侯 瑞,雷 鳴
(北京郵電大學(xué)理學(xué)院,北京市 100876)
MgMn2O4的制備及其對氧還原反應(yīng)的電催化性能研究
侯 瑞,雷 鳴
(北京郵電大學(xué)理學(xué)院,北京市 100876)
通過水熱法,以乙酸錳、乙酸鎂為原料制備出納米MgMn2O4作為氧還原電催化劑,利用X射線衍射儀(XRD)和場發(fā)射電子掃描儀(FESEM)對催化劑微觀結(jié)構(gòu)進(jìn)行表征,并在堿性溶液中通過循環(huán)伏安法和旋轉(zhuǎn)圓盤技術(shù)對電催化劑的氧還原活性、穩(wěn)定性以及抗甲醇中毒性進(jìn)行研究。結(jié)果表明,MgMn2O4催化劑具有較高的氧還原活性,極限電流密度與Pt/C催化劑的相接近,穩(wěn)定性和抗甲醇中毒性超過Pt/C催化劑。
燃料電池;非貴金屬催化劑;氧還原反應(yīng);MgMn2O4
本文著錄格式:侯瑞,雷鳴. MgMn2O4的制備及其對氧還原反應(yīng)的電催化性能研究[J]. 軟件,2016,37(11):133-137
氧還原反應(yīng)(ORR, the oxygen reduction reaction)在燃料電池、金屬-空氣電池等能源應(yīng)用上起著重要的作用[1,2]。發(fā)生在這兩種電池體系陰極上的氧還原反應(yīng)存在過電位高、動(dòng)力學(xué)緩慢等問題,因此需要使用陰極催化劑[3,4]。在過去的幾十年中,發(fā)現(xiàn)新型陰極催化劑、提高ORR催化動(dòng)力成為業(yè)內(nèi)關(guān)注的重點(diǎn)。其中,陰極的氧氣電催化劑的能量轉(zhuǎn)化率、穩(wěn)定性和成本是制約能源設(shè)備進(jìn)一步發(fā)展的關(guān)鍵因素[5]。
鉑和鉑基合金材料是目前綜合性能最佳的氧還原催化劑,但由于鉑的價(jià)格昂貴、資源有限,且在陰極的氧環(huán)境下,Pt及其載體的穩(wěn)定性差的原因,限制了規(guī)模實(shí)際應(yīng)用,因此,尋求非貴金屬氧還原電催化劑成為研究熱點(diǎn)[4,6]。目前報(bào)導(dǎo)可知,碳化物[7-11]、聚合物[12-15]、氮化物[16,17]、過渡金屬氧化物和硫化物[18-22]可作為有效的氧還原非貴金屬電催化劑。在上述非貴金屬電催化劑中,過渡金屬氧化物例如錳氧化物擁有儲(chǔ)量豐富和環(huán)境友好等優(yōu)點(diǎn),作為氧還原催化劑材料引起廣泛興趣[20,23-25]。然而,由于電導(dǎo)率低、吸附解離氧能力較差且催化活性位少,含單一金屬元素的錳氧化物對氧還原反應(yīng)的電催化性能仍然有待提高。含多種金屬元素的復(fù)合錳氧化物例如MnCo2O4[23]、CoMn2O4[20,26,27]、NiMn2O4[28,29]
和MnFe2O4[30,31]受到關(guān)注,這類化合物作為氧還原催化劑具有活性高、低成本、制備簡單的特點(diǎn)。根據(jù)上述報(bào)導(dǎo),混合金屬氧化物比單一金屬氧化物有更優(yōu)秀的氧還原電催化性能?;旌辖饘傺趸锞哂辛己秒妼?dǎo)率,這有助于提高電催化活性[30,32]。
I.Roche的研究表明,Mg2+摻雜能夠提高M(jìn)nOx/C的氧還原催化性能[33,34]。但MgMn2O4用于氧還原催化劑的研究還未見報(bào)導(dǎo)。本文研究了MgMn2O4的水熱法制備以及在氧還原反應(yīng)中的電催化性能。
1.1 催化劑的制備
在本研究中,所有的原料都是化學(xué)純級別,沒有通過提純。將1.25mmol乙酸鎂和2.5mmol乙酸錳加入適量去離子水中。持續(xù)攪拌4h后,將溶液轉(zhuǎn)移到高壓水熱釜中。在200℃下水熱12h后,將產(chǎn)物用酒精洗滌離心數(shù)次,再在80℃下干燥。煅燒5h后,得到MgMn2O4產(chǎn)物。
1.2 結(jié)構(gòu)及形貌表征
材料相結(jié)構(gòu)采用RIGAKU D/MX-IIIA型X射線衍射儀(XRD)測定,測試時(shí)采用CuKα靶輻射,以連續(xù)掃描方式采樣,掃描速度為4(°)/min,2θ范圍為10°~90°。材料形貌采用Hitachi S-4800型掃描電子顯微鏡(SEM)觀察,電壓為20kV。
1.3 電化學(xué)測試
電化學(xué)測試測試所用電化學(xué)工作站為上海晨華公司的CHI660E型電化學(xué)工作站以及Autolab公司PGSTAT-204型恒電位儀,旋轉(zhuǎn)電極控制儀則為PINE公司的MSR型。所有測試均在室溫下在0.1M的KOH電解液中進(jìn)行,在進(jìn)行電化學(xué)測試前,先向電解液中通高純O2或N2約30min,以使其中的氧達(dá)到飽和或驅(qū)逐溶液氧,然后在O2或N2氣氛下進(jìn)行電化學(xué)測試。電化學(xué)測試采用三電極體系,包括均勻覆蓋著催化劑薄膜的玻碳旋轉(zhuǎn)圓盤電極(RDE,圓盤直徑為5mm)、Pt片對電極和Hg/HgO參比電極。工作電極的制備:稱取5mg樣品(與Vulcan XC-72R導(dǎo)電炭黑的比例為3∶1)加入到1ml的混合溶液中(超純水:異丙醇=7∶3),再加20μl的質(zhì)量分?jǐn)?shù)為5wt.%的Nafion溶液并超聲分散30分鐘,從而得到均勻分散的催化劑墨水。接下來取20μl的催化劑墨水分三次滴涂到玻碳電極表面,并在室溫條件下干燥成催化劑薄膜。
2.1 結(jié)構(gòu)與形貌分析
圖1為實(shí)驗(yàn)制得的樣品的X射線衍射圖,如圖所示在18.1°、29.2°、31.2°、32.8°、36.3°、38.7°、44.7°、51.7°、60.6°、65.1°出現(xiàn)了明顯的衍射峰,所有峰位均與MgMn2O4的標(biāo)準(zhǔn)卡片(JCPDS No.72-1336)能較好的吻合,分別對應(yīng)其(101)、(112)、(200)、(103)、(211)、(004)、(220)、(105)、(224)、(400)晶面。因此可以確定用本實(shí)驗(yàn)方法制備出的產(chǎn)物是MgMn2O4,并且無其他雜相。
圖1 MgMn2O4樣品的XRD圖譜及其標(biāo)準(zhǔn)衍射圖譜Fig.1 XRD pattern of MgMn2O4sample with the standard diffraction patterns of MgMn2O4
為進(jìn)一步觀察所制備的產(chǎn)物的微觀形態(tài),因此進(jìn)行了掃描電鏡(SEM)表征。圖2是制得的產(chǎn)物表面形貌,圖2 SEM圖像表明,MgMn2O4產(chǎn)物顆粒大小均一,尺寸在500nm左右,說明水熱法制備MgMn2O4可以得到粒度均勻、粒徑較小的目標(biāo)材料。
圖2 MgMn2O4在不同倍數(shù)下的SEM照片F(xiàn)ig.2 SEM images of MgMn2O4at different magnification
2.2 電化學(xué)性能分析
在N2或O2保護(hù)的0.1mol/L KOH溶液中,在室溫下利用旋轉(zhuǎn)圓盤(RDE)采用CHI660E的循環(huán)伏安模塊以及線性伏安掃描模塊分別測試工作電極MgMn2O4的本征電化學(xué)響應(yīng)。分別向電解液中通入
30min左右的高純N2或O2后,在N2或O2飽和氣氛下通過循環(huán)伏安模塊測試工作電極,進(jìn)行電極活化過程的掃描速率為0.5Vs-1,正常測試時(shí)掃描速率為0.05Vs-1;在O2飽和狀態(tài)下,通過線性伏安掃描模塊依次測試O2條件下不同轉(zhuǎn)速條件下的線性伏安曲線(400、800、1200、1600、2000rpm,掃描速率為0.01Vs-1);在O2飽和氣氛下,選取合適的過電勢位置并采用計(jì)時(shí)安培模塊測量1600rpm轉(zhuǎn)速條件下的穩(wěn)定性I-t響應(yīng)曲線。抗甲醇中毒穩(wěn)定性測試方法則是在穩(wěn)定性測試基礎(chǔ)上,在500s時(shí)暫停加入甲醇并迅速繼續(xù)穩(wěn)定性測試(電解液中的甲醇濃度控制為3M)。
圖3是產(chǎn)物分別在N2和O2下的循環(huán)伏安曲線,在N2氣氛下,在0.1-1.1V(vs.RHE)的掃描范圍內(nèi)沒有發(fā)現(xiàn)明顯的氧化和還原峰,說明在堿性環(huán)境中催化劑樣品在該電勢掃描范圍內(nèi)是穩(wěn)定的,沒有氧化/還原反應(yīng)發(fā)生;在O2氣氛下,在0.7V(vs.RHE)出現(xiàn)明顯的氧還原峰,其電流密度為2.0mA·cm-2,表明MgMn2O4具有較好的氧還原催化性能。
圖3 MgMn2O4在N2和O2飽和的0.1M KOH中的循環(huán)伏安曲線Fig.3 Cyclic voltammetry curves of MgMn2O4as ORR catalysts in N2-saturated and O2-saturated 0.1 M KOH
采用旋轉(zhuǎn)圓盤電極(RDE)技術(shù)對樣品的氧還原催化性能進(jìn)一步研究。圖4為MgMn2O4在電極轉(zhuǎn)速為400-2000r/min條件下測試得到的線性掃描伏安曲線(LSV),并以Pt/C(Pt質(zhì)量分?jǐn)?shù)為10%)電極1600rpm轉(zhuǎn)速下的線性掃描伏安曲線作為參照。隨著電極轉(zhuǎn)速的增加,電極表面的濃差極化降低,使得單位面積單位時(shí)間內(nèi)有更多的氧在電極上發(fā)生反應(yīng),從而使電流密度逐漸增大,起始電勢在0.8V,在0.6V左右出現(xiàn)了極限擴(kuò)散電流,電流密度變化得很平緩。電極上負(fù)載量相同的MgMn2O4與商業(yè)Pt/C催化劑在1600rpm得到的線性伏安曲線相比,MgMn2O4樣品的極限電流密度在5.4mA·cm-2,與Pt的極為接近。
圖4 MgMn2O4在O2飽和的0.1M KOH中不同轉(zhuǎn)速下的線性伏安曲線Fig.4 The linear sweep voltammograms (LSVs) of MgMn2O4at different rotation rate in O2-saturated 0.1 M KOH solution.
堿性溶液中,氧還原反應(yīng)存在兩種反應(yīng)機(jī)理。4電子過程和2電子過程,4電子過程氧氣直接被還原為OH-,而2電子過程則產(chǎn)生過氧化物中間體。具體反應(yīng)路徑可以用不同轉(zhuǎn)速下得到的伏安數(shù)據(jù)通過以下Koutecky-Levich(K-L)方程進(jìn)行擬合來分析:
其中J是測量的實(shí)際電流密度,JK和JL分別是動(dòng)力學(xué)電流密度和擴(kuò)散電流密度,ω是rpm形式的電極旋轉(zhuǎn)速率,F(xiàn)為法拉第常數(shù)(96485C mol-1),C為氧氣濃度(1.2x10-6mol cm-3),n為轉(zhuǎn)移電子數(shù)目,D為在0.1M KOH電解液中的氧擴(kuò)散系數(shù)(1.9×10-5cm2s-1),v為0.1M KOH溶液的動(dòng)力學(xué)粘度,在Koutecky-Levich圖中,(J-1)作為Y軸,(ω1/2)作為X軸,(JK-1)表示截距。
在電壓為0.3-0.7Vvs.RDH范圍內(nèi)不同轉(zhuǎn)速下所對應(yīng)的極限擴(kuò)散電流密度計(jì)算氧還原反應(yīng)過程中的電子轉(zhuǎn)移數(shù)目n,繪制出總電流密度(J-1)與旋轉(zhuǎn)角速率均方根(ω1/2)的對應(yīng)圖。圖5為圖4相應(yīng)的Koutecky-Levich圖,得到K-L方程擬合曲線呈線性且平行線良好,表明0.3-0.7Vvs.RDH電勢下的氧氣還原反應(yīng)電子轉(zhuǎn)移數(shù)相同,從直線斜率可以計(jì)算出氧還原反應(yīng)中的電子轉(zhuǎn)移數(shù)n均接近4,以上充分說明在這種催化條件下,氧還原反應(yīng)以四電子途徑為主,表現(xiàn)反應(yīng)方程式為:O2+2H2O+4e-=4OH-。通過以上實(shí)驗(yàn)結(jié)果表明,所制備的MgMn2O4催化劑具有較好的氧還原電催化性能,有望成為新型的氧還原催化劑。
圖5 不同電位下MgMn2O4電極的K-L圖Fig.5 Corresponding K-L plots at different potentials for MgMn2O4electrode
催化劑的穩(wěn)定性是燃料電池技術(shù)最受關(guān)注的因素之一,固定電極轉(zhuǎn)速為1600rpm,在氧飽和的0.1M KOH溶液中采用計(jì)時(shí)電流法進(jìn)行10000s的催化劑穩(wěn)定性測試。如圖6所示,相應(yīng)的I-t明顯的反映出MgMn2O4催化劑較商業(yè)Pt/C催化劑具有更緩慢的衰減速度,經(jīng)過10000s后電流仍可達(dá)到初始值的91.7%。相反的,經(jīng)過10000s后Pt催化劑逐漸衰減到初始電流的86.3%左右。這個(gè)結(jié)果很明顯的表明了MgMn2O4催化劑比Pt催化劑有更好的電化學(xué)穩(wěn)定性。
圖6 O2飽和的0.1M KOH電解液中MgMn2O4和Pt/C在1600rpm轉(zhuǎn)速下的計(jì)時(shí)電流曲線Fig.6 The chronoamperometric responses of MgMn2O4and Pt/C catalysts at the rotation rate 1600 rpm in a 0.1M KOH solution saturated with O2
此外考慮到甲醇燃料電池中的甲醇由陽極向陰極的滲透問題,必須考慮到燃料分子的交叉影響,供給到陽極的甲醇有時(shí)會(huì)通過質(zhì)子交換膜滲透到陰極并影響到陰極催化的活性。所以優(yōu)良的氧還原催化劑應(yīng)該對燃料分子的反應(yīng)呈惰性,但不幸的是商業(yè)Pt/C催化劑對甲醇有很高的反應(yīng)活性。從圖7的氧還原計(jì)時(shí)電流曲線可以看出在500s加入甲醇后商業(yè)Pt/C催化劑的電流迅速衰減到只有初始值的1/4,而MgMn2O4催化劑在加入甲醇后電流基本上沒有發(fā)生明顯的衰減,表現(xiàn)出卓越的氧還原選擇性。這個(gè)結(jié)果明顯的反應(yīng)出在抗甲醇中毒方面MgMn2O4催化劑比商業(yè)Pt/C催化劑有更好的抗甲醇毒性。
圖7 在加入3M甲醇O2飽和的0.1M KOH電解液中,MgMn2O4和Pt/C在1600rpm轉(zhuǎn)速下的計(jì)時(shí)電流曲線Fig.7 The chronoamperometric response of Pt/C and MgMn2O4electrodes adding 3M methanol after 500 s in O2-saturated 0.1M KOH at 1600rpm
本文通過水熱法成功制備MgMn2O4納米顆粒,并研究其氧還原電催化性能。MgMn2O4納米顆粒結(jié)晶良好,粒度均勻,粒徑約500nm。初步研究結(jié)果表明:堿性溶液中,MgMn2O4具有較好的氧還原電催化活性,催化劑催化的氧還原反應(yīng)主要以4e-過程進(jìn)行,其電化學(xué)活性接近商業(yè)Pt/C催化劑,而穩(wěn)定性和抗甲醇中毒性能超越商業(yè)Pt/C催化劑。
[1] LEE J S, PARK G S, LEE H I, et al. Ketjenblack Carbon Supported Amorphous Manganese Oxides Nanowires as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Solutions[J]. Nano Letters, 2011, 11(12)∶5362-5366.
[2] WINTER M and BRODD R.J. What are batteries, fuel cells, and supercapacitors?[J] Chemical Reviews, 2004, 104(10)∶4245-4269.
[3] CHENG F and CHEN J. Metal-air batteries∶ from oxygen reduction electrochemistry to cathode catalysts[J]. Chemical Society Reviews, 2012, 41(6)∶ 2172-92.
[4] YUAN C, WU H B, XIE Y, et al. Mixed transition-metal oxides∶ design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition, 2014, 53(6)∶1488-504.
[5] HU D P, WANG H J, WANG J, et al. Carbon-Supported Cu-Doped Mn-Co Spinel-Type Oxides Used as Cathodic Catalysts for the Oxygen Reduction Reaction in Dual-Chambered Microbial Fuel Cells[J]. Energy Technology,
2015, 3(1)∶ 48-54.
[6] WANG L, AMBROSI A, PUMERA M. "Metal-free" catalytic oxygen reduction reaction on heteroatom- doped graphene is caused by trace metal impurities[J]. Angew Chem Int Ed Engl, 2013, 52(51)∶ p. 13818-21.
[7] GONG K P , DU F, XIA Z H, et al. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction[J]. Science, 2009, 323(5915)∶ 760-764.
[8] JIAO Y, ZHENG Y, JIARONIEC M, et al. Origin of the Electrocatalytic Oxygen Reduction Activity of Graphene-Based Catalysts∶ A Roadnnap to Achieve the Best Performance[J]. Journal of the American Chemical Society, 2014, 136(11)∶ 4394-4403.
[9] LIANG J, DU X, GIBSON C, et al. N-Doped Graphene Natively Grown on Hierarchical Ordered Porous Carbon for Enhanced Oxygen Reduction[J]. Advanced Materials, 2013, 25(43)∶ 6226-6231.
[10] LI Y G, ZHOU W, WANG H, et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes[J]. Nature Nanotechnology, 2012, 7(6)∶ 394-400.
[11] WU L F, FENG H B, LIU M J, et al. Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction[J]. Nanoscale, 2013, 5(22)∶ 10839-10843.
[12] BASHYAM R and ZELENAY P. A class of non-precious metal composite catalysts for fuel cells[J]. Nature, 2006, 443(7107)∶ 63-66.
[13] JENSEN W B, JENSEN W O, FORSYTH M, et al. High rates of oxygen reduction over a vapor phase-polymerized PEDOT electrode[J]. Science, 2008, 321(5889)∶ 671-674.
[14] WU G, MORE K L, JOHNSTON C M, et al. High- Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt[J]. Science, 2011, 332(6028)∶443-447.
[15] LU Q, ZHOU Y K, Hierarchical Polythiophene-coated MnO2 Nanosheets as Non-precious Electro-catalyst to Oxygen Reduction[J]. Functional Materials Letters, 2010, 3(2)∶ 89-92.
[16] DONG Y Z, WU Y M, LIU M J, et al. Electrocatalysis on Shape-Controlled Titanium Nitride Nanocrystals for the Oxygen Reduction Reaction[J]. Chemsuschem, 2013, 6(10)∶2016-2021.
[17] LIU M J, DONG Y Z, WU Y M, et al. Titanium Nitride Nanocrystals on Nitrogen-Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction[J]. Chemistry-A European Journal, 2013, 19(44)∶ 14781-14786.
[18] LIANG Y Y, LI Y G, WANG H L, et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nature Materials, 2011, 10(10)∶ 780-786.
[19] ZHANG G Q, XIA B Y, XU X Y, et al. General Formation of Complex Tubular Nanostructures of Metal Oxides for the Oxygen Reduction Reaction and Lithium-Ion Batteries[J]. Angewandte Chemie-International Edition, 2013, 52(33)∶8643-8647.
[20] CHENG F Y, SHEN J A, PENG B, et al. Rapid room- temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nature Chemistry, 2011, 3(1)∶ 79-84.
[21] LU S F, PAN J, HUANG A B,et al. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52)∶ 20611-20614.
[22] WANG H L, LIANG Y Y, LI Y G, et al. Co1-xS-Graphene Hybrid∶ A High-Performance Metal Chalcogenide Electrocatalyst for Oxygen Reduction[J]. Angewandte Chemie-International Edition, 2011, 50(46)∶ 10969-10972.
[23] LIANG Y Y, WANG H L, ZHOU J G, et al. Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts[J]. Journal of the American Chemical Society, 2012, 134(7)∶ 3517-3523.
[24] YOO E, ZHOU H. Li-Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts[J]. Acs Nano, 2011, 5(4)∶ 3020-3026.
[25] CHRISTENSEN P A, HAMNETT A, LINARES-MOYA D. Oxygen reduction and fuel oxidation in alkaline solution[J]. Physical Chemistry Chemical Physics, 2011, 13(12)∶ 5206-5214.
[26] GUO W H, MA X X, ZHANG X L, et al. Spinel CoMn2O4 nanoparticles supported on a nitrogen and phosphorus dual doped graphene aerogel as efficient electrocatalysts for the oxygen reduction reaction[J]. Rsc Advances, 2016, 6(99)∶96436-96444.
[27] YANG H C, HU F, ZHANG Y J, et al. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction reaction electrocatalysts[J]. Nano Research, 2016, 9(1)∶ 207-213.
[28] HE X B, YIN F X, LI Y H, et al. NiMnO3/NiMn2O4 Oxides Synthesized via the Aid of Pollen∶ Ilmenite/Spinel Hybrid Nanoparticles for Highly Efficient Bifunctional Oxygen Electrocatalysis[J]. Acs Applied Materials & Interfaces, 2016, 8(40)∶ 26740-26757.
[29] Ponce J, REHSPRINGER J L, POILLERAT G, et al. Electrochemical study of nickel-aluminium-manganese spinel NixAl1-xMn2O4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media[J]. Electrochimica Acta, 2001, 46(22)∶ 3373- 3380.
[30] ZHU H, ZHANG S, HUANG Y X, et al. Monodisperse M(x)Fe(3-x)O4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction[J]. Nano Letters, 2013, 13(6)∶ 2947-51.
[31] KHILARI S, PANDIT S, VARANASI J, et al. Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell[J]. Acs Applied Materials & Interfaces, 2015, 7(37)∶ 20657- 20666.
[32] KUO C.C, Lan W J, CHEN C H. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials∶ highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide[J]. Nanoscale, 2014, 6(1)∶ 334-341.
[33] ROCHE I, CHATENET E, CHATENET M. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the Oxygen Reduction Reaction (ORR) in alkaline medium Physical characterizations and ORR mechanism[J]. J. Phys. Chem. C, 2007, 111∶ 1434-1443.
[34] WU Q M, JIANG L H, TANG Q W, et al. Activity and stability of the Ni(OH)2MnOx/C composite for oxygen reduction reaction in alkaline solution[J]. Electrochimica Acta, 2013, 91∶ 314-322.
Preparation and electrochemical performance of MgMn2O4catalyst towards the oxygen reduction
HOU Rui, Lei Ming
(Beijing University of Posts and Telecommunications (Beijing) School of Sciences, Beijing 100876, China)
In this paper. The MgMn2O4nanoparticles was synthetized from Mg(CH3COO)2·4H2O and Mn(CH3COO)2·4H2O by a facile solvothermal process and calcining method. The microstructure of the catalyst was characterized by X-Ray Diffraction measurements and field-emission scanning electron microscopy(FESEM). The electrocatalytic activities for oxygen reduction reaction(ORR), stability and resistance to methanol toxic were investigated by Cyclic Voltammetry(CV) and Rotating Disk Electrode(RDE) in alkaline solution. The results showed that the MgMn2O4had high oxygen reduction activity, the limited current density was close to Pt/C catalyst, the stability and resistance to methanol toxic of the catalyst were outstanding than commercial Pt/C catalyst.
Fuel cell; Non-noble Metal Catalyst; Oxygen Reduction Reaction; MgMn2O4
O643
A
10.3969/j.issn.1003-6970.2016.11.029
侯瑞(1992-),女,研究生,主要研究方向:燃料電池氧還原催化劑。
雷鳴,男,副教授。主要研究方向:納米材料與器件及其先關(guān)基礎(chǔ)科學(xué)問題。