王芳,王亞,翟成波
(1.山西大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山西 太原 030006;2.南陽(yáng)信息工程學(xué)校,河南 淅川 474450)
半序積空間中新的不動(dòng)點(diǎn)定理
王芳1,王亞2,翟成波1
(1.山西大學(xué)數(shù)學(xué)科學(xué)學(xué)院,山西 太原 030006;2.南陽(yáng)信息工程學(xué)校,河南 淅川 474450)
使用半序理論,h-序差和變距離函數(shù)的性質(zhì),在半序積Banach空間上討論了一類沒有凹凸性的單調(diào)算子,得出新的不動(dòng)點(diǎn)存在唯一性結(jié)果,推廣了文獻(xiàn)中相關(guān)的不動(dòng)點(diǎn)定理.
積空間;單調(diào)算子;正規(guī)錐;h-序差;變距離函數(shù)
近年來(lái),對(duì)半序空間中非線性算子不動(dòng)點(diǎn)的研究相當(dāng)活躍,尤其是單調(diào)算子的研究獲得了許多較好的結(jié)果,見文獻(xiàn)[1-13].大多數(shù)文獻(xiàn)利用算子的凹凸性及單調(diào)迭代技巧,得到了算子存在唯一不動(dòng)點(diǎn)的結(jié)論.其中的凹凸性起著重要的作用.本文利用半序理論,h-序差的性質(zhì)和變距離函數(shù)的特點(diǎn)來(lái)研究積空間中的單調(diào)算子,給出不動(dòng)點(diǎn)的存在唯一性結(jié)論,其中的單調(diào)算子沒凹凸性的要求.進(jìn)而得到半序積Banach空間中單調(diào)算子存在唯一不動(dòng)點(diǎn)的新結(jié)果,本質(zhì)上推廣了文獻(xiàn)中的相關(guān)結(jié)論.
設(shè)X是實(shí) Banach空間,θ表示 X中的零元.非空凸閉集 K?X是一個(gè)錐,“≤”是由K引出的半序,即?x,y∈X.若y-x∈K,??x≤y.設(shè)x,y∈X,x≤y,定義序區(qū)間 [x,y]={z∈E|x≤z≤y}.錐 K稱為是正規(guī)的,如果存在常數(shù) N >0,使得θ≤x≤y?‖x‖≤N‖y‖,稱最小的N為K的正規(guī)常數(shù).若x≤y,有Tx≤Ty(Tx≥Ty),則稱算子T:K→K是增算子(減算子).積空間X×X也是實(shí)Banach空間,其中半序關(guān)系為:
這些概念可見文獻(xiàn)[15].
本節(jié)考慮積空間中的單調(diào)算子,給出一類單調(diào)算子不動(dòng)點(diǎn)的存在唯一結(jié)論.
注 2.2在文獻(xiàn)[13]中的定理2.3中,所給條件(i)不能推得G滿足推論2.1的條件,因而文獻(xiàn)[13]中的定理2.3是不正確的.
[1]Guo D.Positive fixed points and eigenvectors of noncompact decreasing operators with applications to nonlinear integral equations[J].Chin.Ann.Math.Ser.B,1993,4:419-426.
[2]Sun J X,Zhao Z Q.Fixed point theorems of increasing operators and applications to nonlinear integrodifferential equations with discontinuous terms[J].J.Math.Anal.Appl.,1993,175:3-45.
[3]Li K,Liang J,Xiao T J.A fixed point theorem for convex and decreasing operators[J].Nonlinear Anal.,2005,63:e209-e216.
[4]Zhao Z Q,Du X S.Fixed points of generalized e-concave(generalized e-convex)operators and their applications[J].J.Math.Anal.Appl.,2007,334:1426-1438.
[5]Liang Z D,Lian X G,Zhang M Y.A class of concave operators with applications[J].Nonlinear Anal.,2008,68:2507-2515.
[6]Li X C,Wang Z H.Fixed point theorems for decreasing operators in ordered Banach spaces with lattice structure and their applications[J].Fixed Point Theory Appl.,2013,18:1-6.
[7]Wang W X,Liu X L.Positive solutions of operator equations and nonlinear beam equations with a perturbed loading force[J].Wseas Transactions on Mathematics,2012,3(11):252-261.
[8]Sang Y B,Wei Z L,Dong W.The existence of multiple fixed points for the sum of two operators and applications[J].Fixed Point Theory,2012,13(1):193-204.
[9]Zhai C.B,Guo C.M.On α-convex operators[J].J.Math.Anal.Appl.,2006,316:556-565.
[10]Zhai C B,Cao X M.Fixed point theorems for τ-φ-concave operators and applications[J].Comput.Math. Appl.,2010,59:532-538.
[11]Zhai C B,Yang C,Zhang X.Positive solutions for nonlinear operator equations and several classes of applications[J].Math.Z.,2010,266:43-63.
[12]欒輝.非緊非連續(xù)單調(diào)算子新不動(dòng)點(diǎn)定理[J].南昌工業(yè)學(xué)報(bào),2012,31(6):5-7.
[13]王維娜,薛西峰,一類單調(diào)算子的新不動(dòng)點(diǎn)定理[J].純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2014,30(3):292-298.
[14]Khan M S,Swaleh M,Sessa S.Fixed point theorems by altering distances between the points[J].Bull. Aust.Math.Soc.,1984,30:1-9.
[15]郭大鈞.非線性分析中的半序方法[M].濟(jì)南:山東科學(xué)技術(shù)出版社,2000.
New fixed point theorems in ordered product spaces
Wang Fang1,Wang Ya2,Zhai Chengbo1
(1.School of Mathematics,Shanxi University,Taiyuan 030006,China;2.Information engineering school of Nanyang,Henan,Xichuan 474450,China)
By using partially ordering theory and some properties of h-ordering differences,altering distance function,a class of monotone operator without concavity or convexity has been discussed in ordered Banach product spaces.Some new theorems about uniquness and existence of fixed points have been obtained,which extend some related conclusions in literature.
product space,monotone operator,normal cone,h-ordering difference,altering distance function
O177.91
A
1008-5513(2016)03-0288-08
10.3969/j.issn.1008-5513.2016.03.007
2016-04-18.
國(guó)家青年科學(xué)基金(11201272);山西省自然科學(xué)基金(2015011005);2015山西省131人才項(xiàng)目.
王芳(1990-),碩士生,研究方向:非線性泛函分析.
翟成波.
2010 MSC:47H10
純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué)2016年3期