity of planar polychlorinated biphenyl congeners in chickens, American kestrels, and common terns [J]. Environmental Toxicology and Chemistry, 1998, 17(4): 747-757
[26] Nosek J, Craven S, Sullivan J, et al. Toxicity and reproductive effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in ring-necked pheasant hens [J]. Journal of Toxicology and Environmental Health, 1992, 35(3): 187-198
[27] Powell D C, Aulerich R J, Meadows J C, et al. Effects of 3,3',4,4',5-pentachlorobiphenyl (PCB 126), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), or an extract derived from field-collected cormorant eggs injected into double-crested cormorant (Phalacrocorax auritus) eggs [J]. Environmental Toxicology and Chemistry, 1997, 16(7): 1450-1455
[28] Brunstr?m B, Andersson L. Toxicity and 7-ethoxyresorufin-O-deethylase-inducing potency of coplanar polychlorinated biphenyls (PCBs) in chick embryos [J]. Archives of Toxicology, 1988, 62(4): 263-266
[29] Brunstr?m B. Sensitivity of embryos from duck, goose, herring gull, and various chicken breeds to 3,3',4,4'-tetrachlorobiphenyl [J]. Poultry Science, 1988, 67(1): 52-56
[30] Brunstr?m B, Reuterg?rdh L. Differences in sensitivity of some avian species to the embryotoxicity of a PCB, 3,3',4,4'-tetrachlorobiphenyl, injected into the eggs [J]. Environmental Pollution, 1986, 42(1): 37-45
[31] White D H, Seginak J T . Dioxins and furans linked to reproductive impairment in wood ducks at Bayou Meto, Arkansas [J]. Journal of Wildlife Management, 1994, 25(4): 100-106
[32] Henshel D S, Martin J W, Norstrom R, et al. Morphometric abnormalities in brains of great blue heron hatchlings exposed in the wild to PCDDs [J]. Environmental Health Perspectives, 1995, 103(4): 61-66
[33] Woodford J E, Karasov W H, Meyer M W, et al. Impact of 2,3,7,8-TCDD exposure on survival, growth, and behavior of ospreys breeding in Wisconsin, USA [J]. Environmental Toxicology and Chemistry, 1998, 17(7): 1323-1331
[34] Kubiak T J, Harris H J, Smith L M, et al. Microcontaminants and reproductive impairment of the Forster's tern on Green Bay, Lake Michigan-1983 [J]. Archives of Environmental Contamination and Toxicology, 1989, 18(5): 706-727
[35] Ewins P J, Weseloh D V, Norstrom R J, et al. Caspian terns on the Great Lakes: Organochlorine contamination, reproduction,diet, and population changes 1972-91 [J]. Canadian Wildlife Service, 1994, 85(5): 1-33
◆
Bioaccumulation and Risk Assessment of Polychlorinated Biphenyls in the Common Kingfisher (Alcedoatthis) from an Electronic Waste Recycling Site in South China
Mo Ling1, Wu Jiangping2,*, Zhang Yun3, Xing Qiao1, Lin Zhangwen1, Luo Xiaojun2, Mai Bixian2
1. Hainan Research Academy of Environmental Sciences, Haikou 570100, China 2. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 3. School of Life Science, South China Normal University, Guangzhou 510631, China
The wildlife from electronic waste (e-waste) sites have been heavily polluted by polychlorinated biphenyls (PCBs), due to the primitive e-waste recycling activities. However, information on the bioaccumulation and the toxic effects of PCBs in wild avian species from e-waste sites is limited. In the present study, we investigated the levels and congener profiles of PCBs in the common kingfisher (Alcedo atthis) from an e-waste recycling site in Guangdong Province, South China. Additionally, PCBs in the diet items including three fish species collected from the same sampling site were also examined, to evaluate the potential biomagnification of PCBs in the common kingfisher. Finally, we assessed the potential toxic effects of PCBs to these birds by estimating the toxic equivalent quantity (TEQ) of the co-planar PCBs. Elevated PCB residues (median = 220 μg·g-1lipid weight for total PCBs) were detected in the kingfishers, which were one to three orders of magnitude higher than the values previously reported in the species from other sampling sites. The calculated predator/prey biomagnification factors (BMFs) were greater than unity for most of the PCB congeners examined, suggesting biomagnification of these chemicals in the common kingfisher. The TEQ concentrations estimated in the common kingfisher ranged from 39 to 23 600 pg·g-1wet weight, with some of these values reaching or exceeding the levels known to impair bird reproduction and survival. Our results revealed that the common kingfisher from the e-waste recycling site has been heavily contaminated by PCBs. The need for further examination is warranted to determine the potential adverse effects resulting from the PCBs exposure, in the common kingfishers and other wildlife that are habitants of e-waste sites.
polychlorinated biphenyls; bird; bioaccumulation; biomagnification; electronic waste
10.7524/AJE.1673-5897.20151114001
海南省自然科學(xué)基金(20154176);國(guó)家自然科學(xué)基金(41230639,41173109)
莫凌(1984-),男,博士,助理研究員,高級(jí)工程師,研究方向?yàn)槌志眯杂卸疚廴疚锏沫h(huán)境行為及毒害作用,E-mail: morning.ml@163.com
*通訊作者(Corresponding author), E-mail: jpwu@gig.ac.cn
2015-11-14 錄用日期:2015-12-22
1673-5897(2016)2-155-08
X171.5
A
簡(jiǎn)介:吳江平(1976-),男,博士,副研究員,主要研究方向?yàn)槌志眯杂卸疚廴疚锏纳锢鄯e、沿食物鏈傳遞及其毒害作用,近5年在國(guó)內(nèi)外環(huán)境領(lǐng)域主流刊物發(fā)表文章50余篇,被SCI期刊引用共1200余次。
莫凌, 吳江平, 張?jiān)? 等. 電子垃圾拆解地翠鳥(niǎo)對(duì)多氯聯(lián)苯的累積及風(fēng)險(xiǎn)評(píng)估[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(2): 155-162
Mo L, Wu J P, Zhang Y, et al. Bioaccumulation and risk assessment of polychlorinated biphenyls in the common kingfisher (Alcedo atthis) from an electronic waste recycling site in south China [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 155-162 (in Chinese)