• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      水旱兩用秸稈還田組合刀輥?zhàn)鳂I(yè)性能試驗(yàn)

      2016-12-19 08:54:33張秀梅夏俊芳張居敏賀小偉梁世芳
      關(guān)鍵詞:刀輥耕深水田

      張秀梅,夏俊芳,張居敏,賀小偉,梁世芳,張 順,吳 昊,萬 松

      (華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢430070)

      水旱兩用秸稈還田組合刀輥?zhàn)鳂I(yè)性能試驗(yàn)

      張秀梅,夏俊芳※,張居敏,賀小偉,梁世芳,張 順,吳 昊,萬 松

      (華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢430070)

      為了檢測(cè)水旱兩用秸稈還田組合刀輥的田間作業(yè)質(zhì)量和功率,采用無線遙測(cè)技術(shù),利用動(dòng)力輸出軸一體化扭矩傳感器,對(duì)安裝組合刀輥的耕整機(jī)進(jìn)行了田間作業(yè)質(zhì)量和作業(yè)功耗優(yōu)化參數(shù)性能測(cè)試試驗(yàn),并與傳統(tǒng)旋耕刀輥、螺旋刀輥進(jìn)行田間作業(yè)質(zhì)量及功耗對(duì)比試驗(yàn)。田間試驗(yàn)結(jié)果表明:組合刀輥性能檢測(cè)試驗(yàn)中,水田和旱地植被埋覆率分別為94.3% 和96.5%,耕深分別為20.8和20.3 cm,耕深穩(wěn)定性分別為92.3%和90.6%,耕后地表平整度分別為0.9和1.2 cm,功率消耗分別為27.6 和31.2 kW,均達(dá)到了設(shè)計(jì)目標(biāo);與其他刀輥對(duì)比試驗(yàn)中,組合刀輥?zhàn)鳂I(yè)質(zhì)量?jī)?yōu)于螺旋刀輥和傳統(tǒng)旋耕刀,作業(yè)功耗稍高。該研究可為實(shí)現(xiàn)水田和旱地高茬秸稈埋覆還田和土壤耕整提供參考。

      農(nóng)業(yè)機(jī)械;優(yōu)化;試驗(yàn);組合刀輥;秸稈還田;水田旱地;作業(yè)性能;功耗

      0 引言

      機(jī)械化秸稈直接埋覆還田有利于提高農(nóng)田肥力,減少由秸稈焚燒所引起的環(huán)境污染,提高土壤有機(jī)質(zhì)含量,降低化肥施用量,實(shí)現(xiàn)農(nóng)業(yè)的可持續(xù)性發(fā)展[1-5]。中國長(zhǎng)江中下游地區(qū)多為麥-稻、油-稻等水旱輪作種植模式,缺乏與該模式相配套的通用型秸稈埋覆還田機(jī)具,“雙搶”期間,農(nóng)民在作物收獲后不得不直接焚燒秸稈,既污染了環(huán)境,又加劇了土壤生態(tài)環(huán)境的惡化[6-10]。

      針對(duì)目前中國尚無合適的水旱通用型秸稈還田耕作機(jī)具,華中農(nóng)業(yè)大學(xué)基于前期研究成果[11-15],研制出了主要由螺旋橫刀和傳統(tǒng)旋耕刀(IIT245旋耕刀)組合而成的水旱兩用秸稈還田組合刀輥[16-17],但其田間作業(yè)質(zhì)量及功耗相較于螺旋刀輥和傳統(tǒng)旋耕刀輥如何有待研究。

      作業(yè)質(zhì)量和功率消耗是評(píng)價(jià)農(nóng)機(jī)具性能最為重要的指標(biāo)[18-19]。目前國內(nèi)外對(duì)旋耕機(jī)作業(yè)質(zhì)量的研究已經(jīng)很普遍,而且比較成熟;國外農(nóng)機(jī)具田間作業(yè)功率的測(cè)試主要采用先進(jìn)的數(shù)字遙測(cè)測(cè)試分析技術(shù),通過數(shù)學(xué)耦合式傳感器實(shí)時(shí)采集轉(zhuǎn)速和扭矩?cái)?shù)據(jù)。國內(nèi)對(duì)旋耕機(jī)作業(yè)功耗的研究還比較落后,而且由于田間作業(yè)條件的復(fù)雜性,進(jìn)行實(shí)際田間作業(yè)功耗測(cè)試的報(bào)道較少,現(xiàn)有研究也主要采用有線傳輸技術(shù)測(cè)試[19-22],這種方法測(cè)試人員需攜帶測(cè)試儀器跟隨作業(yè)機(jī)具一起移動(dòng),設(shè)備安裝和人員測(cè)試條件受到很大限制,在復(fù)雜的田間作業(yè)條件下存在穩(wěn)定性和安全性問題,適應(yīng)性稍差,使用不夠方便。為了更加準(zhǔn)確、方便而安全地測(cè)試機(jī)具田間作業(yè)功耗,課題組基于前期研究基礎(chǔ)[23-24]定制了專用的功率無線遙測(cè)裝置,該裝置集測(cè)量和無線收發(fā)技術(shù)一體,測(cè)試人員不用隨作業(yè)機(jī)具一起移動(dòng),只需在一定范圍內(nèi)的田邊道路上進(jìn)行測(cè)試,即可實(shí)時(shí)采集設(shè)備的扭矩、轉(zhuǎn)速及功率數(shù)據(jù)。

      本文對(duì)水旱兩用秸稈還田組合刀輥依照國標(biāo)測(cè)試方法進(jìn)行了一序列田間作業(yè)質(zhì)量和功率測(cè)試試驗(yàn),并將其同傳統(tǒng)旋耕刀輥和螺旋刀輥進(jìn)行田間作業(yè)質(zhì)量—功率測(cè)試的對(duì)比試驗(yàn),以期為機(jī)具的進(jìn)一步優(yōu)化設(shè)計(jì)和推廣應(yīng)用提供參考。

      1 材料與方法

      1.1 試驗(yàn)刀輥

      試驗(yàn)主要刀輥為水旱兩用秸稈還田組合刀輥,簡(jiǎn)稱組合刀輥。該刀輥主要包括刀盤1、傳統(tǒng)旋耕刀2、彎刀3、刀軸4和螺旋橫刀5,結(jié)構(gòu)如圖1所示。組合刀輥排布設(shè)計(jì)為螺旋橫刀旋轉(zhuǎn)半徑小于彎刀和傳統(tǒng)旋耕刀的旋轉(zhuǎn)半徑,保證彎刀和傳統(tǒng)旋耕刀比螺旋橫刀先入土,可降低后續(xù)橫刀切土阻力[16]。此刀輥結(jié)合了傳統(tǒng)旋耕刀碎土能力強(qiáng)以及課題組研制的螺旋橫刀秸稈埋覆性能好的優(yōu)點(diǎn),適用于水田、旱地的高茬秸稈直接埋覆還田耕整作業(yè)[17]。

      圖1 組合刀輥結(jié)構(gòu)示意圖Fig.1 Structure diagram of combination blade roller

      田間作業(yè)時(shí),依靠拖拉機(jī)三點(diǎn)懸掛機(jī)構(gòu)來控制刀輥懸掛高度,進(jìn)而控制實(shí)際旋耕深度,刀輥軸隨拖拉機(jī)直線前進(jìn)的同時(shí)正向旋轉(zhuǎn),實(shí)現(xiàn)“銑削”土壤和秸稈的切削模式。首先刀盤彎刀和傳統(tǒng)旋耕刀在旋轉(zhuǎn)中將土壤及植被沿機(jī)組前進(jìn)方向切斷破茬,接著螺旋橫刀在已耕區(qū)域內(nèi)沿橫向整幅切削土壤,同時(shí)刀輥在旋轉(zhuǎn)中將切下的土壤及秸稈向后拋擲,撞擊擋板后落下被壓埋,最后平地裝置將地表拖平[17]。

      1.2 功率測(cè)試系統(tǒng)

      功率測(cè)試系統(tǒng)為課題組基于前期對(duì)功率測(cè)試系統(tǒng)的研究與實(shí)際應(yīng)用情況,聯(lián)合黑龍江省農(nóng)業(yè)機(jī)械工程科學(xué)研究院研制了專用的功率測(cè)試裝置-田間機(jī)械動(dòng)力學(xué)參數(shù)遙測(cè)儀之旋轉(zhuǎn)功率測(cè)量模塊,由扭矩輸出軸轉(zhuǎn)速一體傳感器(轉(zhuǎn)速測(cè)量范圍0~4 000 r/min,精度為±1%F.S.;扭矩測(cè)量范圍0~1 000 N·m,精度為±1%F.S.;參數(shù)信號(hào)最大接收發(fā)送距離:100 m)、無線動(dòng)態(tài)數(shù)據(jù)采集器和采集軟件主機(jī)組成。該系統(tǒng)采用Zigbee無線傳輸技術(shù),配套動(dòng)力輸出軸一體化扭矩傳感器,實(shí)現(xiàn)在田間現(xiàn)場(chǎng)接收配套機(jī)具的扭矩、轉(zhuǎn)速、功率等各種動(dòng)力學(xué)信號(hào),并直接處理和分析,實(shí)時(shí)獲得測(cè)試數(shù)據(jù)。

      試驗(yàn)中,首先將傳感器與拖拉機(jī)動(dòng)力輸出軸及被測(cè)旋耕刀輥通過萬向節(jié)連接在一起;然后用相應(yīng)的通信線纜,連接傳感器與數(shù)據(jù)采集器的對(duì)應(yīng)通道接口(扭矩/速度),同時(shí)將天線連接到采集器;最后將無線設(shè)備通過USB接口連接到主機(jī),主機(jī)上測(cè)試數(shù)據(jù)界面顯示傳感器測(cè)試的實(shí)時(shí)數(shù)據(jù),如圖2所示。

      圖2 功率測(cè)試系統(tǒng)安裝示意圖Fig.2 Installation schematic map of power testing system

      1.3 試驗(yàn)參數(shù)測(cè)定方法與評(píng)價(jià)指標(biāo)

      試驗(yàn)條件參照國家標(biāo)準(zhǔn)《農(nóng)業(yè)機(jī)械試驗(yàn)條件、測(cè)定方法的一般規(guī)定》[25],田間作業(yè)質(zhì)量指標(biāo)按照國標(biāo)GB/T5668-2008[26]執(zhí)行,作業(yè)質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)在參照GB/T5668-2008、NYT 499-2002[27]和DB44 T 367-2006[28]的基礎(chǔ)上按照旋耕埋草機(jī)的作業(yè)質(zhì)量檢測(cè)標(biāo)準(zhǔn)(DB42/T440.1-2007)進(jìn)行檢測(cè)。

      1.4 試驗(yàn)設(shè)計(jì)與方法

      影響旋耕機(jī)作業(yè)質(zhì)量和功耗的主要因素有刀輥轉(zhuǎn)速、機(jī)組前進(jìn)速度、耕深、土質(zhì)、秸稈茬密度、秸稈茬物理特性和耕整刀結(jié)構(gòu)參數(shù)及排列方式等。由于土質(zhì)、秸稈茬密度、秸稈茬物理特性這些參數(shù)受自然條件環(huán)境影響較大,屬不可控因素,故在土質(zhì)、秸稈、刀輥參數(shù)相同的情況下,影響組合刀輥?zhàn)鳂I(yè)質(zhì)量的主要因素有刀輥轉(zhuǎn)速、機(jī)組前進(jìn)速度和耕深。為明確上述3個(gè)因素對(duì)作業(yè)質(zhì)量的影響,作業(yè)質(zhì)量用秸稈埋覆率來衡量(90%為合格標(biāo)準(zhǔn)),采用L9(34)正交試驗(yàn)表對(duì)組合刀輥進(jìn)行正交試驗(yàn)研究[29],然后根據(jù)優(yōu)化參數(shù)進(jìn)行田間作業(yè)性能檢測(cè),最后在相同作業(yè)條件下與關(guān)鍵作業(yè)部件分別為螺旋刀輥及傳統(tǒng)旋耕刀的機(jī)具,進(jìn)行田間作業(yè)質(zhì)量和作業(yè)功耗的對(duì)比試驗(yàn)。

      2 田間試驗(yàn)

      2.1 正交試驗(yàn)

      2.1.1 正交試驗(yàn)條件與方法

      在華中農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)科技試驗(yàn)基地選取晚稻收獲后經(jīng)過晾曬的高茬水稻田,測(cè)得耕作前土壤含水率為36.5%,土壤堅(jiān)實(shí)度為544.5 kPa,秸稈高度35.7 cm,秸稈量660 g/m2。組合刀輥由拖拉機(jī)LX954驅(qū)動(dòng)。結(jié)合該刀輥前期大量田間試驗(yàn)實(shí)際情況,各因素水平表如表1所示。

      表1 正交試驗(yàn)因素水平表Table 1 Factors level of orthogonal test

      2.1.2 較優(yōu)方案的確定

      根據(jù)上述選定的3因素3水平正交試驗(yàn)方案及評(píng)價(jià)指標(biāo)進(jìn)行9組試驗(yàn),每組試驗(yàn)重復(fù)3次,結(jié)果取平均值,方案及結(jié)果與極差分析如表2所示。為進(jìn)一步分析各因素對(duì)評(píng)價(jià)指標(biāo)的影響顯著性,進(jìn)行了方差分析,如表3所示。

      1)極差與方差分析

      試驗(yàn)指標(biāo)為秸稈埋覆率越大越好,從表2中可知,影響秸稈埋覆率的各因素從主到次依次為耕深、前進(jìn)速度、刀輥旋轉(zhuǎn)速度,最優(yōu)方案應(yīng)取各因素最大K值所對(duì)應(yīng)的水平,極差分析得到的最優(yōu)方案為A3B1C1,即耕深21.5 cm,前進(jìn)速度為0.43 m/s,刀輥旋轉(zhuǎn)速度314 r/min。

      表2 試驗(yàn)結(jié)果分析表Table 2 Range analysis of experimental results

      表3 方差分析結(jié)果Table 3 Results of variance analysis for rapeseed seeding quality

      表2極差分析得出了耕深、前進(jìn)速度、刀輥旋轉(zhuǎn)速度這3個(gè)因素對(duì)水旱兩用秸稈還田組合刀輥?zhàn)鳂I(yè)質(zhì)量影響的主次順序及較優(yōu)水平組合。為進(jìn)一步分析各因素對(duì)各評(píng)價(jià)指標(biāo)影響的顯著性,進(jìn)行了方差分析,由表3得出:耕深和前進(jìn)速度對(duì)秸稈埋覆率影響極顯著,刀輥旋轉(zhuǎn)速度對(duì)秸稈埋覆率影響不顯著。

      2)較優(yōu)試驗(yàn)方案擬定

      作業(yè)質(zhì)量以秸稈埋覆率最高為重點(diǎn)考察目標(biāo),確定影響作業(yè)質(zhì)量的主次因素依次為耕深A(yù)、前進(jìn)速度C、刀輥旋轉(zhuǎn)速度B。極差分析得到的較優(yōu)組合為A3B1C1,方差分析得到耕深A(yù)對(duì)秸稈埋覆率影響極顯著,前進(jìn)速度的影響極顯著,刀輥旋轉(zhuǎn)速度的影響不顯著。由于因素A最重要,則較優(yōu)組合中A3因素水平保持不變;因素B影響不重要,加上刀輥轉(zhuǎn)速提高,有利于土壤的細(xì)化、秸稈的攪碎及土壤與秸稈的揉合,故將優(yōu)方案中因素B1調(diào)整為B2,則優(yōu)方案變?yōu)锳3B2C1,即正交表中的第9號(hào)試驗(yàn),秸稈埋覆率達(dá)到96.7%;考慮耕整機(jī)的作業(yè)效率,擬將前進(jìn)速度分別提高到C2、C3因素水平,優(yōu)方案變?yōu)锳3B2C2或者A3B2C3,均不包含在正交表已做的9個(gè)試驗(yàn)中,需要進(jìn)一步試驗(yàn)驗(yàn)證。

      3)驗(yàn)證試驗(yàn)

      在華中農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)科技試驗(yàn)基地選取晚稻收獲后的高茬水稻田,測(cè)得耕作前土壤含水率為32.9%,土壤堅(jiān)實(shí)度為893.6 kPa,秸稈高度33.6 cm,田間秸稈平均分布為24墩/m2,18株/墩。組合刀輥由拖拉機(jī)LX954驅(qū)動(dòng),先按照方案A3B2C2,即拖拉機(jī)前進(jìn)速度0.69 m/s,刀輥旋轉(zhuǎn)速度330 r/min,耕深調(diào)至21.5 cm進(jìn)行田間試驗(yàn),重復(fù)3個(gè)來回行程,然后保持刀輥旋轉(zhuǎn)速度和耕深不變,將拖拉機(jī)前進(jìn)速度提升至0.93 m/s,重復(fù)3個(gè)來回行程。試驗(yàn)結(jié)果測(cè)得方案A3B2C2秸稈埋覆率為92.2%,方案A3B2C3秸稈埋覆率為90.9%,均達(dá)到設(shè)計(jì)目標(biāo)要求,但是埋覆效果均差于方案A3B2C1。

      4)較優(yōu)作業(yè)參數(shù)

      綜合上述試驗(yàn)及前期大量田間試驗(yàn)結(jié)果,該機(jī)田間作業(yè)的最佳參數(shù)范圍為:拖拉機(jī)前進(jìn)速度0.43~0.93 m/s,刀輥旋轉(zhuǎn)速度330 r/min左右,耕深實(shí)測(cè);實(shí)際田間作業(yè)時(shí),需要根據(jù)田間狀態(tài),包括土壤、秸稈或者植被狀態(tài),在上述最佳作業(yè)參數(shù)范圍內(nèi)適當(dāng)調(diào)整,一般在旱地作業(yè)時(shí)前進(jìn)速度要慢于水田作業(yè)。

      2.2 性能檢測(cè)試驗(yàn)

      2.2.1 試驗(yàn)條件

      2015年5月23日和24日分別在華中農(nóng)業(yè)大學(xué)油菜核心實(shí)驗(yàn)區(qū)和玉米試驗(yàn)地進(jìn)行水田試驗(yàn)和旱地試驗(yàn),水田試驗(yàn)田前茬作物為中國廣泛種植的油菜,于2015年5月中下旬收割,耕整前田塊泡水8 h后將水放掉至田面不見明顯的水。旱地試驗(yàn)地前茬作物為玉米,于2014年10月中下旬收獲后一直處于閑置狀態(tài),屬于中國廣泛存在的冬閑地,耕整前地間長(zhǎng)滿雜草類植被,主要為蒿草。測(cè)得試驗(yàn)條件如表4所示??紤]到田塊土壤堅(jiān)實(shí)度較大,加上旋耕機(jī)的功率消耗隨著前進(jìn)速度和刀輥轉(zhuǎn)速的增加而增大[30],按照上述優(yōu)化方案初步設(shè)定組合刀輥轉(zhuǎn)速330 r/min,機(jī)組前進(jìn)速度不低于0.43 m/s,以實(shí)測(cè)為準(zhǔn),進(jìn)行水田和旱地作業(yè)性能測(cè)試試驗(yàn)。

      表4 組合刀輥田間試驗(yàn)條件Table 4 Field conditions during performance test of combination blade roller

      2.2.2結(jié)果與分析

      田間作業(yè)性能指標(biāo)與原設(shè)計(jì)指標(biāo)對(duì)比結(jié)果如表5所示,其中測(cè)量結(jié)果為平均值,耕作效果如圖3所示。

      由表4、表5可知:1)水旱兩用秸稈還田組合刀輥對(duì)高達(dá)78 cm的油菜秸稈和97 cm的蒿草進(jìn)行水田和旱地埋覆還田試驗(yàn),一次作業(yè)后耕深分別為20.8、20.3 cm,耕深穩(wěn)定性分別為92.3%、90.6%,植被埋覆率分別為94.3%、96.5%,耕后地表平整度分別為0.9、1.2 cm,功耗為27.6、31.2 kW,田間作業(yè)質(zhì)量和功耗指標(biāo)均符合原設(shè)計(jì)指標(biāo),達(dá)到了預(yù)期設(shè)計(jì)目標(biāo);2)實(shí)際水田和旱地作業(yè)速度分別為0.47和0.45 m/s,均高于0.43 m/s。但從作業(yè)效率來說均偏低,接近下限,主要原因?yàn)椋核锱萏飼r(shí)間較短,耕作前田間已不見明顯的水,為水田旱耕作業(yè),土壤堅(jiān)實(shí)度較大,加上土壤為黏壤土;旱地土壤堅(jiān)實(shí)度大,而且雜草高而密集,因而作業(yè)速度較慢;3)本試驗(yàn)旱地作業(yè)與正交表中第9號(hào)試驗(yàn)的作業(yè)速度和刀輥轉(zhuǎn)速較為一致,但二者田間的土壤及植被差異較大,試驗(yàn)結(jié)果對(duì)比:植被埋覆率前者為96.5%,后者96.7%;耕深前者為20.3 cm,后者21.5 cm,較為接近。由此可見,該組合刀輥田間作業(yè)適應(yīng)性較強(qiáng),可用于不同物理性質(zhì)的土壤、秸稈及雜草綠肥的田間埋覆還田。

      表5 組合刀輥田間作業(yè)性能檢測(cè)結(jié)果Table 5 Measurement results of the working performance of combination blade roller

      圖3 組合刀輥耕后效果圖Fig.3 Diagram after tillage of combination blade roller

      2.3 對(duì)比試驗(yàn)

      2.3.1 試驗(yàn)條件

      試驗(yàn)對(duì)比刀輥為傳統(tǒng)旱地刀輥、螺旋刀輥及組合刀輥,2015年12月10-12日在華中農(nóng)業(yè)大學(xué)水稻核心實(shí)驗(yàn)區(qū)選取2塊水稻收獲后閑置的高茬秸稈田塊進(jìn)行田間作業(yè)性能對(duì)比試驗(yàn),其中田塊1保持水稻收獲后自然閑置狀態(tài),田塊2耕整前放水泡田48 h后將水放掉至田面不見明顯的水,測(cè)得試驗(yàn)條件如表6所示。

      鑒于傳統(tǒng)旋耕刀為旱耕刀,其只耕整未泡水田塊,螺旋刀輥和組合刀輥耕整未泡水田和泡水田塊。3種刀輥?zhàn)鳂I(yè)時(shí)均為每一前進(jìn)速度為1個(gè)試驗(yàn)工況,試驗(yàn)測(cè)定3個(gè)工況,分別為旋耕常用低1、低2、低3檔[31],具體數(shù)值在試驗(yàn)進(jìn)行中測(cè)定,每個(gè)工況測(cè)定2個(gè)行程,轉(zhuǎn)速均在260~330 r/min,耕深調(diào)整在刀輥?zhàn)鳂I(yè)最大耕深處實(shí)測(cè),均由拖拉機(jī)LX954驅(qū)動(dòng)。

      表6 對(duì)比試驗(yàn)田間試驗(yàn)條件Table 6 Field conditions during performance test of comparative tests

      2.3.2 結(jié)果與分析

      組合刀輥、傳統(tǒng)旋耕刀和螺旋刀輥田間作業(yè)對(duì)比試驗(yàn)結(jié)果如表7所示,其中測(cè)量結(jié)果為平均值,耕作效果如圖4所示。

      由表7和圖4可知,組合刀輥和螺旋刀輥旋耕后秸稈埋覆率、耕深、耕深穩(wěn)定性及地表平整度等作業(yè)質(zhì)量指標(biāo)均高于國標(biāo)要求,傳統(tǒng)旋耕刀秸稈埋覆率不達(dá)標(biāo);組合刀輥?zhàn)鳂I(yè)質(zhì)量最優(yōu),但是組合刀輥?zhàn)鳂I(yè)功耗偏高;傳統(tǒng)旋耕刀雖然作業(yè)功耗較低,但處理高茬秸稈的能力較差。主要原因有:一、傳統(tǒng)旋耕刀在設(shè)計(jì)上追求的目標(biāo)是土壤切削減阻方面以及防止纏草,正切刃的滑切角很大,以及切斷秸稈過程中地面與正切刃之間的夾持角度也很大,會(huì)產(chǎn)生“夾不住”秸稈現(xiàn)象,秸稈會(huì)在“被夾持”過程中側(cè)滑,又由于正切刃刃口比較短,所以秸稈在側(cè)滑過程中來不及切斷而滑落,傳統(tǒng)旋耕刀不纏草,不處理秸稈,因而功耗低。螺旋橫刀刃口的滑切角適中,而且螺旋橫刀與地面間的夾角比較小,秸稈在切斷過程中能被地面和螺旋橫刀牢牢地夾持住,即便是夾持不住秸稈而產(chǎn)生側(cè)滑,由于螺旋橫刀刃口長(zhǎng)而且連續(xù),秸稈在側(cè)滑過程中也會(huì)被切斷;二、在相同的作業(yè)條件下,傳統(tǒng)旋耕刀實(shí)際作業(yè)最大耕深偏小,作業(yè)功耗是隨耕深增加而增大的,通過正交試驗(yàn)發(fā)現(xiàn)秸稈埋覆率也是隨耕深增加而增大。因而對(duì)比之下,傳統(tǒng)旋耕刀對(duì)秸稈處理能力較差,最大耕深相對(duì)較小,功耗相對(duì)較低。

      組合刀輥結(jié)合傳統(tǒng)旋耕刀和螺旋橫刀的優(yōu)點(diǎn),具有較高的秸稈埋覆處理和土壤耕整能力,作業(yè)性能相對(duì)與螺旋刀輥有一定的提高,只是在作業(yè)功耗上有待進(jìn)一步降低。

      表7 對(duì)比試驗(yàn)作業(yè)性能檢測(cè)結(jié)果Table 7 Measurement results of the working performance of comparative tests

      圖4 對(duì)比試驗(yàn)耕后效果圖Fig.4 Diagram after tillage of comparative tests

      3 結(jié)論與討論

      1)正交試驗(yàn)結(jié)果表明:耕深和前進(jìn)速度對(duì)秸稈埋覆率影響極顯著,刀輥旋轉(zhuǎn)速度對(duì)秸稈埋覆率影響不顯著。組合刀輥?zhàn)罴炎鳂I(yè)參數(shù):拖拉機(jī)前進(jìn)速度0.43~0.93 m/s,刀輥旋轉(zhuǎn)速度330 r/min。

      2)性能檢測(cè)試驗(yàn)結(jié)果表明:組合刀輥一次作業(yè)后,水田耕深達(dá)20.8 cm,旱地20.3 cm;水田耕深穩(wěn)定性達(dá)92.3%,旱地90.6%;水田植被埋覆率達(dá)94.3%,旱地96.5%;水田耕后地表平整度達(dá)0.9 cm,旱地1.2 cm;水田功耗為27.6 kW,旱地31.2 kW,水田和旱地的作業(yè)質(zhì)量和功耗均達(dá)到了原設(shè)計(jì)目標(biāo),作業(yè)質(zhì)量滿足GB/T5668-2008規(guī)定的性能指標(biāo)以及后續(xù)農(nóng)藝的要求。

      3)性能對(duì)比試驗(yàn)結(jié)果表明:傳統(tǒng)旋耕刀雖然作業(yè)功耗較低,但作業(yè)質(zhì)量較差,其中植被埋覆率未能達(dá)到國標(biāo)要求;組合刀輥雖然低1及低2檔作業(yè)功耗高于其他2種刀輥,但在作業(yè)效率較高的低3檔作業(yè)時(shí)功耗要低于螺旋刀輥,而且作業(yè)質(zhì)量在3種刀輥中是最優(yōu)的。

      組合刀輥能滿足水田和旱地高茬埋覆還田需求,特別能解決水旱輪作區(qū)高茬埋覆還田耕作需求問題。針對(duì)影響組合刀輥?zhàn)鳂I(yè)質(zhì)量和功耗的其他因素以及如何達(dá)到節(jié)能降耗等問題有待于進(jìn)一步深入研究。

      [1] 隋銘明,沈飛,徐愛國,等. 基于北斗衛(wèi)星導(dǎo)航的秸稈機(jī)械化還田作業(yè)管理系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(1):23-28. Sui Mingming,Shen Fei,Xu Aiguo, et al. Precise management system for mechanized straw returning based on BDS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 23-28. (in Chinese with English abstract)

      [2] 余坤,馮浩,李正鵬,等. 秸稈還田對(duì)農(nóng)田土壤水分及冬小麥耗水特征的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(10):116-124. Yu Kun, Feng Hao, Li Zhengpeng, et al.Effects of different pretreated straw on soil water content and water consumption characteristics of winter wheat[J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 116-124. (in Chinese with English abstract)

      [3] 馬欣,周連仁,王曉巍,等. 秸稈對(duì)根區(qū)土壤酶活性、無機(jī)氮及呼吸量的影響[J]. 中國土壤與肥料,2012(4):27-33. Ma Xin, Zhou Lianren, Wang Xiaowei,et al. Effect of straw on enzyme activity, inorganic nitrogen and CO2respiration of root zone soil[J]. Soil and Fertilizer Sciences in China, 2012(4): 27-33. (in Chinese with English abstract)

      [4] 胡宏祥,程燕,馬友華,等. 油菜秸稈還田腐解變化特征及其培肥土壤的作用[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2012,20(3):297-302. Hu Hongxiang, Cheng Yan, Ma Youhua, et al. Decomposition characteris-tics of returned rapeseed straw in soil and effects on soil fer-tility[J]. Chinese Journal of Eco-Agriculture, 2012, 20(3): 297-302. (in Chinese with English abstract)

      [5] 馮愛青,張民,李成亮,等. 秸稈及秸稈黑炭對(duì)小麥養(yǎng)分吸收及棕壤酶活性的影響[J]. 生態(tài)學(xué)報(bào),2014,35(15):1-12. Feng Aiqing,Zhang Min,Li Chengliang,et al.Effects of straw and straw biochar on wheat nutrient uptake and enzyme activities in brown soil[J].Acta Ecologica Sinica, 2014, 35(15): 1-12. (in Chinese with English abstract)

      [6] 陳潔,鄭偉,高浩,等. 多源衛(wèi)星遙感農(nóng)作物秸稈焚燒過火區(qū)面積估算方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):207-214. Chen Jie, Zhengwei, Gao Hao, et al. Estimation method of straw burned area based on multi-source satellite remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 207-214. (in Chinese with English abstract)

      [7] 李飛躍,汪建飛. 中國糧食作物秸稈焚燒排碳量及轉(zhuǎn)化生物炭固碳量的估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(14):1-7. Li Feiyue, Wang Jianfei. Estimation of carbon emission from burning and carbon sequestration from biochar producing using crop straw in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 1-7. (in Chinese with English abstract)

      [8] 趙建寧,張貴龍,楊殿林. 中國糧食作物秸稈焚燒碳釋放量的估算[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(4):812-816. Zhao Jianning, Zhang Guilong, Yang Dianlin. Estimation of carbon emission from burning of grain cropresidues in China[J]. Journal of Agro-Environment Science, 2011, 30(4): 812-816. (in Chinese with English abstract)

      [9] Li Hongyu, Han Zhiwei, Cheng Tiantao, et al. Agricultural fire impacts on the air quality of Shanghai during summer harvesttime[J]. Aerosol and Air Quality Research, 2010, 10(2): 95-101.

      [10] 馮偉,張利群,龐中偉,等. 中國秸稈廢棄焚燒與資源化利用的經(jīng)濟(jì)與環(huán)境分析[J]. 中國農(nóng)學(xué)通報(bào),2010,27(6):350-354. Feng Wei, Zhang Liqun, Pang Zhongwei, et al. The economic and environmental analysis of crop residues burning and reutilizafion in China[J]. Chinese Agricultural Science Bulletin, 2010, 27(6): 350-354. (in Chinese with English abstract)

      [11] 張國忠,許綺川,夏俊芳,等. 1GMC-70型船式旋耕埋草機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(10):214-217. Zhang Guozhong, Xu Qichuan, Xia Junfang, et al. Design of 1GMC-70 ship type rotary tillage buried grass machine[J]. Transactions of the Chinese Society Agricultural Machinery (Transactions of the CSAM), 2008, 39(10): 214-217. (in Chinese)

      [12] 余水生. 水田高茬秸稈還田耕整機(jī)的研制[D]. 武漢:華中農(nóng)業(yè)大學(xué),2012. Yu Shuisheng. Research and Trial-manufacture of Straw Returning and Tillage Machine for High Stubble Paddy Field[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)

      [13] 周勇,余水生,夏俊芳. 水田高茬秸稈還田耕整機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(8):46-49,77. Zhou Yong, Yu Shuisheng, Xia Junfang. Design and experiment of cultivator for high straw returning in paddy field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(8): 46-49, 77 (in Chinese with English abstract)

      [14] 夏俊芳,賀小偉,余水生,等. 基于ANSYS/LS-DYNA的螺旋刀輥土壤切削有限元模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(10):34-41. He Xiaowei, Xia Junfang, Yu Shuisheng, et al. Finite element simulation of soil cutting with rotary knife roller based on ANSYS/LS-DYNA software[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(10): 34-41. (in Chinese with English abstract)

      [15] 張居敏,周勇,夏俊芳,等. 旋耕埋草機(jī)螺旋橫刀的數(shù)學(xué)建模與參數(shù)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(1):18-25. Zhang Jumin, Zhou Yong, Xia Junfang, et al. Mathematical modeling and analysis of helical blade for stubble burying rotary tiller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 18-25. (in Chinese with English abstract)

      [16] 張秀梅,張居敏,夏俊芳,等. 水旱兩用秸稈還田耕整機(jī)關(guān)鍵部件設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):10-16. Zhang Xiumei, Zhang Jumin, Xia Junfang, et al. Design and experiment on critical component of cultivator for straw returning in paddy field and dry land[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 10-16. (in Chinese with English abstract)

      [17] 張居敏. 水田高茬秸稈旋耕埋覆機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2014. Zhang Jumin. Study on Mechanism of High Stubble Burying Rotary Tiller for Wet Land[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)

      [18] 龔麗農(nóng),高煥文,蔣金琳. 免耕播種機(jī)玉米根茬處理裝置作業(yè)功耗試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(7):124-127. Gong Linong, Gao Huanwen, Jiang Jinlin. Experimental study on power dissipation of corn rootstalk treatment device of no-tillage planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 124-127. (in Chinese with English abstract)

      [19] 汲文峰,賈洪雷,佟金. 旋耕-碎茬仿生刀片田間作業(yè)性能的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(12):24-30. Ji Wenfeng, Jia Honglei, Tong Jin. Experiment on working performance of bionic blade for soil-rototilling and stubble-breaking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(12): 24-30. (in Chinese with English abstract)

      [20] 王志山,夏俊芳,許綺川,等. 船式旋耕埋草機(jī)螺旋刀輥?zhàn)鳂I(yè)功耗試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(12):44-47. Wang Zhishan, Xia Junfang, Xu Qichuan, et al. Power consumption experiment of rotary tillage and stubble mulch knife roller[J].Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 44-47. (in Chinese with English abstract)

      [21] 王志山,夏俊芳,許綺川,等. 水田高茬秸稈旋耕埋覆裝置功耗測(cè)試方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(2):119-123. Wang Zhishan, Xia Junfang, Xu Qichuan, et al. Power consumption testing system of high stubble buried device in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 119-123. (in Chinese with English abstract)

      [22] 張居敏,賀小偉,夏俊芳,等.高茬秸稈還田耕整機(jī)功耗檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):38-46. Zhang Jumin, He Xiaowei, Xia Junfang, et al. Design and field experiment of power consumption measurement system for high stubble returning and tillage machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 38-46. (in Chinese with English abstract)

      [23] 王志山. 基于LabVIEW的船式旋耕埋草機(jī)功耗檢測(cè)研究[D].武漢:華中農(nóng)業(yè)大學(xué),2010. Wang Zhishan. Research on Power Consumption Detection of Boat-Rotary Tillage and Stubble-mulch Machine Based on LabVIEW[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract)

      [24] 賀小偉. 高茬秸稈旋耕翻埋功耗檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2014. He Xiaowei. Design and Experimental Study of Power Consumption Measurement System for High Stubble Returning and Tillage Machine[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)

      [25] GB/T 5626—2008. 農(nóng)業(yè)機(jī)械試驗(yàn)條件、測(cè)定方法的一般規(guī)定[S].

      [26] GB/T 5668-2008. 旋耕機(jī)[S].

      [27] NYT 499-2002. 旋耕機(jī)作業(yè)質(zhì)量[S].

      [28] DB44/T 367-2006. 南方雙季稻地區(qū)水田機(jī)械耕整作業(yè)技術(shù)規(guī)程[S].

      [29] 李云雁,胡傳榮. 試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理[M]. 北京:化學(xué)工業(yè)出版社,2011.

      [30] 中國農(nóng)業(yè)機(jī)械科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007:237-238

      [31] 中國一拖集團(tuán)有限公司. 東方紅—LX954拖拉機(jī)使用保養(yǎng)說明書[M]. 洛陽:洛陽大方圖文設(shè)計(jì)有限公司,2010.

      Working performance experiment of combination blade roller for straw returning in paddy field and dry land

      Zhang Xiumei, Xia Junfang※, Zhang Jumin, He Xiaowei, Liang Shifang, Zhang Shun, Wu Hao, Wan Song
      (College of Engineering, Huazhong Agricultural University, Wuhan 430070)

      In transitory and busy farming season, the straw has to be buried in the field whether it’s paddy or dry land. In this study, we designed a straw burying rotary tiller, which can bury crop straw not only in paddy field, but also in dry land. It is suitable for tillage in middle and lower reaches of Yangtze River, where the principal crop rotation is paddy field rice after dry land crop annually. In order to improve the working quality of the cultivating roller for straw returning in paddy field and dry land, the experimental studies have been conducted in the fields. First, L9(34) orthogonal experiment was conducted to research the influence factors of the performance of the cultivator for straw returning. The main influence factors for working quality of rotary tiller were tillage depth, rotary speed and forward speed. The tillage depth of 15.5, 18.5 and 21.5 cm, the rotary speed of 314, 330 and 360 r/min, and the forward speed of 0.43, 0.69 and 0.93 m/s were selected. The results showed that among the above 3 factors the influence order was tillage depth>forward speed>rotary speed. The tillage depth affected straw coverage extremely significantly, the forward speed affected straw coverage extremely significantly, and the rotary speed didn’t affect straw coverage obviously, but it affected soil crushing rate significantly. The better test conditions were shown as below: the forward speed was 0.43-0.93 m/s, the rotary speed was about 330 r/min, and the tillage depth was about 21.5 cm. Based on the better test conditions (the forward speed was selected as 0.43 m/s), the experiments on working performance of cultivator for straw returning in paddy field and dry land were conducted in the fields, and the wireless telemetry technology and the power output shaft torque sensor were used in the study. The results showed that the working qualities of cultivator which met the agro-technical requirement of rice sowing and transplanting were as follows: in paddy field, when the soil texture was clay loam, the soil water content was 42.6%, the height of straw was 78.9 cm, the tillage depth was about 150 mm and the soil compaction value was under 1 244.8 kPa, the vegetation coverage rate reached 94.3%, the tillage depth reached 20.8 cm, the stability of tillage depth was 92.3%, the field surface evenness was 0.9 cm, and the power consumption was 27.6 kW; in dry land, when the soil texture was loam, the soil water content was 25.8%, the height of wormwood was 97.2 cm, the tillage depth was 150 mm and the soil compaction value was under 2 310.5 kPa, the vegetation coverage rate reached 96.5%, the tillage depth reached 20.3 cm, the stability of tillage depth was 90.6%, the field surface evenness was 1.2 cm, and the power consumption was 31.2 kW. At the same time, the comparative tests between the combination blade roller and the spiral blade, the traditional rotary blade were also conducted, in which the new roller was in according with the national standard of the work quality. The results showed that the working quality of the combination blade roller was better than that of the spiral blade and the traditional rotary blade, and the power consumption of the combination blade roller was higher than that of the traditional rotary blade. Based on the above results, further research on the power consumption of the cultivator for straw returning in paddy field and dry land is needed. The results provide the basis for the structure optimization of the cultivator for straw returning and the improvement of its working performance, and also provide a suitable implement to achieve high stubble straw mulching and soil tillage in paddy field and dry land.

      agricultural machinery; optimization; experiments; combination blade roller; straw returning; paddy field and dry land; working performance; power consumption

      10.11975/j.issn.1002-6819.2016.09.002

      S222

      A

      1002-6819(2016)-09-0009-07

      張秀梅,夏俊芳,張居敏,賀小偉,梁世芳,張 順,吳 昊,萬 松. 水旱兩用秸稈還田組合刀輥?zhàn)鳂I(yè)性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):9-15.

      10.11975/j.issn.1002-6819.2016.09.002 http://www.tcsae.org

      Zhang Xiumei, Xia Junfang, Zhang Jumin, He Xiaowei, Liang Shifang, Zhang Shun, Wu Hao, Wan Song. Working performance experiment of combination blade roller for straw returning in paddy field and dry land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 9-15. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.002 http://www.tcsae.org

      2015-08-23

      2016-02-23

      公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)資助項(xiàng)目(201503136);國家自然科學(xué)基金資助項(xiàng)目(51275196);湖北省科技支撐計(jì)劃項(xiàng)目資助項(xiàng)目(2015BBA155);湖北省教育廳科學(xué)技術(shù)研究項(xiàng)目(B2015263)

      張秀梅,女,湖北大悟人,博士生,講師,主要從事現(xiàn)代農(nóng)業(yè)裝備設(shè)計(jì)及測(cè)控研究。武漢 華中農(nóng)業(yè)大學(xué)工學(xué)院,430070。Email:15821588@qq.com

      ※通信作者:夏俊芳,女,湖北武漢人,教授,博士生導(dǎo)師,主要從事現(xiàn)代農(nóng)業(yè)裝備設(shè)計(jì)及測(cè)控研究。武漢 華中農(nóng)業(yè)大學(xué)工學(xué)院,430070。Email:xjf@mail.hza.edu.cn

      猜你喜歡
      刀輥耕深水田
      拖拉機(jī)多重模糊PID變論域耕深調(diào)節(jié)研究
      基于響應(yīng)面分析法的輥?zhàn)邮介蛔悠茪C(jī)結(jié)構(gòu)參數(shù)的優(yōu)化
      微耕機(jī)旋耕刀輥彎刀排列優(yōu)化仿真分析*
      雙軸式旋耕滅茬機(jī)滅茬刀輥結(jié)構(gòu)設(shè)計(jì)與試驗(yàn)
      基于卡爾曼濾波融合算法的深松耕深檢測(cè)裝置研究
      先鋒廈地水田書店
      懸掛式深松機(jī)耕深監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)與試驗(yàn)
      線性擬合與Kalman預(yù)測(cè)法修正耕深測(cè)量誤差
      近世長(zhǎng)三角南緣的水田經(jīng)營與環(huán)境博弈
      鳳頭豬肚豹尾說“白傳”——讀《白水田傳》
      新聞前哨(2015年2期)2015-03-11 19:29:30
      汪清县| 湖北省| 汉沽区| 东阿县| 抚远县| 张家川| 和林格尔县| 山东省| 乌兰浩特市| 和顺县| 日喀则市| 衡山县| 新营市| 溆浦县| 玛多县| 丘北县| 大渡口区| 焦作市| 江达县| 大安市| 南江县| 全椒县| 双牌县| 泾阳县| 廊坊市| 伊金霍洛旗| 兴安县| 田东县| 洛隆县| 牡丹江市| 泰来县| 慈利县| 武陟县| 大庆市| 宁都县| 锡林浩特市| 承德县| 长宁县| 四川省| 松阳县| 黄浦区|