蔣煥煜,張利君,周鳴川,施瑋囡
(浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州 310058)
基于響應(yīng)面法的電磁閥響應(yīng)時間優(yōu)化
蔣煥煜,張利君,周鳴川,施瑋囡
(浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,杭州 310058)
為了縮短噴霧植保用電磁閥的響應(yīng)時間,提高變量噴霧的精準(zhǔn)性,該文引入響應(yīng)面法優(yōu)化改進(jìn)型脈沖寬度調(diào)制(pulse width modulation,PWM)控制參數(shù)。試驗(yàn)采用Box-Behnken設(shè)計(jì)方法,選取電磁閥驅(qū)動電壓(10、12和14 V)、PWM延遲時間(15、40和65 ms)及PWM占空比(5%,15%和25%)作為考察因素,以電磁閥開啟響應(yīng)時間、電磁閥閉合響應(yīng)時間和電磁閥響應(yīng)時間為響應(yīng)值,獲取了關(guān)于3個響應(yīng)值的二次多項(xiàng)回歸模型,并對其進(jìn)行了驗(yàn)證。經(jīng)響應(yīng)面法分析得出,在參數(shù)優(yōu)化區(qū)間內(nèi),使電磁閥響應(yīng)時間最短的參數(shù)條件為電磁閥驅(qū)動電壓12 V、PWM延遲時間15 ms以及PWM占空比5%,與試驗(yàn)測量結(jié)果差異極小。與普通PWM控制方式相比,使用改進(jìn)型PWM控制信號并優(yōu)化控制參數(shù)可有效縮短電磁閥響應(yīng)時間。該研究為合理選擇PWM控制參數(shù)提供了參考。
閥;優(yōu)化;模型;響應(yīng)面法;噴霧植保;響應(yīng)時間;電磁閥
近年來,變量噴霧及對靶噴霧等環(huán)境友好型精準(zhǔn)噴霧方式變得越來越重要[1-3],脈沖寬度調(diào)制(pulse width modulation,PWM)變量噴施是目前精準(zhǔn)噴霧過程中的重要控制方式。電磁閥作為PWM變量噴施系統(tǒng)中的核心部件,其開關(guān)和閉合的響應(yīng)時間是影響噴霧精準(zhǔn)性的重要因素之一[4-5]。目前以電磁閥結(jié)構(gòu)、材料等為影響因素分析電磁閥動態(tài)響應(yīng)特性的研究已較多[6-10]。研究發(fā)現(xiàn),電磁閥本身的線圈匝數(shù)、氣隙、電阻及彈簧預(yù)緊力等結(jié)構(gòu)參數(shù)對電磁閥響應(yīng)特性均有一定影響。但以電磁閥控制信號為影響因素的研究往往不能引起足夠重視。相比普通PWM控制方式(在閥體保持階段采用恒定PWM信號),改進(jìn)型PWM控制方式(在閥體保持階段采用高頻PWM信號)可縮短電磁閥響應(yīng)時間[11],電磁閥響應(yīng)時間為電磁閥開啟響應(yīng)時間和電磁閥閉合響應(yīng)時間的和。
目前,Top?u等[12]對改進(jìn)型PWM控制方式的優(yōu)勢進(jìn)行了理論分析及論證,并以高速開關(guān)電磁閥為對象,針對驅(qū)動電壓、保持電流及PWM頻率等參數(shù)優(yōu)化了電磁閥的開關(guān)特性;Messina等[13]建立了基于PWM電磁閥控制的氣動執(zhí)行器動態(tài)響應(yīng)特性的數(shù)學(xué)模型,并分析了不同控制參數(shù)條件下電磁閥開關(guān)動作與電信號之間延時時間的變化情況;蘇嶺等[14]在保持其他PWM參數(shù)不變的情況下,分別對PWM頻率、占空比、延遲時間等參數(shù)對電磁閥保持電流的影響進(jìn)行了試驗(yàn)分析。但以上這些研究只針對獨(dú)立變量,沒有考慮變量之間是否存在交互作用。
響應(yīng)面法在多因素系統(tǒng)中尋找最佳條件,克服了在正交試驗(yàn)中只能對單個孤立試驗(yàn)點(diǎn)進(jìn)行分析且不夠直觀的缺點(diǎn)[15-16],現(xiàn)已廣泛應(yīng)用于各類試驗(yàn)的參數(shù)優(yōu)化中[17]。在實(shí)際噴霧植保作業(yè)中,考慮到電磁閥響應(yīng)時間受到包括驅(qū)動電壓、PWM延遲時間和PWM占空比在內(nèi)的多個控制參數(shù)的影響,本文采用響應(yīng)面法來獲取一定參數(shù)范圍內(nèi)的電磁閥最短響應(yīng)時間。
為盡可能縮短電磁閥響應(yīng)時間,需在閥芯動作時,使線圈產(chǎn)生較大的電磁力實(shí)現(xiàn)閥芯快速開關(guān),而一旦完成動作后,僅需較小的電磁力保持閥芯狀態(tài)。根據(jù)夏勝枝等[18]的推算,在假設(shè)磁路未飽和,且忽略鐵損和磁路中導(dǎo)磁材料的磁阻的條件下,電磁閥的電磁力用如下方程表示為
式中Fmag為電磁閥的電磁力,N;u0為空氣磁導(dǎo)率,H/m;i為線圈電流,A;N為線圈匝數(shù);A為電磁作用面積,m2;δ為工作間隙,m。
由式(1)可知,對于同一電磁閥,在電磁閥的線圈匝數(shù)、氣隙、電阻及彈簧預(yù)緊力等結(jié)構(gòu)參數(shù)一定的情況下,電磁閥閥芯閉合前以及閉合后的保持階段中,電磁力均只受到線圈電流的影響,蘇嶺等[14]研究發(fā)現(xiàn),閥芯閉合時,初始電流受電磁閥驅(qū)動電壓影響;在線圈保持階段,電流受到PWM延遲時間、PWM占空比以及電磁閥驅(qū)動電壓等多重因素的影響。
2.1 電磁閥響應(yīng)時間優(yōu)化試驗(yàn)平臺
設(shè)計(jì)的電磁閥響應(yīng)時間優(yōu)化試驗(yàn)平臺的總體結(jié)構(gòu)如圖1所示。
圖1 電磁閥響應(yīng)時間優(yōu)化試驗(yàn)平臺Fig. 1 Optimization experiment platform for response time of spray solenoid valve
試驗(yàn)平臺以氣泵為壓力源,主要包括人機(jī)控制部分、供壓穩(wěn)壓部分及PWM變量部分。其中人機(jī)控制部分主要由計(jì)算機(jī)、STM32F407控制器以及數(shù)字示波器(TDS1002B-SC型,Tektronix泰克有限公司)構(gòu)成;穩(wěn)壓供壓部分主要由藥箱、安全閥、球閥、壓力罐、壓力傳感器(WMB2012-HS型,杭州燁立工控有限公司)、單向閥、氣泵、電動機(jī)以及壓力表構(gòu)成;PWM變量部分主要由電磁閥(Q22XD-1.2L型,天津云杰氣動科技有限公司)和噴頭(H-VV9515型,美國噴霧公司)構(gòu)成。數(shù)字示波器上的2個通道分別用于獲取壓力數(shù)據(jù)及控制信號大小數(shù)據(jù)[19]。
2.2 電磁閥響應(yīng)時間的獲取
電磁閥響應(yīng)時間可通過實(shí)測電磁閥驅(qū)動電流、分析噴霧瞬時壓力變化或檢測閥芯位置等方式進(jìn)行獲取,考慮到噴霧瞬時壓力對于霧滴粒徑、噴霧流量等噴霧指標(biāo)參數(shù)密切相關(guān),研究噴霧壓力對于進(jìn)一步研究噴霧指標(biāo)參數(shù)更具意義,同時,由于電磁閥、壓力傳感器及噴頭通過三通接頭相連,三者間距較短,且測量過程中噴霧壓力不變,因此噴霧和電磁閥動作間的液力延遲可以忽略,故本文通過分析噴霧瞬時壓力的變化來獲取電磁閥響應(yīng)時間。根據(jù)數(shù)字示波器采集到的電壓值,噴霧瞬時壓力值的計(jì)算公式為
式中p為噴霧瞬時壓力,MPa;pm為壓力傳感器量程大小,MPa;u為數(shù)字示波器采集的電壓值,V;Vmin為壓力傳感器測量下限,V;Vmax為壓力傳感器測量上限,V。
運(yùn)用卡爾曼濾波技術(shù)濾除傳感器輸出數(shù)據(jù)中的高斯白噪聲可獲取更準(zhǔn)確的壓力估值[19-20]。將噴霧系統(tǒng)壓力設(shè)為0.14 MPa,控制脈沖的頻率參數(shù)f設(shè)為5 Hz,占空比d設(shè)為50%,圖2為經(jīng)卡爾曼濾波器濾波前、后的PWM控制信號電壓與噴霧瞬時壓力的變化結(jié)果,對比顯示,經(jīng)濾波后,獲取的壓力數(shù)據(jù)更加可靠。
圖2 經(jīng)卡爾曼濾波器處理前后的波形數(shù)據(jù)Fig.2 Wave data before and after processing by Kalman filter
使用改進(jìn)型PWM信號控制電磁閥時,適當(dāng)?shù)难舆t時間使得開關(guān)電流足夠高,閥芯的打開速度更快,之后高頻的PWM控制信號產(chǎn)生的保持電流可維持閥芯的正常響應(yīng)[11]。圖3即為采用改進(jìn)型PWM信號控制方法后的波形數(shù)據(jù)圖。
考慮到過高的PWM脈沖頻率可能對控制電路產(chǎn)生干擾[14],故將高頻時的PWM脈沖頻率值設(shè)為定值10 kHz。設(shè)Pa和Pb分別表示電磁閥閥芯完全打開以及完全閉合時的噴霧瞬時壓力值。圖3中已標(biāo)出電磁閥響應(yīng)的臨界時間點(diǎn),圖中t1為PWM控制信號產(chǎn)生的時刻,t2為噴霧壓力達(dá)到Pa即電磁閥閥芯完全打開的時刻,t3為PWM控制信號消失的時刻,t4為噴霧壓力達(dá)到Pb即電磁閥閥芯完全閉合的時刻。則電磁閥開啟的響應(yīng)時間為t2與t1的差,電磁閥關(guān)閉的響應(yīng)時間為t4與t3的差。通過改變電磁閥驅(qū)動電壓、PWM頻率、占空比、延遲時間等參數(shù)產(chǎn)生的各種改進(jìn)型PWM控制信號,可獲取不同的電磁閥響應(yīng)時間。
圖3 采用改進(jìn)型脈寬調(diào)制信號控制方法的波形數(shù)據(jù)Fig.3 Wave data by modified pulse width modulation control method
2.3 Box-Behnken試驗(yàn)設(shè)計(jì)
該研究采用三因素三水平BBD(box-behnken design,Box-Behnken設(shè)計(jì))試驗(yàn)方法,通過研究一種改進(jìn)型PWM控制信號并優(yōu)化控制信號參數(shù),實(shí)現(xiàn)縮短噴霧響應(yīng)時間的目的。本研究是在噴霧系統(tǒng)壓力一定的基礎(chǔ)上進(jìn)行的,針對噴霧系統(tǒng)壓力等系統(tǒng)參數(shù)對噴霧響應(yīng)時間的影響將在進(jìn)一步研究中完善。選取改進(jìn)型PWM控制參數(shù)中的電磁閥驅(qū)動電壓、PWM延遲時間、PWM占空比為3個因素,分別記為X1、X2和X3。為清楚分析出這些因素與電磁閥各個響應(yīng)階段的關(guān)系,需對電磁閥開啟響應(yīng)時間、電磁閥閉合響應(yīng)時間和電磁閥響應(yīng)時間進(jìn)行分別討論,故以這3個響應(yīng)時間為響應(yīng)值,分別記為Y1、Y2、Y,并建立數(shù)學(xué)模型。試驗(yàn)中每個因素的低、中、高3個水平分別以-1、0和+1進(jìn)行編碼。使用下述二次多項(xiàng)式方程進(jìn)行擬合[21]。
式中Y為響應(yīng)值;β0為常數(shù)項(xiàng);βi,βii,βij為回歸系數(shù);Xi, Xj為因素水平值;ei為誤差;k為因素數(shù),該研究中k=3。
依據(jù)電磁閥工作手冊,電磁閥直流線圈正常工作允許的電壓波動范圍為±10%左右,本研究所用電磁閥額定電壓為12 V,故取10~14 V為優(yōu)化范圍。依據(jù)基本的電磁理論如式(1),要保證電磁閥可靠的打開需有足夠的電流驅(qū)動,經(jīng)預(yù)試驗(yàn)發(fā)現(xiàn),在10 V驅(qū)動電壓條件下當(dāng)PWM延遲時間低于15 ms時,電磁閥無法開啟,因此選擇15 ms作為下限,但若延遲時間過長,產(chǎn)生的過高電流會造成過強(qiáng)的續(xù)流效應(yīng),因此選擇較小的延長時間65 ms為上限。為了保證電磁閥能夠完成完整的吸合動作,選擇5%作為改進(jìn)型PWM占空比的下限,同時由于過高的占空比影響保持電流的大小,不利于電磁閥的閉合響應(yīng),選擇較小的25%作為上限,具體參數(shù)取值如表1所示。
表1 試驗(yàn)因素和水平Table 1 Factors and levels
試驗(yàn)條件設(shè)置如下:電磁閥完全打開和閉合時的臨界壓力值Pa和Pb分別取0.12和0.01 MPa,噴霧系統(tǒng)壓力設(shè)為0.14 MPa,PWM頻率取5 Hz。基于表2所示的BBD設(shè)計(jì)表,進(jìn)行15輪次試驗(yàn)并用Matlab 7.9軟件對所獲取的波形數(shù)據(jù)進(jìn)行分析。
分析得出的數(shù)據(jù)如表2所示,其中第1~12輪次為不同PWM參數(shù)控制條件下電磁閥響應(yīng)時間的相應(yīng)變化,第13~15輪次為3次重復(fù)的中心點(diǎn)試驗(yàn),用于對模型進(jìn)行誤差分析。
表2 Box-Behnken試驗(yàn)設(shè)計(jì)與結(jié)果Table 2 Box-Behnken experimental design matrix and responses
3.1 模型擬合
使用SAS 9.1.3軟件對表2中的試驗(yàn)數(shù)據(jù)進(jìn)行回歸分析,擬合得出電磁閥開啟響應(yīng)時間、電磁閥閉合響應(yīng)時間和電磁閥響應(yīng)時間的二次多項(xiàng)回歸模型如下
式中Y1為電磁閥開啟響應(yīng)時間,ms;Y2為電磁閥閉合響應(yīng)時間,ms;Y為電磁閥響應(yīng)時間,ms;X1為驅(qū)動電壓,V;X2為延遲時間,ms;X3為占空比,%。
需對該回歸模型進(jìn)行方差分析以驗(yàn)證它的適用性[22]。回歸模型的方差分析和擬合參數(shù)分別如表3和表4所示。Pr>F值表明回歸模型的顯著程度,當(dāng)“Pr>F”值小于0.05時,即表示該項(xiàng)指標(biāo)顯著。從表3的分析結(jié)果來看,3個回歸模型的Pr>F值均小于0.001,顯示該回歸模型具有高度的顯著性。模型失擬項(xiàng)表示模型預(yù)測值與試驗(yàn)測量值不擬合的概率,3個回歸模型失擬項(xiàng)的Pr>F值均大于0.05,故模型失擬項(xiàng)不顯著,說明模型選擇合適。決定系數(shù)R2的大小決定了相關(guān)的密切程度,當(dāng)R2越接近1時,表示相關(guān)的方程式參考價值越高,反之越低。如表4所示,回歸模型的決定系數(shù)R2和調(diào)整決定系數(shù)略微不同,但均大于0.9,表明模型具有很好的相關(guān)度。變異系數(shù)CV是衡量各觀測值變異程度的統(tǒng)計(jì)量,反映了模型的置信度,CV值越低則模型置信度越高。如表4所示,CV值(1.924、2.482和1.096)較小,因此認(rèn)為該回歸模型的擬合度較好。圖4為響應(yīng)時間預(yù)測值與試驗(yàn)測量值的對比,從圖4中直觀看出,測量值與預(yù)測值差別極小,同樣印證了該模型具有一定的實(shí)際意義[23-27]。
表3 回歸模型的方差分析Table 3 Analysis of variance of models
表4 回歸模型的擬合參數(shù)Table 4 Fit Statistics for models
圖4 電磁閥各響應(yīng)時間預(yù)測值與測量值的對比Fig.4 Comparison between predicted and measured values of each response time
3.2 PWM參數(shù)對于電磁閥響應(yīng)時間的影響
該研究運(yùn)用響應(yīng)面法優(yōu)化改進(jìn)型PWM信號控制參數(shù)以縮短電磁閥響應(yīng)時間,并選取了電磁閥驅(qū)動電壓、PWM延遲時間、PWM占空比等控制參數(shù)進(jìn)行研究。圖5為各因素對電磁閥響應(yīng)時間影響的響應(yīng)曲面,響應(yīng)面顯示出了這些過程參數(shù)對于響應(yīng)時間的影響。
3.2.1 電磁閥驅(qū)動電壓的影響
表3顯示出驅(qū)動電壓對于3個回歸模型均有顯著影響,從實(shí)際狀況來看,一方面,電壓為線圈提供能量,使其產(chǎn)生足夠大的電磁力以快速克服彈力打開閥芯,另一方面,高電壓產(chǎn)生的多余能量會阻礙電磁閥的閉合響應(yīng),式(4)與式(5)符合該實(shí)際狀況??傮w來講,從圖5及式(6)中可看出,在相同延遲時間條件下,電磁閥響應(yīng)時間隨著驅(qū)動電壓的增大而縮短。但過高的驅(qū)動電壓并不能明顯提高電磁閥響應(yīng)速度,而且易造成電路過載[28]。
3.2.2 PWM延遲時間的影響
表3顯示PWM延遲時間對于電磁閥開啟響應(yīng)時間作用最為顯著,式(4)與式(5)反映出延遲時間越長,電磁閥開啟響應(yīng)時間越短而閉合響應(yīng)時間越長。延遲時間對電磁閥動作的實(shí)際作用效果與驅(qū)動電壓類似,但從圖5及式(6)中可觀察到這種效果相對較弱。
3.2.3 PWM占空比的影響
根據(jù)表3,占空比對電磁閥開啟響應(yīng)時間的影響較小,對電磁閥閉合響應(yīng)時間的影響較顯著。根據(jù)式(5),占空比越大,電磁閥閉合響應(yīng)時間越長。這與實(shí)際情況相吻合,占空比在延遲時間之后開始對電流大小產(chǎn)生作用,而此時電磁閥已完全開啟,同時占空比越大,輸入線圈的能量越多,線圈消耗電流的速度越慢,從而阻礙電磁閥的閉合響應(yīng)。從圖5及式(6)中可知,隨著占空比的增大,電磁閥響應(yīng)時間變長,但增長速度越來越小。
圖5 各因素對電磁閥響應(yīng)時間影響的響應(yīng)曲面Fig.5 Response surfaces of factor effect on response time
3.2.4 各參數(shù)之間交互作用的影響
根據(jù)表3,Y2和Y模型中交互項(xiàng)X1X3的“Pr>F”值<0.05,表明電磁閥驅(qū)動電壓和PWM占空比的交互作用對于電磁閥閉合響應(yīng)時間和電磁閥響應(yīng)時間具有顯著影響。
3.3 最優(yōu)PWM參數(shù)的確定
設(shè)置以下參數(shù)范圍:1)電磁閥驅(qū)動電壓10~14 V;2)延遲時間15~65 ms;3)占空比5%~25%,并將每個變量的取值根據(jù)范圍分別劃分成5級。在此參數(shù)范圍內(nèi)使用SAS 9.1.3軟件對已驗(yàn)證的回歸模型進(jìn)行求解,得到的結(jié)果顯示,使電磁閥響應(yīng)時間最短的控制參數(shù)為:電磁閥驅(qū)動電壓12 V,延遲時間15 ms,占空比5%,在此控制參數(shù)條件下,計(jì)算得到電磁閥響應(yīng)時間可縮短至69.9 ms。
3.4 模型試驗(yàn)驗(yàn)證
通過試驗(yàn)對優(yōu)化的控制參數(shù)進(jìn)行測試,并與模型預(yù)測值進(jìn)行對比,結(jié)果如表5所示。試驗(yàn)測得的電磁閥響應(yīng)時間為69.7 ms,與預(yù)測值69.9 ms相比僅有0.29%的誤差。同時經(jīng)試驗(yàn)測得,在使用相同的電磁閥驅(qū)動電壓12 V時,使用普通控制方法(在閥體保持階段無高頻PWM信號,即無延遲時間和占空比)測得的電磁閥響應(yīng)時間為88.4 ms,經(jīng)響應(yīng)面法優(yōu)化后的改進(jìn)型PWM參數(shù)可將此電磁閥響應(yīng)時間縮短21.2%,故可以得出該模型能夠有效控制電磁閥的響應(yīng)時間。
表5 響應(yīng)時間的優(yōu)化試驗(yàn)參數(shù)Table 5 Parameters of optimised experimental runs for response time
本文采用響應(yīng)面法優(yōu)化改進(jìn)型脈沖寬度調(diào)制(pulse width modulation, PWM)控制參數(shù)以縮短噴霧植保用電磁閥的響應(yīng)時間。選取了電磁閥驅(qū)動電壓
PWM延遲時間、PWM占空比為考察因素建立了關(guān)于電磁閥開啟響應(yīng)時間、閉合響應(yīng)時間、響應(yīng)時間的二次多項(xiàng)回歸模型并進(jìn)行了驗(yàn)證,分析了3個參數(shù)對這3種響應(yīng)時間的影響。對電磁閥響應(yīng)時間回歸模型進(jìn)行分析求解后得出,參數(shù)優(yōu)化區(qū)間內(nèi)使電磁閥響應(yīng)時間最短的控制參數(shù)為:電磁閥驅(qū)動電壓12 V,延遲時間15 ms,占空比5%,此時電磁閥響應(yīng)時間為69.7 ms,與試驗(yàn)測量值基本一致。同時試驗(yàn)發(fā)現(xiàn),與普通控制方式相比,經(jīng)響應(yīng)面法優(yōu)化后的PWM參數(shù)可將電磁閥響應(yīng)時間縮短21.2%,這表明使用改進(jìn)型PWM控制信號并優(yōu)化控制參數(shù)后對于縮短電磁閥響應(yīng)時間是有效的。
[1] Vondricka J, Lammers P S. Evaluation of a carrier control valve for a direct nozzle injection system[J]. Biosystems Engineering, 2009, 103(1): 43-48.
[2] 傅澤田,祁力鈞,王俊紅. 精準(zhǔn)施藥技術(shù)研究進(jìn)展與對策[J].農(nóng)業(yè)機(jī)械學(xué)報,2007,38(1):189-192. Fu Zetian, Qi Lijun, Wang Junhong. Developmental tendency and strategies of precision pesticide application techniques[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 189-192. (in Chinese with English abstract)
[3] 魏新華,蔣杉. 農(nóng)藥變量噴施技術(shù)的研究現(xiàn)狀及發(fā)展趨勢[J].農(nóng)機(jī)化研究,2011,33(2):9-14. Wei Xinhua, Jiang Shan. The research status and development trend of pesticide variable-rate spray technique[J]. Journal of Agricultural Mechanization Research, 2011, 33(2): 9-14. (in Chinese with English abstract)
[4] Loghavi M, Mackvandi B B. Development of a target oriented weed control system[J]. Computers and Electronics in Agriculture, 2008, 63(2): 112-118.
[5] Han S, Hendrickson L L, Ni B, et al. Technical notes: Modification and testing of a commercial sprayer with PWM solenoids for precision spraying[J]. Applied Engineering in Agriculture, 2001, 17(5): 591-594.
[6] 范立云,許德,費(fèi)紅姿,等. 高速電磁閥電磁力全工況關(guān)鍵參數(shù)相關(guān)性分析[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(6):89-96. Fan Liyun, Xu De, Fei Hongzi, et al. Key parameters’correlation analysis on high-speed solenoid valve electromagnetic force under overall operating conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 89-96. (in Chinese with English abstract)
[7] 林義忠,曾德樂,馮喆. 基于 PWM 控制的高速開關(guān)電磁球閥動態(tài)特性仿真分析[J]. 機(jī)床與液壓,2014,42(3):152-154. Lin Yizhong, Ceng Dele, Feng Zhe. Simulation analysis of dynamic characteristics for high-speed switch electromagnetic ball valve based on PWM[J]. Machine Tool & Hydraulics, 2014, 42(3): 152-154. (in Chinese with English abstract)
[8] 劉鵬,范立云,白云,等. 高速電磁閥電磁力近似模型的構(gòu)建與分析[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(16):96-101. Liu Peng, Fan Liyun, Bai Yun, et al. Modeling and analysis of electromagnetic force approximate model of high-speed solenoid valve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 96-101. (in Chinese with English abstract)
[9] Kajima T, Kawamura Y. Development of a high-speed solenoid valve: investigation of solenoids[J]. Industrial Electronics, IEEE Transactions on, 1995, 42(1): 1-8.
[10] Passarini L C, Nakajima P R. Development of a high-speed solenoid valve: An investigation of the importance of the armature mass on the dynamic response[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2003, 25(4): 329-335.
[11] Taghizadeh M, Ghaffari A, Najafi F. Modeling and identification of a solenoid valve for PWM control applications[J]. Comptes Rendus Mecanique, 2009, 337(3): 131-140.
[12] Top?u E E, Yüksel ?, Kam?? Z. Development of electro-pneumatic fast switching valve and investigation of its characteristics[J]. Mechatronics, 2006, 16(6): 365-378.
[13] Messina A, Giannoccaro N I, Gentile A. Experimenting and modelling the dynamics of pneumatic actuators controlled by the pulse width modulation (PWM) technique[J]. Mechatronics, 2005, 15(7): 859-881.
[14] 蘇嶺,柳泉冰,汪映,等. 脈寬調(diào)制保持電磁閥驅(qū)動參數(shù)的研究[J]. 西安交通大學(xué)學(xué)報,2005,39(7):689-692. Su Ling, Liu Quanbing, Wang Ying, et al. Experimental investigation on parameters of pulse width modulation-holding solenoid valve drive mode[J]. Journal of Xi’an Jiaotong University, 2005, 39(7): 689-692. (in Chinese with English abstract)
[15] Myers R H. Response surface methodology-current status and future directions[J]. Journal of Quality Technology, 1999, 31(1): 30.
[16] 張澤志,韓春亮,李成未. 響應(yīng)面法在試驗(yàn)設(shè)計(jì)與優(yōu)化中的應(yīng)用[J]. 河南教育學(xué)院學(xué)報:自然科學(xué)版,2011,20(4):34-37. Zhang Zezhi, Han Chunliang, Li Chengwei. Application of response surface method in experimental design and optimization[J]. Journal of Henan Institute of Education (Natural Science Edition), 2011, 20(4): 34-37. (in Chinese with English abstract)
[17] 王永菲,王成國. 響應(yīng)面法的理論與應(yīng)用[J]. 中央民族大學(xué)學(xué)報:自然科學(xué)版,2005,14(3):236-240. Wang Yongfei, Wang Chengguo. The application of response surface methodology[J]. Journal of the Central University For Nationalities: Natural Science Edition, 2005, 14(3):236-240. (in Chinese with English abstract)
[18] 夏勝枝,周明,李希浩,等. 高速強(qiáng)力電磁閥的動態(tài)響應(yīng)特性[J]. 清華大學(xué)學(xué)報:自然科學(xué)版,2002,42(2):258-261. Xia Shengzhi, Zhou Ming, Li Xihao, et al. Dynamic response characteristics of high-speed, powerful solenoid valve[J]. Journal of Tsinghua University: Science and Technology, 2002, 42(2): 258-261. (in Chinese with English abstract)
[19] 蔣煥煜,周鳴川,童俊華,等. 基于卡爾曼濾波的PWM變量噴霧控制研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(10):60 -65. Jiang Huanyu, Zhou Mingchuan, Tong Junhua, et al. PWM variable spray control based on Kalman filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 60-65.(in Chinese with English abstract)
[20] Maatje K, De M R M, Rossing W. Cow status monitoring (health and oestrus) using detection sensors[J]. Computers and Electronics in Agriculture, 1997, 16(3): 245-254.
[21] Yazgi A, Degirmencioglu A. Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology[J]. Biosystems Engineering, 2007, 97(3): 347-356.
[22] Omwamba M, Hu Q. Antioxidant capacity and antioxidative compounds in barley (Hordeum vulgare L.) grain optimized using response surface methodology in hot air roasting[J]. European Food Research and Technology, 2009, 229(6): 907-914.
[23] Li Quanhong, Fu Caili. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein[J]. Food Chemistry, 2005, 92(4): 701-706.
[24] Karunanithy C, Muthukumarappan K. Influence of extruder and feedstock variables on torque requirement during pretreatment of different types of biomass: A response surface analysis[J]. Biosystems Engineering, 2011, 109(1): 37-51.
[25] Ro?i? L, Novakovi? T, Petrovi? S. Modeling and optimization process parameters of acid activation of bentonite by response surface methodology[J]. Applied Clay Science, 2010, 48(1): 154-158.
[26] Beg Q K, Sahai V, Gupta R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor[J]. Process Biochemistry, 2003, 39(2): 203-209.
[27] Li Yin, Liu Zhiqiang, Zhao Hui, et al. Statistical optimization of xylanase production from new isolated penicillium oxalicum ZH-30 in submerged fermentation[J]. Biochemical Engineering Journal, 2007, 34(1): 82-86.
[28] 張廷羽,張國賢. 高速開關(guān)電磁閥的性能分析及優(yōu)化研究[J].機(jī)床與液壓,2006(9):139-142. Zhang Tingyu, Zhang Guoxian. Performance analysis and investigation to high speed digital valve[J]. Machine Tool & Hydraulics, 2006(9): 139-142.(in Chinese with English abstract)
Optimization for response time of solenoid valve through response surface methodology
Jiang Huanyu, Zhang Lijun, Zhou Mingchuan, Shi Weinan
(College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China)
Solenoid valve driven by PWM (pulse width modulation) control signal is used as interface between electronic control and fluid flow in precision spraying, the response time of which has huge impact on the performance of precise spray system. Longer response time would reduce the accuracy of spraying and increase the overuse of chemical. A modified PWM technology (with much higher frequency for controlling the holding current) was applied and 3 parameters of PWM control signal containing driving voltage, delayed time and duty cycle were optimized by RSM (response surface methodology) to shorten the response time, which was composed of opening response time and closing response time. The optimization of parameters was carried out through the BBD (Box-Behnken design) with 3 factors and 3 levels. The critical factors (and their values) selected for the research were driving voltage (10, 12 and 14 V), delayed time (15, 40 and 65 ms) and duty cycle (5%, 15% and 25%). In order to better explore the influence of factors on each response phase of solenoid valve, the opening response time, closing response time and response time were discussed separately. The experiment was performed on an optimization experiment platform which consisted of human-machine control module, pressure supply module and PWM module. On the platform, the wave data that could reflect the relation between voltage of PWM control signal and instantaneous spray pressure near the nozzle were acquired through digital oscilloscope and then processed by Kalman filter. By analyzing the wave data, the opening and closing response time of solenoid valve with different parameters were calculated. After 15 runs of experiments under different parameter conditions, the mathematical regression models for the opening response time, closing response time and response time were built, respectively. Then the models were tested by the analysis of variance and statistical parameters of the model for response. The test indicated that the relations between response variables and independent variables were significant and the regression models were thought to be appropriate. Through the analyses of 3 tested models and response surfaces showing the effects of process parameters on response time, the effects of driving voltage, delayed time and duty cycle of PWM signal on 3 kinds of response time of solenoid valve were obtained. Firstly, the voltage had a significant effect on all response models and a positive effect on reducing response time. Secondly, the delayed time had a negative effect on reducing response time and the effect it brought was not so significant; in addition, longer delayed time could accelerate the opening phase but detain the closing phase. Thirdly, the duty cycle had a negative effect on reducing response time and had more remarkable influence on the closing response time than opening response time. Lastly, the interaction between driving voltage and duty cycle on closing response time was significant. After that, the optimal control parameter combination for the minimum response time of solenoid time was obtained by analyzing the regression model of response time, which was 12 V voltage for driving solenoid, delayed time of 15 ms and duty cycle of 5%. The predicted optimal control parameters were tested in the laboratory using the modified PWM control method and normal PWM control method which had stable voltage, respectively. The results showed that the measured value by the modified PWM control method was very close to the predicted value and 21.2% of response time could be reduced compared to the normal control method. The result indicates that the RSM is useful for optimizing the parameters of modified PWM control signal to improve the response characteristics of solenoid valve.
valves; optimization; models; response surface methodology; agricultural spraying; response time; solenoid valve
10.11975/j.issn.1002-6819.2016.09.010
TP211
A
1002-6819(2016)-09-0067-07
蔣煥煜,張利君,周鳴川,施瑋囡. 基于響應(yīng)面法的電磁閥響應(yīng)時間優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(9):67-73.
10.11975/j.issn.1002-6819.2016.09.010 http://www.tcsae.org
Jiang Huanyu, Zhang Lijun, Zhou Mingchuan, Shi Weinan. Optimization for response time of solenoid valve through response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 67-73. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.010 http://www.tcsae.org
2015-08-10
2016-03-08
國家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)(2012AA10A504);農(nóng)業(yè)部引進(jìn)國際先進(jìn)農(nóng)業(yè)科學(xué)技術(shù)(2011-G32);浙江省“新世紀(jì)151人才工程”
蔣煥煜,男,浙江寧海人,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)裝備智能化技術(shù)與機(jī)器人方面的研究。杭州 浙江大學(xué)生物系統(tǒng)工程與食品科學(xué)學(xué)院,310058。Email:hyjiang@zju.edu.cn
·農(nóng)業(yè)水土工程·