商高高,劉存昊,韓江義
?
線(xiàn)性擬合與Kalman預(yù)測(cè)法修正耕深測(cè)量誤差
商高高,劉存昊,韓江義
(江蘇大學(xué)汽車(chē)與交通工程學(xué)院,鎮(zhèn)江 212013)
為精確控制耕深及保證耕深均勻,基于耕深測(cè)量方法及誤差產(chǎn)生原因,對(duì)耕深測(cè)量值進(jìn)行修正。該文對(duì)耕深間接和直接測(cè)量原理進(jìn)行分析,通過(guò)田間試驗(yàn)探討耕深測(cè)量誤差產(chǎn)生機(jī)理。試驗(yàn)表明,間接測(cè)量出的耕深始終小于實(shí)際耕深,目標(biāo)耕深增大,耕深偏差也增加;直接方法由于受土壤不平度、植物殘差等因素影響,導(dǎo)致測(cè)量值波動(dòng)較大。該文分別采用線(xiàn)性擬合和Kalman預(yù)測(cè)對(duì)耕深間接和直接測(cè)量結(jié)果進(jìn)行修正。結(jié)果表明,線(xiàn)性擬合能夠降低耕深偏差(補(bǔ)償前:3.20、4.48、5.61、6.90 cm,補(bǔ)償后:0.14、0.19、0.16、0.17 cm),Kalman預(yù)測(cè)能夠減少測(cè)量值中的噪聲(預(yù)測(cè)前標(biāo)準(zhǔn)差:1.60、1.83、1.33、1.83 cm,預(yù)測(cè)后標(biāo)準(zhǔn)差:0.032、0.010、0.042、0.092 cm),使修正結(jié)果趨于真實(shí)耕深。該研究為實(shí)現(xiàn)電控懸掛位控制及保證播種深度提供了新的解決方案。
農(nóng)業(yè)機(jī)械;傳感器;算法;耕深測(cè)量;卡爾曼預(yù)測(cè);耕深修正
土壤耕整是一項(xiàng)基本的田間作業(yè),而耕深是衡量耕作質(zhì)量的重要指標(biāo),是關(guān)系農(nóng)作物根系生長(zhǎng)和產(chǎn)量的重要因素[1-3]。因此,精準(zhǔn)監(jiān)測(cè)耕深對(duì)提高作業(yè)質(zhì)量,促進(jìn)作物生長(zhǎng)及提高懸掛控制精度都具有重要意義。
近年來(lái),一些學(xué)者已對(duì)耕深測(cè)量進(jìn)行了許多研究。綜合文獻(xiàn),耕深測(cè)量可分為2種,一種是直接測(cè)量,通過(guò)監(jiān)測(cè)犁架相對(duì)未耕地面間的高度變化獲得耕深[4-11]。相關(guān)研究表明,該方法受土壤含水量和作業(yè)溫度等因素影響較大[12-14]。隨著保護(hù)性田地逐漸普及,部分作物殘差不再清理出田地,而植被能夠吸收聲波和光波,導(dǎo)致測(cè)量系統(tǒng)無(wú)法接收到反饋信號(hào),從而影響耕深直接測(cè)量測(cè)精度[15-17]。地輪也是一種直接測(cè)量裝置,通過(guò)監(jiān)測(cè)地輪垂直方向上的位移變化獲得耕深,測(cè)量精度高,無(wú)需考慮作業(yè)環(huán)境影響,但其結(jié)構(gòu)復(fù)雜,需通過(guò)地輪、滑塊及位置傳感器等設(shè)備高精度配合才能實(shí)現(xiàn)耕深測(cè)量,并且該裝置需要定期保養(yǎng),僅適用于試驗(yàn)研究。另一種測(cè)量方式是間接測(cè)量,以懸掛機(jī)構(gòu)位置和提升臂轉(zhuǎn)角間的幾何關(guān)系為基礎(chǔ),通過(guò)監(jiān)測(cè)提升臂轉(zhuǎn)角推算耕深[18-21]。該方式以耕作過(guò)程中車(chē)輪與地面間的相對(duì)位置恒定為前提,獲得間接耕深。
綜上所述,由于作業(yè)環(huán)境影響及測(cè)量原理上的差異,導(dǎo)致直接和間接方法測(cè)量出的耕深均存在偏差。所以,有必要對(duì)耕深測(cè)量方法及測(cè)量誤差產(chǎn)生原因進(jìn)行分析并修正。其中,線(xiàn)性擬合和Kalman預(yù)測(cè)在分析各參數(shù)對(duì)試驗(yàn)結(jié)果產(chǎn)生影響及剔除噪聲方面是非常有效的方法。相關(guān)研究表明,線(xiàn)性擬合和Kalman預(yù)測(cè)在拖拉機(jī)定位[22-23]、農(nóng)田面積預(yù)測(cè)[24]及土壤溫度預(yù)測(cè)[25]方面相繼取得了成功。然而,到目前為止與耕深修正相關(guān)的研究尚未進(jìn)行。
本研究旨在探討耕深測(cè)量誤差產(chǎn)生原因,并對(duì)其做出相應(yīng)修正。首先對(duì)耕深測(cè)量原理進(jìn)行分析;然后,進(jìn)行田間試驗(yàn)探討耕深測(cè)量誤差產(chǎn)生原因;最后,分別采用線(xiàn)性擬合和Kalman預(yù)測(cè)對(duì)耕深間接和直接測(cè)量結(jié)果進(jìn)行修正及驗(yàn)證。
本研究首先對(duì)樣機(jī)進(jìn)行改造,選用角度傳感器和超聲波傳感器對(duì)耕深間接和直接測(cè)量進(jìn)行研究,樣機(jī)及所選傳感器型號(hào)如表1所示。
表1 樣機(jī)及傳感器型號(hào)
1)測(cè)量基準(zhǔn)。相對(duì)其它耕深測(cè)量裝置,地輪不僅測(cè)量精度高,而且始終和地面保持良好的接觸具有很好的仿行即時(shí)響應(yīng)。拉繩傳感器精度高,不易受環(huán)境影響,所以以地輪和拉繩傳感器組成的系統(tǒng)作為耕深監(jiān)測(cè)基準(zhǔn),如圖1所示。作業(yè)時(shí),地輪隨滑塊在導(dǎo)軌上移動(dòng),拉繩傳感器監(jiān)測(cè)滑塊相對(duì)犁架間的垂直高度變化量。
圖1 地輪安裝示意圖
地輪耕深測(cè)量公式為
=1?0(1)
式中0、1分別為機(jī)組置于水平面和作業(yè)時(shí)地輪距離支架的距離,cm;為耕深,cm。
2)間接測(cè)量。懸掛機(jī)構(gòu)和傳感器安裝示意圖如圖2所示。懸掛系統(tǒng)作業(yè)時(shí),液壓缸推動(dòng)提升臂轉(zhuǎn)動(dòng),控制農(nóng)具升降,各桿件運(yùn)動(dòng)規(guī)律可通過(guò)幾何關(guān)系描述[26-27],其中提升臂轉(zhuǎn)角與間接耕深之間的關(guān)系,如下式所示
注:O為提升臂與拖拉機(jī)連接的鉸接點(diǎn);A為提升臂與提升桿連接的鉸接點(diǎn);B為下拉桿與拖拉機(jī)連接的鉸接點(diǎn);C為提升臂與下拉桿連接的鉸接點(diǎn);D為下拉桿與犁具連接的鉸接點(diǎn);E為上拉桿與拖拉機(jī)連接的鉸接點(diǎn);F為上拉桿與犁具連接的鉸接點(diǎn);β是上拉桿與水平面間的夾角,(°);α0為提升臂與水平面間的初始夾角(初始位置:機(jī)組停放在硬路面上,犁具下降到最低點(diǎn)時(shí)各桿件的位置),(°);α為提升臂與水平面之間的夾角,順時(shí)針為正,(°);h′為間接測(cè)量耕深,cm。
3)直接測(cè)量。超聲波傳感器受溫度影響較大,最高可使聲速發(fā)生7%變化[28]。為降低溫度對(duì)聲速產(chǎn)生的影響,本研究采用雙頭超聲波傳感器測(cè)量耕深,如圖3所示。測(cè)量時(shí),先由溫度補(bǔ)償頭校正聲速,如式(4);然后,計(jì)算出測(cè)量頭從聲波發(fā)射至接收到回波的時(shí)間,根據(jù)校正的聲速和接收到回波的時(shí)間,得出犁架與未耕地面間的距離;最后,根據(jù)犁架距離地面的初始距離與犁架距離地面的實(shí)際距離,計(jì)算出直接耕深,如式(5)所示。
注:G為耕深測(cè)量頭;H為溫度補(bǔ)償頭;h2為初始測(cè)量距離,cm;h3為實(shí)際測(cè)量距離,cm;l1為溫度補(bǔ)償監(jiān)測(cè)距離,cm;為直接測(cè)量耕深,cm。
式中0、1分別為溫度補(bǔ)償頭和耕深測(cè)量頭從發(fā)出到接收到回波的時(shí)間,s;為校正后的聲速,cm/s。
本研究所選拉繩傳感器、角度傳感器及超聲波傳感器電壓輸出范圍均為0~5 V,角度傳感器、超聲波傳感器及拉繩傳感器測(cè)量范圍分別為0°~270°、30~200 cm及0~100 cm。上述3種傳感器電壓輸出值與被測(cè)量之間的關(guān)系式如下
式中為傳感器電壓輸出值,V。
1)耕深線(xiàn)性擬合?,F(xiàn)實(shí)物理研究過(guò)程中,一些物理量函數(shù)難以由經(jīng)典理論推導(dǎo)出來(lái),但基于需要又希望得到這些變量間的函數(shù)關(guān)系,這時(shí)就需要利用線(xiàn)性擬合的方法利用試驗(yàn)數(shù)據(jù)結(jié)合數(shù)學(xué)方法得到物理量之間的近似函數(shù)表達(dá)式[29]。線(xiàn)性擬合是一種廣泛應(yīng)用的估計(jì)方法,能夠從一組測(cè)定的、有限個(gè)數(shù)據(jù)點(diǎn)中找出未知變量間的內(nèi)在規(guī)律,對(duì)系統(tǒng)做出預(yù)測(cè)。
對(duì)于一組數(shù)據(jù){(x,y),(=1,2,…,)},若曲線(xiàn)擬合函數(shù)為=(),則第點(diǎn)誤差為(x)?y,所有誤差平方和為[(x)?y]2,求出函數(shù)[(x)?y]2最小值對(duì)應(yīng)的參數(shù),即可得到擬合曲線(xiàn)=()。通常采用擬合優(yōu)度2來(lái)描述擬合曲線(xiàn)對(duì)觀測(cè)值的擬合程度。
2)Kalman預(yù)測(cè)。超聲波測(cè)距采用固定閾值的比較器比較輸出,高精度的渡越時(shí)間決定了超聲波測(cè)距的準(zhǔn)確性,Kalman預(yù)測(cè)適用于雙回波重疊情況的檢測(cè)超聲回波到達(dá)時(shí)刻算法,能夠準(zhǔn)確地檢測(cè)回波到達(dá)時(shí)刻,提高測(cè)量精度[30-31]。
Kalman預(yù)測(cè)過(guò)程如圖4所示,通過(guò)一系列的公式估計(jì)某過(guò)程的狀態(tài),將噪聲對(duì)系統(tǒng)辨識(shí)的影響降到最低。Kalman的每一次狀態(tài)更新只需上一狀態(tài)的估計(jì)值和當(dāng)前狀態(tài)的測(cè)量值,無(wú)需儲(chǔ)存大量數(shù)據(jù),適用于微處理器在有限內(nèi)存空間實(shí)現(xiàn)懸掛的實(shí)時(shí)控制。
圖4 Kalman預(yù)測(cè)流程
Kalman預(yù)測(cè)前首先要確定初始參數(shù)(0|0)(零時(shí)刻最優(yōu)值)和(0|0)(初始協(xié)方差)。理論上這2個(gè)初始值可隨意指定,因隨Kalman預(yù)測(cè),會(huì)逐漸收斂,為了獲得較高的收斂速度,本研究將目標(biāo)值作為初始值。對(duì)于,一般不取0,因?yàn)檫@樣可能會(huì)令Kalman完全相信給定的(0|0)是系統(tǒng)最優(yōu)值,從而使算法不能收斂。
如圖4所示,誤差協(xié)方差更新過(guò)程中的和Kalman計(jì)算過(guò)程中的分別是過(guò)程噪聲方差和測(cè)量噪聲方差,目前沒(méi)有精確獲得該值的方法,通常采用試驗(yàn)法和試錯(cuò)法對(duì)其進(jìn)行估計(jì)。是由于人為干擾、車(chē)輛震動(dòng)、風(fēng)等自然因素造成的??刹捎脤?duì)比試驗(yàn)進(jìn)行估計(jì)。如,將犁耕機(jī)組分別置于平整的柏油路和試驗(yàn)田,保持犁具位置不變,行駛機(jī)組,對(duì)比2種條件下傳感器采集到的數(shù)據(jù),以其方差偏差作為過(guò)程噪聲方差。與傳感器精度密切相關(guān),屬于統(tǒng)計(jì)意義上的參數(shù),可對(duì)傳感器測(cè)量的數(shù)據(jù)進(jìn)行大量概率統(tǒng)計(jì),取其平均方差作為測(cè)量噪聲方差。根據(jù)上述方法,和的計(jì)算值分別為0.06、0.03。
由于各型號(hào)犁具尺寸存在差異及懸掛機(jī)構(gòu)部分桿件尺寸可調(diào),每次更換或調(diào)節(jié)犁具時(shí)各桿件長(zhǎng)度均會(huì)發(fā)生變化,導(dǎo)致耕深計(jì)算關(guān)系也會(huì)發(fā)生改變。因此,懸掛自動(dòng)控制中,并不針對(duì)參數(shù)變化的關(guān)系編程,而是采用系統(tǒng)標(biāo)定的方法得到傳感器電壓測(cè)量值與實(shí)際耕深間的關(guān)系[32]。
標(biāo)定時(shí)將機(jī)組置于標(biāo)定臺(tái),按最大耕深時(shí)使犁具前后、左右均處于水平位置,并將犁具左右限制在適當(dāng)范圍,避免出現(xiàn)側(cè)偏。緩慢提升犁具均勻選取若干點(diǎn),采集不同耕深下傳感器電壓輸出值。根據(jù)采集到的數(shù)據(jù),對(duì)傳感器電壓輸出值與耕深進(jìn)行標(biāo)定,結(jié)果如下
1=155.2?0.057 931120.999 1 (9)
2=80?0.031 4222=0.999 5 (10)
式中1、2分別為間接和直接測(cè)量耕深,cm;1、2分別為角度傳感器和超聲波傳感器電壓輸出值,mV??梢钥闯觯?種測(cè)量方法的擬合優(yōu)度均近似為1,說(shuō)明傳感器電壓輸出值與耕深存在較強(qiáng)線(xiàn)性關(guān)系。
本研究以拉繩傳感器、角度傳感器和超聲波傳感器為觀測(cè)原件,以其電壓輸出值作為觀測(cè)量,通過(guò)數(shù)據(jù)采集單元將電壓輸出值轉(zhuǎn)換為耕深。數(shù)據(jù)采集單元將監(jiān)測(cè)到的數(shù)據(jù)發(fā)送到顯示器和電腦,用于作業(yè)人員參考和后續(xù)試驗(yàn)數(shù)據(jù)處理。
田間試驗(yàn)在鹽城馬恒達(dá)拖拉機(jī)試驗(yàn)田進(jìn)行,包括耕作和仿行作業(yè)。耕作時(shí),選取常用的耕深15、20、25、30 cm進(jìn)行作業(yè);耕作后,采用地輪在作業(yè)后的田地上進(jìn)行仿行,仿行中地輪用于維持犁具高度,使犁具緊貼耕作后的地面,同時(shí)選用直接和間接方法測(cè)量耕深。
為使耕深修正更具說(shuō)服力,試驗(yàn)后,將采集到的數(shù)據(jù)分為2組,分別用于耕深測(cè)量誤差分析和修正。
選取一組試驗(yàn)數(shù)據(jù),作出耕深時(shí)間歷程曲線(xiàn),如圖5所示。可以看出,間接測(cè)量出的耕深較平穩(wěn),標(biāo)準(zhǔn)差在0.029~0.36 cm之間;直接測(cè)量出的波動(dòng)較大,標(biāo)準(zhǔn)差在1.41~1.99 cm之間。產(chǎn)生這種差異的原因可解釋為,間接測(cè)量中傳感器安裝在拖拉機(jī)上,作業(yè)時(shí)受到拖拉機(jī)震動(dòng)產(chǎn)生的干擾;直接測(cè)量中傳感器安裝在犁具上,作業(yè)時(shí)不僅受到來(lái)自拖拉機(jī)震動(dòng)的影響,而且植物殘差和土壤含水量等因素也會(huì)對(duì)耕深測(cè)量產(chǎn)生干擾。
相對(duì)直接測(cè)量,間接方法測(cè)量出的耕深與實(shí)際耕深間的偏差(間接:3.22、4.06、5.65、6.62 cm;直接:0.16、0.09、0.03、0.59 cm)較大,且從圖5可以看出,間接測(cè)量出的耕深始終小于實(shí)際耕深,并隨實(shí)際耕深的增大耕深偏差也增加。
由于耕作田地松軟,作業(yè)時(shí)車(chē)輪會(huì)出現(xiàn)下陷,并隨目標(biāo)耕深增大下陷量也會(huì)增加,致使測(cè)量基準(zhǔn)發(fā)生變化,故可能導(dǎo)致間接耕深偏差。而直接方法測(cè)量的是犁架相對(duì)未耕地面間的距離,車(chē)輪下陷不會(huì)對(duì)直接耕深測(cè)量產(chǎn)生影響。
圖5 耕深時(shí)間歷程變化曲線(xiàn)
基于上述分析,可以得出,間接測(cè)量產(chǎn)生的主要是測(cè)量偏差,直接測(cè)量產(chǎn)生的主要是測(cè)量值的波動(dòng)。故無(wú)論是間接測(cè)量還是直接測(cè)量,其測(cè)量結(jié)果都與實(shí)際值存在一定誤差,均無(wú)法直接用于農(nóng)藝評(píng)估和耕深控制。因此,需要根據(jù)誤差產(chǎn)生的原因?qū)y(cè)量結(jié)果進(jìn)行修正,以滿(mǎn)足農(nóng)藝要求。
1)間接測(cè)量修正
耕作過(guò)程中,耕深修正主要是尋求耕深誤差的變化規(guī)律,而耕深測(cè)量過(guò)程中,目標(biāo)耕深固定不變,可尋求有限觀測(cè)數(shù)據(jù)及其伴隨耕深偏差間的變化規(guī)律,探究耕深與耕深偏差之間的關(guān)系。線(xiàn)性擬合則是通過(guò)最小化誤差的平方和尋找數(shù)據(jù)的最佳函數(shù)匹配。為此,本研究采用MATLAB對(duì)耕深偏差與實(shí)際耕深進(jìn)行擬合,結(jié)果為
3=0.235 83?0.41832=0.986 1 (11)
式中3為實(shí)際耕深,cm;3為間接耕深偏差,cm。由擬合優(yōu)度可以看出,間接耕深偏差與實(shí)際耕深呈較強(qiáng)線(xiàn)性關(guān)系,故可基于該式對(duì)間接耕深進(jìn)行修正。
選取不同于耕深誤差分析的另一組數(shù)據(jù)根據(jù)式(11),對(duì)間接測(cè)量結(jié)果進(jìn)行修正,修正結(jié)果如圖6所示??梢钥闯觯拚昂蟮母顦?biāo)準(zhǔn)差基本一致,修正前:0.042、0.080、0.032、0.070 cm;修正后:0.047、0.060、0.030、0.082 cm,保證了耕深穩(wěn)定性,而耕深偏差分別從3.20、4.48、5.61、6.90 cm降低到0.14、0.19、0.16、0.17 cm,故線(xiàn)性擬合能夠在保證耕深穩(wěn)定的前提下減小耕深偏差。
2)直接測(cè)量修正
根據(jù)Kalman遞歸原理編寫(xiě)預(yù)測(cè)程序,選取采集數(shù)據(jù)中不同于耕深測(cè)量誤差分析的數(shù)據(jù)進(jìn)行預(yù)測(cè),預(yù)測(cè)結(jié)果如圖7所示。可以看出,Kalman預(yù)測(cè)后耕深波動(dòng)降低,預(yù)測(cè)后的標(biāo)準(zhǔn)差從1.60、1.83、1.33、1.83 cm下降到0.032、0.010、0.042、0.092 cm。故Kalman能夠降低原數(shù)據(jù)中的噪聲,使預(yù)測(cè)后的耕深盡可能趨近于真實(shí)值。
圖6 間接耕深測(cè)量修正結(jié)果
圖7 間接耕深修正結(jié)果
從耕深平均值來(lái)看,雖然Kalman過(guò)濾掉了原數(shù)據(jù)中波動(dòng)較大的信號(hào),但是濾波后的耕深平均值(濾波前:15.06、20.05、25.42、29.33 cm,濾波后:15.02、20.08、25.07、30.14 cm)近似不變,并且濾波前后的耕深偏差(濾波前:0.064、0.050、0.420、0.650 cm,濾波后:0.020、0.084、0.070、0.170 cm)也非常接近。故Kalman僅濾除了無(wú)關(guān)信號(hào),并未改變耕深變化趨勢(shì),避免了信號(hào)失真。
1)對(duì)耕深間接和直接測(cè)量方法進(jìn)行了探討,分析出影響耕深測(cè)量誤差的可能因素,證明了線(xiàn)性擬合和Kalman預(yù)測(cè)適用于耕深誤差修正。
2)耕深間接測(cè)量偏差與實(shí)際耕深近似呈線(xiàn)性相關(guān),基于擬合公式能夠有效補(bǔ)償耕深偏差(補(bǔ)償前:3.20、4.48、5.61、6.90 cm;補(bǔ)償后:0.047、0.060、0.030、0.082 cm),并保證補(bǔ)償后的耕深標(biāo)準(zhǔn)差(補(bǔ)償前:0.042、0.080、0.032、0.070 cm;補(bǔ)償后:0.047、0.060、0.030、0.082 cm)近似不變。
3)Kalman預(yù)測(cè)能夠準(zhǔn)確預(yù)測(cè)回波到達(dá)時(shí)刻,通過(guò)狀態(tài)更新減少測(cè)量值中的噪聲,降低了耕深標(biāo)準(zhǔn)差(預(yù)測(cè)前:1.60、1.83、1.33、1.83 cm;預(yù)測(cè)后:0.032、0.010、0.042、0.092 cm),縮小了耕深波動(dòng)范圍。
4)先前研究者專(zhuān)注于耕深測(cè)量裝置設(shè)計(jì),由于試驗(yàn)環(huán)境復(fù)雜多變,各裝置的測(cè)量精度均會(huì)受影響。本研究通過(guò)分析誤差產(chǎn)生的原因,對(duì)其作出修正,提高了耕深測(cè)量精度,為精確控制耕深及實(shí)現(xiàn)懸掛位控制提供了新的解決方案。
5)耕深測(cè)量方式不同,誤差來(lái)源也不盡相同。間接測(cè)量誤差可能來(lái)自于車(chē)輪下陷及桿件變形等因素,使標(biāo)定基準(zhǔn)發(fā)生改變;直接測(cè)量誤差可能來(lái)自于土壤不平度、植物殘差等因素,導(dǎo)致測(cè)量值波動(dòng)較大。盡管本研究對(duì)耕深誤差產(chǎn)生的原因進(jìn)行了分析,但并沒(méi)有進(jìn)一步驗(yàn)證和量化各因素對(duì)耕深誤差產(chǎn)生的影響,該部分對(duì)提高耕深測(cè)量精度更值得深入的探究。
[1] 商高高,謝凌云,季順靜. 拖拉機(jī)懸掛系統(tǒng)耕深自動(dòng)控制策略的研究[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2016,37(7):136-140.
Shang Gaogao, Xie Lingyun, Ji Shunjing. Reasearch on plowing depth automatic control for tractor hitch system[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(7): 136-140. (in Chinese with English abstract)
[2] 康杰,聶有紅,何家慧,等. 耕深電子測(cè)量和顯示裝置的設(shè)計(jì)與試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2015,37(1):128-130.
Kang Jie, Nie Youhong, He Jiahui, et al. Design on a device for electronically detecting and displalying tilling depth[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 128-130. (in Chinese with English abstract)
[3] 阿依丁·克扎突拉,吳明濤,何培祥,等. 耕深自動(dòng)調(diào)節(jié)控制系統(tǒng)[J]. 農(nóng)機(jī)化研究,2013(3):160-163.
Ayiding Kezhatula, Wu Mingtao, He Peixiang, et al. The control system of automatic adjust for plowing depth[J]. Journal of Agricultural Mechanization Research, 2013(3): 160-163. (in Chinese with English abstract)
[4] Rosell J R, Sanz R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities[J]. Computers & Electronics in Agriculture, 2012, 81(4): 124-141.
[5] Saeys W , Engelen K ,Ramon H, et al. An automatic depth control system for shallow manure injection, part 1: Modelling of the depth control system[J]. Biosystems Engineering, 2007, 98(2): 146-154.
[6] S?gaard H T. Automatic control of a finger weeder with respect to the harrowing intensity at varying soil structures[J]. Journal of Agricultural Engineering Research, 1998, 70(2): 157-163.
[7] Vander L S, Mouazen A M, Anthonis J, et al. Infrared laser sensor for depth measurement to improve depth control in intra-row mechanical weeding[J]. Biosystems Engineering, 2008, 100(3): 309-320.
[8] Kiani S, Kamgar S, Raoufat M. Automatic on-line depth control of seeding units using a non-contacting ultrasonic sensor[C]//XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering, Québec City, Canada, 2010: 1-8.
[9] Suomi P, Oksanen T. Automatic working depth control for seed drill using ISO 11783 remote control messages[J]. Computers & Electronics in Agriculture, 2015, 116: 30-35.
[10] Lee J, Yamazaki M, Oida A, et al. Field performance of proposed foresight tillage depth control system for rotary implements mounted on an agricultural tractor[J]. Journal of Terramechanics, 2000, 37(2): 99-111.
[11] Hesse H. Electro-hydraulic header control for combine harvesters[C]//28th International Symposium on Agricultural Mechanics, Opatija, Croatia, 2000: 33-41.
[12] Lee J, Yamazaki M, Oida A, et al. Non-contact sensors for distance measurement from ground surface[J]. Journal of Terramechanics, 1996, 33(3): 155-165.
[13] Qi J, Zhang S, Yu Y, et al. Experimental analysis of ground speed measuring systems for the intelligent agricultural machinery[C]//2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 2010: 668-671.
[14] Jia H L, Wang L C, Li C S, et al. Combined stalk-stubble breaking and mulching machine[J]. Soil & Tillage Research, 2010, 107(1): 42-48.
[15] 賈洪雷,趙佳樂(lè),姜鑫銘. 行間免耕播種機(jī)防堵裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):16-25.
Jia Honglei, Zhao Jiale, Jiang Xinming, et al. Design and experiment of anti-blocking mechanism for inter-row no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 16-25. (in Chinese with English abstract)
[16] Anthonis J, Mouazen A M, Saeys W, et al. An automatic depth control system for online measurement of spatial variation in soil compaction, part 3: Design of depth control system[J]. Biosystems Engineering, 2004, 89(3): 267-280.
[17] 聶友紅,康杰,何家慧,等. 耕深自動(dòng)調(diào)節(jié)控制系統(tǒng)設(shè)計(jì)與試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2015,37(2):143-145.
Nie Youhong, Kang Jie, He Jiahui, et al. Depth tillage automatically adjust the design and test of control system[J]. Journal of Agricultural Mechanization Research, 2015, 37(2): 143-145. (in Chinese with English abstract)
[18] 吳維雄,馬榮朝. 懸掛犁耕機(jī)組耕深自動(dòng)控制的研究[J]. 農(nóng)機(jī)化研究,2007(9):77-79.
Wu Weixiong, Ma Rongchao. Design of the automatic control of the plowing depth of the integrated plowing set[J]. Journal of Agricultural Mechanization Research, 2007(9): 77-79. (in Chinese with English abstract)
[19] Mouazen A M, Anthonis J, Saeys W, et al. An automatic depth control system for online measurement of spatial variation in soil compaction, part 1: Sensor design for measurement of frame height variation from soil surface[J]. Biosystems Engineering, 2004, 89(2): 139-150.
[20] 李玲,李志剛,李江,等. CWYs-400A型耕深傳感器測(cè)試系統(tǒng)的應(yīng)用[J]. 新疆農(nóng)村機(jī)械化,2001(1):29.
Li Ling, Li Zhigang, Li Jiang, et al. Application of CWYs- 400A tillage sensor test system[J]. Xinjiang Agricultural Mechanization, 2001(1): 29. (in Chinese with English abstract)
[21] 謝斌,李皓,朱忠祥,等. 基于傾角傳感器的拖拉機(jī)懸掛機(jī)組耕深自動(dòng)測(cè)量方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(4):15-21.
Xie Bin, Li Hao, Zhu Zhongxiang, et al. Measuring tillage depth for tractor implement automatic using inclinometer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 15-21. (in Chinese with English abstract)
[22] Xi S F. The research and applications of program fitting data[J]. Journal of Zhejiang University of Technology, 2003, 31(3): 586-590.
[23] Guo Linsong, He Yong, Zhang Qin, et al. Real-time tractor position estimation system using a Kalman filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(5): 96-101.
郭林松,何勇,張勤,等. 基于Kalman過(guò)濾器的實(shí)時(shí)拖拉機(jī)位置確定系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(5):96-101. (in English with Chinese abstract)
[24] 魯植雄,鐘文軍,刁秀永,等. 基于拖拉機(jī)作業(yè)軌跡的農(nóng)田面積測(cè)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):169-176.
Lu Zhixiong, Zhong Wenjun, Diao Xiuyong, et al. Measurement of field area based on tractor operation trajectory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 169-176. (in Chinese with English abstract)
[25] 王福順,孫小華,王樹(shù)濤. 基于曲線(xiàn)擬合的土溫高精度測(cè)量系統(tǒng)[J]. 農(nóng)機(jī)化研究,2013,35(8):158-161.
Wang Fushun, Sun Xiaohua, Wang Shutao. High accurate measurement system for soil temperature based on the curve fitting[J]. Journal of Agricultural Mechanization Research, 2013, 35(8): 158-161. (in Chinese with English abstract)
[26] 沈則方,高翔,周小健. 拖拉機(jī)懸掛機(jī)構(gòu)參數(shù)的優(yōu)化設(shè)計(jì)[J]. 機(jī)械設(shè)計(jì)與制造工程,2010,39(3):43-46.
Shen Zefang, Gao Xiang, Zhou Xiaojian. Optimization design of linkage device parameters for tractor-plough[J]. Manufacture Information Engineering of China, 2010, 39(3): 43-46. (in Chinese with English abstract)
[27] Parker D H, Schwab F R, Shelton J W, et al. Calibration and modeling of a dual-axis inclinometer[J]. Precision Engineering, 2005, 29(3): 381-385.
[28] 蘇煒,龔壁建,潘笑. 超聲波測(cè)距誤差分析[J]. 傳感器與微系統(tǒng),2004,23(6):8-11.
Su Wei, Gong Bijian, Pan Xiao. Error analysis of measuring distance with ultrasonic[J]. Journal of Transducer Technology, 2004, 23(6): 8-11. (in Chinese with English abstract)
[29] 陳嵐峰,楊靜瑜,崔崧,等,基于MATLAB的最小二乘曲線(xiàn)擬合仿真研究[J]. 沈陽(yáng)師范大學(xué)學(xué)報(bào):自然科學(xué)版,2014,32(1):75-79.
Chen Lanfeng, Yang Jingyu, Cui Song, et al. MATLAB simulation of curve fitting based onleast-squares[J]. Journal of Shenyang Normal University: Natural sciences edition, 2014, 2014, 32(1): 75-79. (in Chinese with English abstract)
[30] 魏國(guó),王昕,孫金瑋,基于擴(kuò)展卡爾曼濾波的超聲波渡越時(shí)間估計(jì)[J]. 吉林大學(xué)學(xué)報(bào),2011, 41(3) : 832-837.
Wei Guo, Wang Xin, Sun Jinwei. Method for ultrasonic time-of-flight estimation based on extended Kalman filter[J]. Journal of Jilin University,2011, 41(3) : 832-837. (in Chinese with English abstract)
[31] 崔延碩. 基于無(wú)味卡爾曼濾波的超聲回波精確定位研究[J]. 信息通信, 2015, (7) : 3-4.
[32] 謝凌云. 大馬力拖拉機(jī)電液懸掛系統(tǒng)耕深自動(dòng)控制研究[D]. 鎮(zhèn)江:江蘇大學(xué),2016.
Xie Lingyun. Research on Plowing Depth Automatic Control for High-power Tractor Electro-hydraulic Hitch System[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
商高高,劉存昊,韓江義.線(xiàn)性擬合與Kalman預(yù)測(cè)法修正耕深測(cè)量誤差[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):183-188. doi:10.11975/j.issn.1002-6819.2017.22.023 http://www.tcsae.org
Shang Gaogao, Liu Cunhao, Han Jiangyi. Modification of tilling depth measurement errors by linear fitting and Kalman prediction method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 183-188. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.22.023 http://www.tcsae.org
Modification of tilling depth measurement errors by linear fitting and Kalman prediction method
Shang Gaogao, Liu Cunhao, Han Jiangyi
(212013)
To precisely control the tillage depth and ensure uniform tillage depth, in this study, measured values of the tillage depth are corrected based on the tillage depth measurement methods and the causes of the measurement errors. In indirect measurement of the tillage depth, the tillage depth is calculated by monitoring the angle of the lifting arm based on the geometric relationship between the position of the suspension mechanism and the angle of the lifting arm. The tillage depth can also be measured directly by monitoring the height change of the plow frame relative to the land that has not been tilled. Due to the excellent imitation real-time response of the land wheels and the high measurement accuracy of the pull rope sensor that is less susceptible to the impact of the operating environment, with the system made up by the land wheels and the pull rope sensor as the measuring basis, the angular transducer and ultrasonic transducer as the cases, the principles of the tillage depth measurement, both direct and indirect, are analyzed. Besides, the prototype is rebuilt and the tillage and imitation tests are carried out in the Mahindra Tractor Experimental Field (Nanchang, China). The causes of errors in the indirect and direct measurement of tillage depth are explored based on the collected data. As shown by the experiment results, due to the changed measuring basis that might be caused by the wheel sinkage and the tilted tractor body, the indirectly measured tillage depth is always smaller than the target tillage depth, and the deviation becomes larger as the target tillage depth increases; there is a great fluctuation in the values obtained using the direct measurement method, for the sensor cannot conduct accurate sampling because of the factors like soil unevenness, plant residuals, and unit vibration. Based on the causes of the measurement errors, both the direct and indirect measurement results are corrected by the fitting and the Kalman prediction, respectively. As suggested in the modification results, there is an approximate linear correlation between the tillage depth deviation from the indirect measurements and the actual tillage depth (2=0.986 1), which can effectively reduce the deviation based on the fitting formula (before compensation: 3.20, 4.48, 5.61, 6.90 cm; after compensation: 0.14, 0.19, 0.16, 0.17 cm) and ensure that the standard deviation after compensation remains approximately unchanged (before compensation: 0.042, 0.08, 0.032, 0.07 cm; after compensation: 0.047, 0.06, 0.03, 0.082 cm); Kalman prediction can accurately predict the arrival time of the echo and reduce the noises in the measurements through the state update, which reduces the standard deviation of tillage depth (before: 1.60, 1.83, 1.33, 1.83 cm; later: 0.032, 0.010, 0.042, 0.092 cm) and ensures that the average tillage depth (before: 15.06, 20.05, 25.42, 29.33 cm; later: 15.02, 20.08, 25.07, 30.137 cm) and deviation (before: 0.064, 0.05, 0.42, 0.65 cm; later: 0.02, 0.084, 0.07, 0.17 cm) are approximately the same. Through fitting, the variation patterns of the limited observation data and the tillage depth deviations can be explored, and Kalman prediction can minimize the impact of noises on the identification of the system state. As fitting and Kalman prediction play an effective role in analyzing the influence of different parameters on test results and noise reduction, they are applicable to the correction of tillage measurement errors. The method to correct errors in indirect and direct measurements of the tillage depth proposed in this study provides a new solution for precisely controlling the electronic suspension and ensuring the seeding depth.
agricultural machinery; sensors; algorithms; tillage depth measurement; Kalman prediction; tilling depth modification
10.11975/j.issn.1002-6819.2017.22.023
S233.1; S126
A
1002-6819(2017)-22-0183-06
2017-07-08
2017-10-19
丘陵山地拖拉機(jī)關(guān)鍵技術(shù)研究與整機(jī)開(kāi)發(fā)(2016YFD0700400)
商高高,副教授,主要從事汽車(chē)機(jī)電一體化研究。 Email:shanggaogao@ujs.edu.cn