• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      鎂合金表面碳納米管/硅烷復合膜的耐蝕性能*

      2016-12-16 01:09:04吳海江楊飛英彭成章郭文敏王小明
      邵陽學院學報(自然科學版) 2016年3期
      關鍵詞:點滴硅烷耐蝕性

      吳海江,楊飛英,彭成章,郭文敏,王小明

      (1.邵陽學院 機械與能源工程系,湖南 邵陽,422000;2.湖南科技大學 機械設備健康維護湖南省重點實驗室,湖南 湘潭,411201)

      ?

      鎂合金表面碳納米管/硅烷復合膜的耐蝕性能*

      吳海江1,楊飛英1,彭成章2,郭文敏1,王小明1

      (1.邵陽學院 機械與能源工程系,湖南 邵陽,422000;2.湖南科技大學 機械設備健康維護湖南省重點實驗室,湖南 湘潭,411201)

      為了進一步改善AZ91D鎂合金表面單一硅烷膜的耐蝕性能,將不同含量碳納米管添加到γ-氨丙基三乙氧基硅烷(KH-550)溶液中,借助簡單浸漬法在其表面制備了碳納米管/硅烷復合膜。通過點滴試驗、中性鹽霧試驗、全浸腐蝕試驗和E-t曲線測試評價了復合膜的耐蝕性能。結果表明:與單一硅烷膜相比,碳納米管/硅烷復合膜的致密性較高,有效地阻擋了侵蝕性介質向基體的滲透,顯著提高了AZ91D鎂合金的耐蝕能力;隨著碳納米管含量的增加,碳納米管/硅烷復合膜的耐蝕性能先上升后下降,當碳納米管含量為0.3 g/L時復合膜的耐蝕性能最佳。

      AZ91D鎂合金;γ-氨丙基三乙氧基硅烷膜;碳納米管;耐蝕性能

      作為最輕的金屬結構材料,鎂合金因其密度低、比強度高、生物相容性好、電子屏蔽能力強和可回收性而廣泛應用于航空航天、汽車、3C產(chǎn)品、生物醫(yī)學等領域[1-3]。但由于鎂合金化學性質非?;顫姡瑯O易與氧、水汽等發(fā)生作用,耐蝕性較差[4,5],成為鎂合金發(fā)展的瓶頸,大大限制了其實際應用。傳統(tǒng)上采用工藝簡單、經(jīng)濟效益高的鉻酸鹽鈍化膜為鎂合金提供保護,但由于六價鉻毒性高且致癌而受到嚴格限制使用[6,7]。因此,鎂合金無鉻鈍化技術日益成為科研人員的關注熱點。

      國內外研究者先后研發(fā)了鉬酸鹽[8-11]、錫酸鹽[12-14]、稀土金屬鹽[14-17]、高錳酸鹽[18-20]等主要轉化處理工藝,但是此類無鉻鈍化工藝的腐蝕防護效果很大程度上依賴于轉化膜層的厚度,而它們達到一定厚度后就容易出現(xiàn)開裂脫落現(xiàn)象[21]。于是研究者們把目光轉向有機物處理,其中硅烷化處理以其工藝簡單、對環(huán)境友好而受到越來越多的重視。自美國Cincinnati大學van Ooij教授帶領的團隊于上世紀90年代率先嘗試以來,應用于鋼鐵[22-24]、鋁合金[25-27]、鍍鋅鋼[27-29]、鎂合金[30,31]基體取得了令人驚喜的研究成果。然而,傳統(tǒng)意義上的硅烷膜耐蝕性能還不能令人非常滿意,其中的重要原因是硅烷膜自身的厚度很小,所起的阻擋作用有限,同時機械強度不夠,最終限制了防護性能的發(fā)揮[32]。碳納米管具有獨特的線狀結構、大的比表面積和良好的導電性能,能夠在復合涂層內部形成良好的導電網(wǎng)絡,有助于消除金屬基體各部位間的電位差異,從而抑制金屬的電化學腐蝕[33,34],同時利用其優(yōu)良的力學特性改善硅烷膜的機械強度,發(fā)揮其防護性能。

      本文將AZ91D鎂合金簡單浸漬在不同含量碳納米管的γ-氨丙基三乙氧基硅烷(KH-550)溶液中,取出后經(jīng)過固化處理,獲得了碳納米管/硅烷復合膜,應用點滴試驗、中性鹽霧試驗、全浸腐蝕試驗和電化學測試等手段評價了膜層的耐蝕性能。

      1 試驗

      1.1 基體前處理

      選取AZ91D鎂合金作為基體材料,加工成50mm×40mm×2mm大小,其化學成分見表1。試樣依次采用360~1500號水砂紙逐級打磨→水洗→在丙酮溶液中超聲波清洗5min→去離子水洗→堿洗(60g/L NaOH+10g/L Na3PO4,70℃,10min)→去離子水洗,然后用吹風機吹干后置于干燥器中備用。

      表1 AZ91D鎂合金的化學成分(質量分數(shù),%)

      1.2 碳納米管/硅烷復合膜制備

      在室溫條件下,γ-氨丙基三乙氧基硅烷(KH-550)體積分數(shù)為5%,無水乙醇去離子水體積比85∶15,pH值9,水解時間2h;隨之將0g/L、0.1g/L、0.3g/L、0.5g/L、0.7g/L碳納米管加入到適量無水乙醇溶液中磁力攪拌30min分散,然后取分散溶液添加到水解好的硅烷溶液中,接著磁力攪拌5~10min;最后將預處理好的AZ91D鎂合金試樣浸入配制好的碳納米管摻雜改性KH-550硅烷溶液中90s,緩慢提拉出液面后用壓縮空氣吹掉鎂合金表面殘留的溶液,馬上置于ZK-82BB型電熱真空干燥箱(上海市實驗儀器總廠)中加熱固化,固化溫度為120℃,固化時間為60min[35]。

      1.3 性能檢測

      (1)點滴試驗 依據(jù)HB5061277標準,點滴溶液由1mL HNO3+0.05g KMnO4+100mL H2O配制而成,滴至試樣表面適當?shù)奈恢?,觀察點滴溶液由紅色轉變?yōu)闊o色的時間,以變色時間的長短來評價試樣的耐蝕性能好壞。每個試樣測試5次,取其平均值。

      (2)中性鹽霧試驗 按照ASTMB117-2003進行,溶液為5%NaCl水溶液,箱內溫度為35±2℃,鹽霧沉降速度為1~2mL/(h·80cm2),氯化鈉收集溶液濃度50g/L±5g/L,pH值6.5~7.2。將試樣放入鹽霧箱中,表面與垂直方向成30°角,每天連續(xù)噴8h停16h作為一個試驗周期,記錄試樣的腐蝕面積隨噴霧周期的變化情況。試驗時采用5片平行試樣,取其平均值。

      (3)全浸腐蝕試驗 按照JB/T6073-1992進行,浸漬液為5%NaCl水溶液,浸泡168h。先稱量浸泡前的試樣質量m1,并測定其表面積S。浸泡試驗結束后取出試樣并清除腐蝕產(chǎn)物,烘干稱重,質量為m2,精確至0.1mg,則其失重△m=m1-m2,腐蝕速率v=△m/(St),t為浸泡時間。同時用數(shù)碼相機觀察試樣宏觀腐蝕形貌。試驗時采用5片平行試樣,取其平均值。

      (4)E-t曲線測量 測試采用常規(guī)的三電極體系,以飽和甘汞電極(SCE)作為參比電極、鉑電極作為輔助電極、待測試樣作為工作電極,在CHI660E電化學工作站(上海辰華儀器公司)上進行。試樣用環(huán)氧樹脂涂封后暴露10mm×10mm大小區(qū)域,腐蝕介質為5%NaCl水溶液,在室溫、不除氣的條件下測量試樣開路電位隨浸泡時間的變化曲線。

      2 結果與討論

      2.1 點滴試驗

      圖1所示為經(jīng)不同含量碳納米管硅烷溶液處理的鎂合金試樣抗點滴變色時間??瞻祖V合金試樣幾乎是瞬間就變色了,抗點滴腐蝕的時間極短。從圖1中可以看出,經(jīng)純KH-550溶液處理鎂合金試樣的抗點滴變色時間顯著延長;而添加碳納米管后,所制備的碳納米管/硅烷復合膜抗點滴變色時間又邁上了一個新臺階,且隨著碳納米管含量的增加,復合膜的抗點滴變色時間呈現(xiàn)先升后降的變化規(guī)律,其中在含0.3g/L碳納米管硅烷溶液中制備的復合膜抗點滴變色時間最長。說明此時碳納米管/硅烷復合膜對AZ91D有最佳的防護性能,它有效地阻遏了腐蝕介質向基體的滲入。

      圖1 經(jīng)不同含量碳納米管硅烷溶液處理鎂合金試樣點滴試驗時間

      2.2 中性鹽霧試驗

      圖2所示為經(jīng)不同含量碳納米管硅烷溶液處理的鎂合金試樣在中性鹽霧中腐蝕面積隨噴霧周期的變化曲線??瞻譇Z91D鎂合金試樣噴霧2h就有40%左右的表面被腐蝕,8h后腐蝕斑點幾乎布滿整個表面[35]。由圖2可見,碳納米管的加入顯著地增強了硅烷膜對AZ91D鎂合金基體的防護能力。隨著碳納米管含量的增加,硅烷復合膜的腐蝕面積減小,耐蝕性能提高;當硅烷溶液中碳納米管含量超過0.3g/L后,所得硅烷復合膜的腐蝕面積逐漸增大,耐蝕性能反而下降。原因可能是當加入過量的碳納米管時,破壞了硅烷水解產(chǎn)物Si-OH之間的脫水縮合反應,削弱了所形成的化學鍵鍵合力[26,34],使得硅烷分子與AZ91D鎂合金基體之間的吸附能力變差,最終獲得致密性下降的復合膜,導致降低了其對AZ91D鎂合金基體的腐蝕防護能力。試驗結果進一步印證了點滴試驗結果。

      圖2 經(jīng)不同含量碳納米管硅烷溶液處理鎂合金試樣中性鹽霧試驗后的腐蝕面積

      2.3 全浸腐蝕試驗

      圖3所示為空白鎂合金、硅烷膜、最佳碳納米管/硅烷復合膜試樣浸泡在5%NaCl溶液中168h后的表面宏觀腐蝕形貌。對于空白鎂合金(圖3(a)),自浸泡開始就反應劇烈,在試樣表面聚集生成許多氣泡,很快就出現(xiàn)了明顯的腐蝕斑點,168h后表面已嚴重腐蝕,布滿了大大小小的腐蝕坑,幾乎看不到完好區(qū)域,平均腐蝕速率達到了125.8g/(m2·h);硅烷膜試樣(圖3(b))點蝕萌生時間約為30h,且擴展較快,168h后表面也被嚴重腐蝕,但仍存在部分完好區(qū)域,平均腐蝕速率達71.2g/(m2·h);而碳納米管/硅烷復合膜試樣(圖3(c))浸泡約50h后才出現(xiàn)第一個腐蝕點,但擴展較慢,168h后表面僅有少量的腐蝕斑點,仍保留有大量完好完整區(qū)域,平均腐蝕速率僅有26.6g/(m2·h),說明碳納米管/硅烷復合膜顯著提高了AZ91D鎂合金的耐蝕能力,它很好地阻擋了侵蝕性介質向基體的滲透。

      (a)空白鎂合金 (b)硅烷膜(c)碳納米管/硅烷復合膜

      2.4 E-t曲線

      圖4給出了空白鎂合金、硅烷膜、最佳碳納米管/硅烷復合膜試樣烷膜試樣浸泡在5%NaCl溶液中7天開路電位隨浸泡時間的變化曲線。一般來說,防護膜層的開路電位越高,說明膜層在腐蝕介質中越穩(wěn)定,反映了膜層的致密性越高,越能更好地阻止侵蝕性介質對金屬基體的入侵[20]。從圖4中可以看出,浸泡在5%NaCl溶液中后,隨著浸泡時間的增加,空白鎂合金試樣的開路電位在較短時間內就穩(wěn)定在-1.66V附近;而硅烷膜和碳納米管/硅烷復合膜則經(jīng)歷了較長的時間才穩(wěn)定下來,分別穩(wěn)定在-1.52V和-1.29V左右的較高水平,明顯高于空白鎂合金的開路電位。這是因為對于未經(jīng)任何處理的空白鎂合金來說,腐蝕性介質較容易滲透到基體表面,腐蝕反應易于達到穩(wěn)態(tài);而對于硅烷膜和碳納米管/硅烷復合膜,溶液很難穿透它而到達鎂合金基體表面,腐蝕反應很難在短時間內達到穩(wěn)態(tài)。這就意味著碳納米管的加入導致硅烷膜層變得更加致密,同時碳納米管獨特的長鏈結構使得腐蝕介質向鎂合金基體的滲透路徑更為復雜[34,36],有效地阻礙了侵蝕性介質向基體的滲透,從而大大提高了對鎂合金的腐蝕防護作用。

      浸泡時間/h

      3 結論

      (1)點滴試驗、中性鹽霧試驗、全浸腐蝕試驗和E-t曲線測試結果表明,AZ91D鎂合金經(jīng)不同含量碳納米管的γ-氨丙基三乙氧基硅烷溶液處理后,獲得的碳納米管/硅烷復合膜耐蝕性能優(yōu)異。

      (2)隨著碳納米管含量的增加,AZ91D鎂合金表面碳納米管/硅烷復合膜的耐蝕性能呈現(xiàn)先升后降的變化規(guī)律,其中含0.3g/L碳納米管硅烷溶液中制備的復合膜耐蝕性能最佳。

      [1]Y.Wu,Y.P.Zong,J.F.Jin.Grain growth in a nanostructured AZ31 Mg alloy containing second phase particles studied by phase field simulations [J].Science China Materials,2016,59(5):355-362.

      [2]A.B.Ikhe,A.B.Kale,J.Jeong,et al.Perfluorinated polysiloxane hybridized with graphene oxide for corrosion inhibition of AZ31 magnesium alloy [J].Corrosion Science,2016,109:238-245.

      [3]R.C.Zeng,Y.Hu,F.Zhang,et al.Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy [J].Transactions of Nonferrous Metals Society of China,2016,26(2):472-483.

      [4]S.Feliu,I.Llorente.Corrosion product layers on magnesium alloys AZ31 and AZ61:Surface chemistry and protective ability [J].Applied Surface Science,2015,347:736-746.

      [5]R.Kotoka,N.K.Yamoah,K.Mensah-Darkwa,et al.Electrochemical corrosion behavior of silver doped tricalcium phosphate coatings on magnesium for biomedical application [J].Surface and Coatings Technology,2016,292:99-109.

      [6]A.S.Hamdy,M Farahat.Chrome-free zirconia-based protective coatings for magnesium alloys [J].Surface and Coatings Technology,2010,204(16-17):2834-2840.

      [7]E.Zuriaga-Agusti,M.V.Galiana-Aleixandre,A.Bes-Pia,et al.Pollution reduction in an eco-friendly chrome-free tanning and evaluation of the biodegradation by composting of the tanned leather wastes [J].Journal of Cleaner Production,2015,87:874-881.

      [8]T.Ishizaki,Y.Masuda,K.Teshima.Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection [J].Surface and Coatings Technology,2013,217:76-83.

      [9]Z.Y.Yong,J.Zhu,C.Qiu,et al.Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection [J].Applied Surface Science,2008,255(5):1672-1680.

      [10]Y.W.Song,D.Y.Shan,R.S.Chen,et al.An environmentally friendlymolybdate/phosphate black film on Mg-Zn-Y-Zr alloy [J].Surface and Coatings Technology,2010,204(20):3182-3187.

      [11]劉俊瑤,李錕,雷霆.AZ31鎂合金表面鉬酸鹽轉化膜的制備與耐蝕性能 [J].粉末冶金材料科學與工程,2016,21(1):137-145.

      [12]X.L.Liu,T.Zhang,Y.W.Shao,et al.In-situ study of the formation process of stannate conversion coatings on AZ91D magnesium alloy using electrochemical noise [J].Corrosion Science,2010,52(3):892-900.

      [13]邵忠財,王明,張慶芳.有機添加劑對AZ91D鎂合金錫酸鹽轉化膜性能的影響 [J].稀有金屬材料與工程,2015,44(6):1541-1545.

      [14]Y.L.Lee,Y.R.Chu,F.J.Chen,et al.Mechanism of the formation of stannate and cerium conversion coatings on AZ91D magnesium alloys [J].Applied Surface Science,2013,276:578-585.

      [15]雷黎,王昕,徐海港.鎂合金鈰轉化膜在NaCl溶液中的腐蝕行為及腐蝕機理 [J].中國有色金屬學報,2015,25(1):125-132.

      [16]J.Sun,G.Wang.Preparation and corrosion resistance of cerium conversion coatings on AZ91D magnesium alloy by acathodic electrochemical treatment [J].Surface and Coatings Technology,2014,254:42-48.

      [17]L.Chen,C.G.Chen,N.N.Wang,et al.Study of Cerium and Lanthanum Conversion Coatings on AZ63 Magnesium Alloy Surface [J].Rare Metal Materials and Engineering,2015,44(2):333-338.

      [18]H.Zhang,G.C.Yao,S.L.Wang,et al.A chrome-free conversion coating for magnesium-lithium alloy by a phosphate-permanganate solution [J].Surface and Coatings Technology,2008,202(9):1825-1830.

      [19]S.Y.Jian,Y.R.Chu,C.S.Lin.Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance [J].Corrosion Science,2015,93:301-309.

      [20]Y.L.Lee,Y.R.Chu,W.C.Li,et al.Effect of permanganate concentration on the formation and properties of phosphate/permanganate conversion coating on AZ31 magnesium alloy [J].Corrosion Science,2013,70:74-81.

      [21]J.T.Lu,H.J.Wu,G.Kong,et al.Growth and corrosion behavior of rare earth film on hot-dip galvanized steel [J].Transactions of Nonferrous Metals Society of China,2006,16(6):1397-1401.

      [22]V.Subramanian,W.J.vanOoij.Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes [J].Corrosion,1998,54(3):204-215.

      [23]T.van Schaftinghen,C.Le Pen,H.Terryn,et al.Investigation of the barrier properties of silanes on cold rolled steel [J].Electrochimica Acta,2004,49(17-18):2997-3004.

      [24]S.M.Hanetho,I.Kaus,A.Bouzga,et al.Synthesis and characterization of hybrid aminopropyl silane-based coatings on stainless steel substrates [J].Surface and Coatings Technology,2014,238:1-8.

      [25]A.Seth,W.J.vanOoij,P.Puomi,et al.Novel,one-step,chromate-free coatings containing anticorrosion pigments for metals—An overview and mechanistic study [J].Progress in Organic Coatings,2007,58(2-3):136-145.

      [26]A.Batan,N.Mine,B.Douhard,et al.Evidence of covalent bond formation at the silane-metal interface during plasma polymerization of bis-1,2-(triethoxysilyl)ethane (BTSE) on aluminium [J].Chemical Physics Letters,2010,493(1-3):107-112.

      [27]D.Q.Zhu,W.J.vanOoij.Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine [J].Electrochimica acta,2004,49(7):1113-1125.

      [28]U.Bexell,T.M.Grehk.A corrosion study of hot-dip galvanized steel sheet pre-treated with γ-mercaptopropyltrimethoxysilane [J].Surface and Coatings Technology,2007,201(8):4734-4742.

      [29]P.R.Sere,M.Banera,W.A.Egli,et al.Effect on temporary protection and adhesion promoter of silane nanofilms applied on electro-galvanized steel [J].International Journal of Adhesion and Adhesives,2016,65:88-95.

      [30]F.Zucchi,A.Frignani,V.Grassi,et al.Organo-silane coatings for AZ31 magnesium alloy corrosion protection [J].Materials Chemistry and Physics,2008,110(2-3):263-268.

      [31]R.L.Zhu,J.Zhang,W.Gao.Effect of silane on galvanic corrosion between EW75 magnesium alloy and TC4 alloy [J].Rare Metal Materials and Engineering,2015,44(8):1838-1844.

      [32]胡吉明,王曉梅,季衛(wèi)剛,等.防護性硅烷膜的摻雜改性研究進展 [J].材料科學與工程學報,2008,26(5):794-797.

      [33]李恒,李澄,王加余.含碳納米管有機-無機復合涂層的制備與防護性能 [J].復合材料學報,2010,27(6):38-44.

      [34]B.Zeybek,E.Aksun,A.Uge.Investigation of corrosion protection performance of poly(N-methylpyrrole)-dodecylsulfate/multi-walledcarbon nanotubes composite coatings on the stainless steel [J].Materials Chemistry and Physics,2015,163:11-23.

      [35]吳海江,楊飛英,彭成章,等.AZ91D壓鑄鎂合金表面硅烷膜固化工藝的優(yōu)化 [J].材料保護,2015,48(8):41-43.

      [36]M.F.Montemor,M.G.S.Ferreira.Analytical characterisation and corrosion behaviour of bis-aminosilane coatings modified with carbon nanotubes activated with rare-earth salts applied on AZ31 Magnesium alloy [J].Surface and Coatings Technology,2008,202(19):4766-4774.

      Corrosion resistance of carbon nanotubes/silane composite coatings on AZ91D magnesium alloy

      WU Haijiang1,YANG Feiying1,PENG Chengzhang2,GUO Wenmin1,WANG Xiaoming1

      (1.Department of Mechanical and Energy Engineering,Shaoyang University,Shaoyang 422000,China;2.Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment,Hunan University of Science and Technology,Xiangtan 411201,China)

      In order to further improve the corrosion resistance of the single silane coating on AZ91D magnesium alloy,which was treated in γ-APS solution with different concentrations of the carbon nanotubes,the carbon nanotubes/silane composite coatings were prepared.The corrosion resistance of the composite coatings were evaluated by drop test,neutral salt spray test,immersion corrosion test and potential-time curve test.The results revealed that the compactness of the carbon nanotubes/silane coatings were higher than the single silane coating,which significantly improved the corrosion resistance of AZ91D magnesium alloy by effectively blocking the infiltration of corrosive medium to the substrate.With the increase of the concentrations of the carbon nanotubes,the corrosion resistance of the carbon nanotubes/silane composite coatings first increased and then decreased.The carbon nanotubes/silane composite coatings had the optimum corrosion resistance when the concentration of the carbon nanotubes was 0.3g/L.

      AZ91D magnesium alloy; γ-APS coating; carbon nanotubes; corrosion resistance

      1672-7010(2016)03-0069-07

      2016-06-30

      湖南省自然科學基金資助項目(2015JJ2064);湖南省教育廳青年項目(15B213);邵陽市科技計劃項目(2015JH36)

      吳海江(1975-),男,安徽淮南人,博士,副教授,從事金屬材料腐蝕與防護研究;E-mail: haijiang_wu@126.com

      TG174.4

      A

      猜你喜歡
      點滴硅烷耐蝕性
      環(huán)保之心 匯聚點滴
      環(huán)保之心·匯聚點滴
      超支化聚碳硅烷結構、交聯(lián)方法及其應用研究進展
      陶瓷學報(2020年5期)2020-11-09 09:22:48
      硅烷包覆膨脹型阻燃劑共混改性粘膠纖維的研究
      磷對鋅-鎳合金耐蝕性的影響
      硯邊點滴
      中國篆刻(2017年3期)2017-05-17 06:20:47
      AZ31B鎂合金復合鍍鎳層的制備及其耐蝕性研究
      超級奧氏體不銹鋼254SMo焊接接頭耐蝕性能
      焊接(2016年9期)2016-02-27 13:05:20
      喵夭家的環(huán)保點滴
      硅烷交聯(lián)聚乙烯催化劑的研究進展
      上海塑料(2015年3期)2015-02-28 14:52:05
      新民市| 宁德市| 富源县| 德安县| 三穗县| 辉县市| 许昌县| 益阳市| 吉木萨尔县| 台中市| 松原市| 株洲县| 石渠县| 达州市| 柳州市| 昆明市| 同德县| 华池县| 宜君县| 绿春县| 佛冈县| 寿光市| 卢湾区| 兴隆县| 梁平县| 寻乌县| 牙克石市| 昌江| 六盘水市| 滨州市| 海伦市| 共和县| 台安县| 景泰县| 花莲县| 衡东县| 万荣县| 大方县| 海城市| 新沂市| 贵州省|