沈俊,袁平,唐俊明,楊建業(yè),李興元,張蕾,趙繼先,張煥鑫,薛仕珍,馮怡,王家寧
· 論著 ·
Meox1在心肌梗死大鼠心肌中的表達(dá)情況
沈俊1,2,袁平2,唐俊明1,楊建業(yè)1,李興元1,張蕾1,趙繼先2,張煥鑫2,薛仕珍2,馮怡2,王家寧1,2
目的 分析同源盒基因Meox1在心肌梗死大鼠心肌中的表達(dá)情況。方法 清潔級雄性SD大鼠20只,隨機分入心肌梗死組和假手術(shù)組,每組10只。心肌梗死組采用結(jié)扎左冠狀動脈前降支構(gòu)建心肌梗死模型,手術(shù)過程死亡2只。假手術(shù)組僅穿線不結(jié)扎。術(shù)后7 d處死大鼠,制作石蠟切片,HE染色以及Masson染色觀察心肌組織變化,免疫組化法檢測Meox1的表達(dá)水平。結(jié)果 HE染色結(jié)果:心肌梗死組可見梗死區(qū)心肌細(xì)胞顯著減少,核碎裂,核消失,被大量排列紊亂的結(jié)締組織代替,可見大量粒細(xì)胞、單核細(xì)胞浸潤。梗死邊緣區(qū)可見心肌細(xì)胞代償性肥大,橫紋模糊或消失,心肌間隙水腫增寬,部分心肌纖維溶解、斷裂,可見炎性細(xì)胞浸潤、成纖維細(xì)胞增生。梗死遠(yuǎn)離區(qū)及假手術(shù)組大鼠心肌形態(tài)正常,結(jié)構(gòu)清晰,心肌纖維排列整齊。Masson染色結(jié)果,非梗死區(qū)染色呈紅色為正常心肌組織,藍(lán)色為膠原纖維。假手術(shù)組及梗死遠(yuǎn)離區(qū)心肌細(xì)胞排列整齊緊密,細(xì)胞間隙散在分布少量膠原纖維;心肌梗死組梗死區(qū)可見細(xì)胞間隙大量膠原纖維沉積,梗死邊緣區(qū)的細(xì)胞間隙也有大量的膠原纖維沉積。免疫組化結(jié)果,梗死區(qū)及梗死邊緣區(qū)的心肌細(xì)胞中可見棕黃色顆粒沉積,有Meox1表達(dá);在梗死遠(yuǎn)離區(qū)的正常心肌細(xì)胞中未見Meox1的表達(dá);假手術(shù)組心肌細(xì)胞中亦未見Meox1的表達(dá)。假手術(shù)組及梗死遠(yuǎn)離區(qū)毛細(xì)血管內(nèi)皮細(xì)胞中未見Meox1的表達(dá);心肌梗死組梗死區(qū)及梗死邊緣區(qū)毛細(xì)血管內(nèi)皮細(xì)胞中Mexo1表達(dá)不明顯。結(jié)論 在心肌梗死大鼠心肌組織中Meox1表達(dá)增高,提示其可能參與心肌梗死后心肌重塑。
心肌梗死;同源盒基因Meox1;表達(dá)
在我國冠狀動脈粥樣硬化性心臟?。ü谛牟。┦侵饕劳鲈蛑?,心肌梗死(MI)后1年內(nèi)死亡率較高[1],梗死和非梗死區(qū)細(xì)胞外基質(zhì)的異常集聚,導(dǎo)致組織結(jié)構(gòu)改變、組織硬度增加,心肌廣泛重構(gòu),最終引起心功能不全[2-8]。因此尋求有效治療靶點非常必要。同源盒基因Meox1是控制發(fā)育的主要基因,對心血管系統(tǒng)發(fā)育及疾病的發(fā)生有調(diào)控作用[9]。本研究通過結(jié)扎SD大鼠冠狀動脈前降支制備心肌梗死模型,采用HE染色、Masson染色及免疫組化的方法觀察心肌梗死后心肌組織變化及Meox1的表達(dá)情況。
1.1 實驗動物、主要材料與儀器 清潔級雄性SD大鼠20只由湖北醫(yī)藥學(xué)院實驗動物中心提供,重量180~230 g。飼養(yǎng)條件:溫度23℃,濕度95%,12 h明暗交替,大鼠專用飼料喂養(yǎng)。實驗過程嚴(yán)格遵守倫理學(xué)準(zhǔn)則。Meox1抗體(美國abcom公司)、DAB顯色試劑盒(武漢博士德生物工程有限公司),RM2245型病理切片機、H11220型烘片機、H11210型攤片機(德國Leica公司)、BX-51型光學(xué)顯微鏡(日本Nikon公司)。手術(shù)器械包(手術(shù)剪、彎頭和直頭止血鉗、彎形鑷子、眼科剪、顯微持針器、開胸器、手術(shù)線、干棉花、酒精棉、紗布、頭皮針、注射器、三通管、棉線),6-0無菌醫(yī)用非吸收性縫合線無損傷縫合針(杭州富陽醫(yī)用縫合針線廠)。將20只大鼠隨機分入心肌梗死組和假手術(shù)組,每組10只,制作心肌梗死模型死亡2只。
1.2 方法
1.2.1 心肌梗死動物模型的構(gòu)建 按照Kumar等[10]的改進方法,實驗前大鼠禁食2 h以上,水合氯醛(300 mg/kg)進行腹腔注射麻醉,以有無翻正反射作為大鼠麻醉與否的評定標(biāo)準(zhǔn)。固定大鼠,手術(shù)區(qū)剃毛后,剪開皮膚,分離頸部肌肉,暴露氣管,用氣管穿刺針進行氣管插管。插管成功后接小動物呼吸機輔助呼吸,潮氣量30~50 ml/kg,呼吸頻率55~65 次/min,呼吸比2:1。連接心電圖機測肢體Ⅱ?qū)?lián)心電圖。在三、四肋間心尖搏動最強點(大約為平左前肢與左胸骨2 mm處)切開皮膚,鈍性分離第三、四肋骨的肋間肌,止血鉗撐開肋間隙擴大手術(shù)視野。小心地撕開心包膜暴露心臟,在心臟收縮的一瞬間,用食指與拇指擠出心臟,快速從左心耳下方2.0~3.0 mm入針,進針深度為1.5~2.0 mm,然后快速還納心臟,于左心耳和肺動脈圓錐與心尖連線中點處(約為左冠狀動脈走行處)以6-0無創(chuàng)縫合線將留置軟管一起進行縫扎,結(jié)扎時力度要適中,結(jié)扎缺血區(qū)心肌組織變白,同時心電圖對應(yīng)的導(dǎo)聯(lián)抬高。假手術(shù)組僅開胸和分離冠狀動脈,但是不結(jié)扎。觀察心臟跳動情況,實驗中若出現(xiàn)心律失常,則在腹腔注射少量的利多卡因。結(jié)扎后逐層縫合胸腔,并保持預(yù)留留置針通暢以防止氣胸。待大鼠呼吸穩(wěn)定后,放入恢復(fù)籠內(nèi)飼養(yǎng)。腹腔注射3~5 ml生理鹽水補液后,觀察并及時清除氣管痰液。待大鼠蘇醒后肌肉注射青霉素鈉以防感染。
1.2.2 組織的獲得和處理 手術(shù)后7 d,麻醉并處死大鼠,開胸暴露心臟,將接有生理鹽水的輸液針頭扎在右心耳,用眼科剪將心尖剪一個約2 mm小口,生理鹽水灌洗心腔,沖洗干凈后用4%多聚甲醛沖洗心腔2 h。取出心臟,去除心房。將心室置于4%多聚甲醛固定24 h,于結(jié)扎線處水平將心室切成1 mm薄片,置于包埋盒中流水沖洗過夜,常規(guī)脫水、透明、浸蠟、包埋等處理。使用切片機連續(xù)切片,厚度為5 μm,并按順序編號。
1.2.3 HE染色 具體步驟如下:①切片常規(guī)二甲苯脫蠟,梯度酒精水化,用去離子水洗1~2 min;②蘇木精染色8~10 min,自來水洗1~2 min;③體積分?jǐn)?shù)為1%的鹽酸-酒精分化1~2 s(顯微鏡下觀察效果),自來水洗10~15 s;④體積分?jǐn)?shù)為l%的氨水或肥皂水返藍(lán)20~40 s,自來水洗1 min;⑤伊紅染色4~5 min,自來水洗1 min;⑥切片依次入體積分?jǐn)?shù)為95%乙醇5~10 s,無水乙醇3次,每次5~10 s,二甲苯3次,每次1~2 min;⑦中性樹脂封片,鏡下觀察。
1.2.4 Masson染色 步驟:①切片常規(guī)二甲苯脫蠟,梯度酒精水化,去離子水洗1~2 min;②用配制的Weigert鐵蘇木素染色5~10 min;③體積分?jǐn)?shù)為1%的鹽酸-酒精分化1~2 s,自來水洗10~15 s;④Masson藍(lán)化液返藍(lán)20~40 s,自來水洗1 min,去離子水洗1 min;⑤麗春紅染色5~10 min;⑥蒸餾水:弱酸溶液=2:1比例配置弱酸工作液,用弱酸工作液洗1 min;⑦磷鉬酸溶液洗1~2 min,弱酸工作液洗1 min;⑧苯胺藍(lán)染色1~2 min,弱酸工作液洗1 min;⑨切片依次入體積分?jǐn)?shù)為95%乙醇5~10 s,無水乙醇3次,每次5~10 s,二甲苯3次,每次1~2 min;⑩中性樹脂封片,鏡下觀察。
1.2.5 免疫組化分析 具體步驟如下:①切片常規(guī)二甲苯脫蠟,梯度酒精水化,用去離子水洗1~2 min;②微波修復(fù)抗原15 min,3%H2O2孵育5~10 min,PBS洗3次,每次5 min;③10%馬血清封閉,室溫1 h;④加一抗:Meox1兔多克隆抗體(1:100),4℃濕盒過夜,PBS洗3次,每次5 min;⑤加二抗:鼠抗兔多克隆抗體(1:100),室溫1 h,PBS洗3次,每次5 min;⑥D(zhuǎn)AB染色(現(xiàn)配現(xiàn)用),PBS洗3次,每次5 min;⑦蘇木精染色8~10 min,自來水洗1~2 min;⑧體積分?jǐn)?shù)為1%的鹽酸-酒精分化1~2 s(顯微鏡下觀察效果),自來水洗10~15 s;⑨體積分?jǐn)?shù)為1%的氨水或肥皂水返藍(lán)20~40 s,自來水洗1 min;⑩切片依次入體積分?jǐn)?shù)為95%乙醇5~10 s,無水乙醇3次,每次5~10 s;二甲苯透明3次,每次1~2 min;?中性樹脂封片。
2.1 兩組HE染色結(jié)果比較 HE染色結(jié)果:心肌梗死組可見梗死區(qū)心肌細(xì)胞顯著減少,心肌纖維凝固性壞死,核碎裂,核消失,被大量排列紊亂的結(jié)締組織代替,肌漿均質(zhì)紅染或呈不規(guī)則粗顆粒狀,可見大量粒細(xì)胞、單核細(xì)胞浸潤(圖1)。梗死邊緣區(qū)可見心肌細(xì)胞代償性肥大,肌橫紋模糊或消失,心肌間隙水腫增寬,部分心肌纖維溶解、斷裂,可見炎性細(xì)胞浸潤、成纖維細(xì)胞增生。梗死遠(yuǎn)離區(qū)及假手術(shù)組(圖1)大鼠心肌形態(tài)正常,結(jié)構(gòu)清晰,心肌纖維排列整齊有序,肌纖維間無成纖維細(xì)胞聚集、增生現(xiàn)象。
圖1 大鼠心肌組織HE染色結(jié)果(A:假手術(shù)組;B:心肌梗死組梗死區(qū);C:心肌梗死組梗死邊緣區(qū);D:心肌梗死組梗死遠(yuǎn)離區(qū),×200)
2.2 兩組Masson染色結(jié)果比較 Masson染色結(jié)果,非梗死區(qū)染色呈紅色為正常心肌組織,藍(lán)色為膠原纖維。假手術(shù)組及梗死遠(yuǎn)離區(qū)可見紅色的心肌細(xì)胞排列整齊緊密,細(xì)胞間隙內(nèi)有散在分布少量藍(lán)色膠原纖維;心肌梗死組可見梗死區(qū)細(xì)胞間隙大量膠原纖維沉積,梗死邊緣區(qū)紅色的細(xì)胞間隙有大量的膠原纖維沉積(圖2)。
2.3 Meox1在心肌細(xì)胞中的表達(dá)情況 在梗死區(qū)及梗死邊緣區(qū)的心肌細(xì)胞中可見棕黃色顆粒沉積,提示Meox1在心肌細(xì)胞中表達(dá);在梗死遠(yuǎn)離區(qū)的正常心肌細(xì)胞中未見Meox1的表達(dá);假手術(shù)組心肌細(xì)胞中亦未見Meox1的表達(dá)(圖3)。
2.4 Meox1在毛細(xì)血管內(nèi)皮細(xì)胞中的表達(dá)情況 假手術(shù)組及梗死遠(yuǎn)離區(qū)毛細(xì)血管內(nèi)皮細(xì)胞中未見Meox1表達(dá);心肌梗死組梗死區(qū)及梗死邊緣區(qū)毛細(xì)血管內(nèi)皮細(xì)胞中Mexo1表達(dá)不明顯,其動態(tài)變化可能在心肌梗死后基質(zhì)重塑中起作用(圖4)。
圖2 大鼠心肌組織Masson染色結(jié)果(A:假手術(shù)組;B:心肌梗死組梗死區(qū);C:心肌梗死組梗死邊緣區(qū);D:心肌梗死組梗死遠(yuǎn)離區(qū),×200)
圖3 Meox1在心肌細(xì)胞中的表達(dá)情況(A:假手術(shù)組;B:心肌梗死組梗死區(qū);C:心肌梗死組梗死邊緣區(qū);D:心肌梗死組梗死遠(yuǎn)離區(qū),×200)
心肌梗死后伴心室重構(gòu),梗死和非梗死區(qū)細(xì)胞外基質(zhì)的異常集聚,導(dǎo)致組織結(jié)構(gòu)破壞、組織硬度增加,引起左心腔擴大及心功能不全[11-16]。心肌梗死后的心室重構(gòu)是一個慢性過程,研究表明[17-24],細(xì)胞外基質(zhì)的合成及降解、腎素-血管緊張素-醛固酮系統(tǒng)、轉(zhuǎn)化生長因子β、金屬蛋白酶、Micro RNA及各種轉(zhuǎn)錄生長因子等都參與了心肌纖維化的過程。
同源盒蛋白是廣泛存在于真核生物的一類轉(zhuǎn)錄調(diào)控因子[25-27]。同源盒結(jié)構(gòu)域高度保守,通過螺旋-轉(zhuǎn)折-螺旋結(jié)構(gòu)模式與啟動子或增強子的序列結(jié)合,激活或抑制靶基因的轉(zhuǎn)錄[28-30]。同源盒基因Meox所編碼的蛋白質(zhì)也屬于轉(zhuǎn)錄因子[31,32]。近年關(guān)于同源盒基因的報道較多,而關(guān)于Meox1在心血管系統(tǒng)的作用卻較少。王書美等[32]通過建立心臟特異表達(dá)Meox1的轉(zhuǎn)基因小鼠,發(fā)現(xiàn)Meox1在心臟過表達(dá)引起擴張型心肌病。
圖4 Meox1在毛細(xì)血管內(nèi)皮細(xì)胞中的表達(dá)情況(A:假手術(shù)組;B:心肌梗死組梗死區(qū);C:心肌梗死組梗死邊緣區(qū);D:心肌梗死組梗死遠(yuǎn)離區(qū),×200)
通過免疫組化染色發(fā)現(xiàn)大鼠心肌梗死后心肌組織中表達(dá)Meox1,在心肌梗死區(qū)及梗死邊緣區(qū)毛細(xì)血管內(nèi)皮細(xì)胞中表達(dá),而遠(yuǎn)離區(qū)及正常內(nèi)皮細(xì)胞中無表達(dá)。還發(fā)現(xiàn)心肌梗死區(qū)及梗死邊緣區(qū)心肌細(xì)胞亦表達(dá)Meox1,而遠(yuǎn)離區(qū)及正常心肌細(xì)胞則無Meox1表達(dá)。推測:梗死區(qū)及梗死邊緣區(qū)心肌細(xì)胞及血管內(nèi)皮細(xì)胞為缺血缺氧細(xì)胞,缺血缺氧誘導(dǎo)Meox1表達(dá),而心肌梗死后Meox1表達(dá)短暫升高或與心肌細(xì)胞的存活相關(guān),其機制不清。本研究表明,Meox1在心肌梗死大鼠的心臟血管內(nèi)皮細(xì)胞及心肌細(xì)胞中表達(dá),提示其參與心肌梗死后的心肌重構(gòu),具體機制需更深入的研究。
[1] Sutton MJ,Douglas L,Rouleau JL,et al. Left ventricular remodeling and ventricular arrhythmias after myocardial infarction[J]. Circulation, 2003,107(20):2577-82.
[2] Weber KT. Fibrosis and hypertensive heart disease[J]. Curr Opin Cardiol,2000,15(4):264-72.
[3] Ruwhof C,van Wamel AE,Egas JM,et al. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts[J]. Mol Cell Biochem,2000, 208(1-2):89-98.
[4] Weber KT. Cardiac interstitimu in heart and disease,the fibrillar collagen netvork[J]. J Am Coll Cardiol,1989,13(7):1637-52.
[5] Porter KE,Turner NA. Cardiac fibroblasts:at the heart of myocardial remodeling[J]. Pharmacol Ther,2009,123(2):255-78.
[6] Manso AM,Kang SM,Boss RS. Integrins,focal adhesions, and cardiac fihroblasts[J]. J Investig Med,2009,57(8):856-60.
[7] Sun Y,Zhang JQ,Zhang J,et al. Cardiac remodeling by fibrous tissue after infarction in rats[J]. J Lab Clin Med,2000,135(4):316-23.
[8] Swynghedauw B. Molecular mechanisms of myocardial remodeling[J]. Physiol Rev,1999, 79(1):215-62.
[9] Mcginnis W,Krumlauf R. Homeobox genes and axial patterning[J]. Cell,1992,68(2):283-302.
[10] Kumar M,Kasala ER,Bodduluru LN,et al. Animal models of myocardial infarction: Mainstay in clinical translation[J]. Regul Toxicol Pharmacol,2016,76:221-30.
[11] Agnoletti G,Cargnoni A,Agnoletti L,et al. Experimental ischemic cardiomyopathy: insights into remodeling, physiological adaptation, and humoral response[J]. Ann Clin Lab Sci,2006,36(3):333-40.
[12] Jalil JE,Doering CW,Janicki JS,et al. Fibillar collagenand myocardial stiffness in the intact hypertrophied rat left ventricle[J]. Circ Res,1989,64(4):1041-50.
[13] Cohn JN,Ferrari R,Sharpe N. Cardiac remodeling concepts and clinical implications:a consensus paper from an international forum on cardiac remodeling[J]. J Am Coll Cardiol,2000, 35(3):569-82.
[14] Weber KT. Fibrosis in hypertensive heart disease:focus on cardiac libroblasts[J]. J Hypertens,2004,22(1):47-50.
[15] Camelliti P,Borg TK,Kohl P. Structural and functional characterization of cardiac libroblasts[J]. Cardiovasc Res,2005,65(1):40-51.
[16] Brown RD,Ambler SK,Mitchell MD,et al. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure[J]. Annu Rev Pharmacol Toxicol,2005,45:657-87.
[17] Gabbiani G. The myofibroblast diseasesin wound healing and fibrocontractive[J]. J Pathol, 2003,200(4):500-3.
[18] Desmouliere A,Redard M,Darby I,et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar[J]. Am J Pathol,1995,146(1):56-66.
[19] Sun Y,Weber KT. Infarct scar: a dynamic tissue[J]. Cardiovasc Res,2000,46(2):250-6.
[20] Frangogiannis NG. Targeting the inflammatory response in healing myocardial infarcts[J]. Curr Med Chem,2006,13(16):1877-93.
[21] Porter KE,Turner NA,O'Regan DJ,et al. Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA[J]. Cardiovasc Res,2004,61(4):745-55.
[22] Li PF,Dietz R,von Harsdorf R. Superoxide induces apoptosis in cardiomyocytes,but proliferation and expression of transforming growth factor-betal in cardiac fibroblasts[J]. FEBS Lett,1999,448 (2-3):206-10.
[23] Ono K,Han J. The p38 signal transduction pathway: activation and function[J]. Cell Signal, 2000,12(1):1-13.
[24] Bolognese L,Carrabba N,Parodi G,et al. Impact of microvascular dysfunction on left ventricular remodeling and long-term clinical outcome after primary coronary angioplasty for acute myocardial infarction[J]. Circulation,2004,109(9):1121-6.
[25] Sham MH,Hunt P,Nonchev S,et al. Analysis of the murine of the murine HOX-2.7 gene:conserved alternative transcripts with differential distributions in the nervous system and the potential for shared regulatory regions[J]. EMBO J,1992,11(5):1825-36.
[26] Candia AF,Hu J,Crosby J,et al. Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos[J]. Development,116 (4):1123-36.
[27] Candia AF,Wright CV. Differential localization of Mox-1 and Mox-2 proteins indicates distinct roles during development[J]. Int J Dev Biol,1996,40(6):1179-84.
[28] Gehring WJ,Affolter M,Bürglin T. Homeodomain proteins[J]. Annu Rev Biochem,1994,63:487-526.
[29] Gianakopoulos PJ,Skerjanc IS. Hedgehog signaling induces cardiomyogenesis in P19 cells[J]. J Biol Chem,2005,280(22):21022-8.
[30] Dou ville JM,Wigle JT. Regulation and function of homeodomain proteins in the embryonic and adult vascular systems[J]. Can J Physiol Pharmacol,2007,85(1):55-65.
[31] Friedman LS,Ostermeyer EA,Lynch ED,et al. 22 genes from chromosome 17q21: cloning, sequencing, and characterization of mutations in breast cancer families and tumors[J]. Genomics, 1995,25(1):256-63.
[32] 王書美,呂丹,陳煒,等. Meox1在心臟過表達(dá)引起轉(zhuǎn)基因小鼠擴張性心肌病[J]. 中國比較醫(yī)學(xué)雜志,2010,04(20):9-18.
本文編輯:姚璐,田國祥
Changes in the expression of Meox1 after acute myocardial infarction in rats
SHEN Jun*, YUAN Ping, Tang Jun-ming, YANG Jian-ye, LI Xing-yuan, Zhang Lei, ZHAO Ji-xian, ZHANG Huan-xin, XUE Shi-zhen, FENG Yi, WANG Jia-ning.*Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
Objective To analyze the expression of Meox1 in myocardium in rats with acute myocardial infarction (AMI). Methods Male SD rats (n=20) were randomly divided into AMI group and sham-operation group (each n=10). The model of AMI was established by ligation of left anterior descending branch of coronary artery in AMI group (2 rats died during the procedure), and sham-operation group was given the same procedure except of ligation. The rats were killed 7 d after the procedure for preparing paraffin sections, and changes of myocardial tissue were observed after HE staining and Masson staining and expression of Meox1 was detected by using immunohistochemistry technique. Results The results of HE staining showed that cardiomyocyte decreased significantly at infarction zone, and there were karyorrhexis, nuclear disappearing, disorganized connective tissue in quantity, and severe infiltration of granulocytes and monocytes in AMI group. The compensatory hypertrophy and cross striatation blurring or disappearing of cardiomyocytes, widened myocardial gap edema, fibrinolysis and fragmentation of partial myocardial fibers, infiltration of inflammatory cells and proliferation of fibroblast were observed at infarction marginal zone. The normal myocardial histology, clear structure and aligned myocardial fibers were observed at infarction remote zone and in sham-operation group. The results of Masson staining showed that red was normal myocardial tissue and blue was collagen fibers at non-infarction zone. The cardiomyocytes were aligned and tight, and there were less collagen fibers in intercellular space in sham-operation group and at infarction remote zone. There was deposition of collagen fibers in quantity in intercellular space and at infarction zone and infarction marginal zone in AMI group. The results of immunohistochemistry technique showed that there was deposition of brown granules and Meox1 expression in cardiomyocytes at infarction zone and infarction marginal zone, and there was no Meox1 expression in normal cardiomyocytes at infarction remote zone and in sham-operation group. There was no Meox1 expression observed in capillary endothelial cells in sham-operation group and at infarction remote zone, and which was not significant at infarction zone and infarction marginal zone in AMI group. Conclusion The expression of Meox1 increases in myocardial tissue in AMI rats, which indicates that Meox1 expression may take part in the myocardial remodeling after AMI.
Myocardial infarction; Homeobox gene Meox1; Expression
R541.4
A
1674-4055(2016)11-1329-04
國家自然科學(xué)基金(81270221)
1442000 十堰,湖北醫(yī)藥學(xué)院附屬人民醫(yī)院臨床醫(yī)學(xué)研究所;2442000 十堰,湖北醫(yī)藥學(xué)院附屬人民醫(yī)院心臟病中心1病區(qū)
王家寧,E-mail:rywjn@vip.163.com
10.3969/j.issn.1674-4055.2016.11.13