• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      The Twin Domination Number of Lexicographic Product of Digraphs

      2016-12-23 05:46:32MAHongxiaLIUJuan
      關(guān)鍵詞:新疆自治區(qū)新疆師范大學(xué)有向圖

      MA Hong-xia, LIU Juan

      (College of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054, China)

      ?

      The Twin Domination Number of Lexicographic Product of Digraphs

      MA Hong-xia, LIU Juan*

      (College of Mathematical Sciences, Xinjiang Normal University, Urumqi 830054, China)

      Letγ*(D) denote the twin domination number of digraphDand letDm[Dn] denote the lexicographic product ofDmandDn, digraphs of orderm,n≥2. In this paper, we first give the upper and lower bound of the twin domination number ofDm[Dn], and then determine the exact values of the twin domination number of digraphs:Dm[Kn];Km[Dn];Km1,m2,…,mt[Dn];Cm[Dn];Pm[Cn] andPm[Pn].

      twin domination number; lexicographic product; digraphs

      LetDm=(V(Dm),A(Dm))andDn=(V(Dn),A(Dn))betwodigraphswhichhavedisjointvertexsetsV(Dm)={x0,x1,…,xm-1}andV(Dn)={y0,y1,…,yn-1}anddisjointarcsetsA(Dm)andA(Dn),respectively.ThelexicographicproductDm[Dn]ofDmandDnhasvertexsetV(Dm)×V(Dn)={(xi,yj)|xi∈V(Dm),yj∈ Vn}and(xi,yj)(xi′,yj′)∈A(Dm[Dn])ifoneofthefollowingholds:(a) xixi′∈A(Dm);(b) xi=xi′andyjyj′∈A(Dn).

      Inrecentyears,thedominationnumberofsomedigraphshasbeeninvestigatedin[7~16].However,todatefewresearchabouttwindominationnumberhasbeendoneforlexicographicproductofdigraphs.Inthispaper,westudythetwindominationnumberofDm[Dn].Firstly,wegivetheupperandlowerboundofthetwindominationnumberofDm[Dn],andthendeterminetheexactvaluesofthetwindominationnumberofdigraphs: Dm[Kn];Km[Dn];Km1,m2;…;mt[Dn]; Cm[Dn]; Pm[Cn]andPm[Pn].

      1 Main results

      Lemma 1 For anym,n≥2, thenγ*(Dm)≤γ*(Dm[Dn])≤γ*(Dm)γ*(Dn).

      Now we prove thatγ*(Dm)γ*(Dn)≥γ*(Dm[Dn]). LetS1={xi1,…,xit} be a minimum twin dominating set ofDm. LetS2={yj1,…,yjw} be a minimum twin dominating set ofDn. SetS′={(xik,yjl)|xik∈S1,yjl∈S2}. For any vertex (xi,yj)∈V(Dm[Dn]), ifxi∈S1andyj∈S2, then (xi,yj)∈S′. Ifxi∈S1andyj?S2, there must existyjl,yjl′∈S2, such thatyjlyj,yjyjl′∈A(Dn). Since (xi,yjl)(xi,yj),(xi,yj)(xi,yjl′)∈A(Dm[Dn]) and (xi,yjl),(xi,yjl′)∈S′, (xi,yj) is twin dominated byS′. Ifxi?S1, there must existxik,xik′∈S1such thatxikxi,xixik′∈A(Dm), and there must existyr∈S2such that (xik,yr)(xi,yj),(xi,yj)(xik′,yr)∈A(Dm[Dn]) and (xik,yr), (xik′,yr)∈S′, so (xi,yj) is twin dominated byS′.

      Therefore,S′ is a twin dominating set ofDm[Dn] and |S′|=|S1||S2|=γ*(Dm)γ*(Dn). Thus,γ*(Dm[Dn]) ≤γ*(Dm)γ*(Dn).

      Clearly, the following theorem is obtained from Lemma 1.

      Theorem 1 For anym,n≥2, thenγ*(Dm[Dn])=γ*(Dm) if and only ifγ*(Dn)=1.

      According to Theorem 1, the following theorem is obvious.

      Theorem 2 For anym,n≥2, thenγ*(Dm[Kn])=γ*(Dm).

      Theorem 3 For any complete digraphKmand digraphDn, then

      Proof By Lemma 1 and Theorem 1, it is clear thatγ*(Km[Dn])=1 ifγ*(Dn)=1. It is easy to see thatS={(x0,y0)} is a twin dominating set ofKm[Dn], where {y0} is a twin dominating set ofDn.

      LetKm1,m2,…,mtbe the completet-partite digraphs. The next Theorem is obtained by Lemma 1 and Theorem 3.

      Theorem 4 Letmi≥1, for anyi∈{1,2,…,t}. Then

      WeemphasizethatverticesofadirectedcycleCnarealwaysdenotedbytheintegers{0,1,…,n-1},consideringmodulon,throughoutthispaper.ThereisanarcxyfromxtoyinCnifandonlyify≡x+1(modn).Forthefollowingaddition,wealwaysconsidermodulon.

      Theorem 5 Form,n≥2, we have

      Nowweconsidertwocases.

      Case1γ+(Dn)=γ-(Dn)=1andγ*(Dn)≥2.

      Let{yj1}and{yj2}beout-dominatingsetandin-dominatingsetofDn,respectively.Set

      S3={(m-1,yj2)}.

      Case2γ*(Dn)≥2andγ+(Dn)≥2orγ-(Dn)≥2.

      Withoutlossofgenerality,weassumethatγ+(Dn)≥2.Itfollowsthatγ-(Dn)≥1,thatisγ+(Dn)≥γ-(Dn).Inthiscase,letJ={i|i∈{0,1,…,m-1}}suchthatbi=0andletJ′={i|i-1∈J}.ItiseasytoseethatJ∩J′=?.

      Forcovenience,letPmbeadirectedpathwithvertexset{0,1,…,m-1}inthesequel.

      Theorem6Letm,n≥2,then

      Next,weconsidern≥3.Forconvenience,wefirstcountthenumberofbifromi=1toi=m-2.Therearetwocasestobeconsidered:

      Case1bm-2≠0.

      Then

      Case2bm-2=0 (thatis|J|≥1).Weconsiderthefollowingtwosubcases:

      Itfollowsthattheremustexistsomeevenintegerjsuchthatbm-j≠0.Then

      S3={(i,0)|i∈{1,2,…,m-2}}.

      ThefollowingCorollaryisobtainedfromTheorem6.

      Corollary1Letm,n≥2,then

      ProofTheframeworkandmainideaforthisproofarethesameasthatofTheorem6.Thepointtobemodehereisthatforthecasem≠3,oneshouldconsiderfoursubcases.n=2,3,4andn≥5.Hence,theproofisleftforthereaders.

      [1] ARAKI T. Thek-tuple twin domination in de Bruijin and Kautz digraphs [J]. Disc Math, 2008,308(24):6406-6413.

      [2] ARAKI T. Connectedk-tuple twin domination in de Bruijin and Kautz digraphs [J].Disc Math, 2009,309(21):6229-6234.

      [3] ARUMUGAM S, EBADI K, SATHIKALA L. Twin domination and twin irredundance in digraphs [J]. Appl Anal Disc Math, 2013,7:275-284.

      [4] CHARTRAND G, DANKELMANN P, SCHULTZ M,etal. Twin domination in digraphs [J].Ars Comb, 2003,67:105-114.

      [5] SHAN E F, DONG Y.X, CHENG Y K. The twin domination number in generalized de Bruijn digraphs [J]. Inform Process Lett, 2009,109(15):856-860.

      [6] WANG Y L. Efficient twin domination in generalized De Bruijn digraphs [J]. Disc Math, 2015,338(3):36-40.

      [7] CAI H, LIU J, QIAN L. The domination number of strong product of directed cycles[J]. Disc Math Algor Appl, 2014,6(2):1-10.

      [8] LIU J, ZHANG X D, CHEN X,etal. The domination number of Cartesian products of directed cycles [J]. Inform Process Lett, 2010,110(5):171-173.

      [9] LIU J, ZHANG X D, MENG J. On domination number of Cartesian product of directed path [J]. J Comb Optim, 2011,22(4):651-662.

      [10] MOLLARD M. On the domination of Cartesian product of directed cycles: Results for certain equivalence classes of lengths [J]. Discuss Math Graph Theory, 2013,33(2):387-394.

      [11] MOLLARD M. The domination number of Cartesian product of two directed paths [J].J Comb Optim, 2014,27:144-151.

      [12] SUMENJAK T K, PAVLIC P, TEPEH A. On the Roman domination in the lexicographic product of graphs [J]. Disc Appl Math, 2012,160(13-14):2030-2036.

      [13] SUMENJAK T K, RALL D F, TEPEH A. Rainbow domination in the lexicographic product of graphs [J]. Disc Appl Math, 2013,161(13-14):2133-2141.

      [14] YUE W, HUANG Y, ZHAO T,etal. The crossing number of join products of a special 5-vertex graph withCn[J]. J Natur Sci Hunan Norm Univ, 2015,38(1):81-85.

      [15] SHAHEEN R S. Domination number of toroidal grid digraphs [J]. Utilitas Math, 2009,78:175-184.

      [16] ZHANG X D, LIU J, CHEN X,etal. On domination number of Cartesian product of directed cycles [J]. Inform Process Lett, 2010,111(1):36-39.

      (編輯 HWJ)

      2016-05-03

      國家自然科學(xué)基金資助項(xiàng)目(11301450,61363020,11226294);新疆自治區(qū)青年科技創(chuàng)新人才培養(yǎng)工程資助項(xiàng)目(2014731003)

      有向圖字典式積的雙控制數(shù)

      馬紅霞,劉 娟*

      (新疆師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院,中國 烏魯木齊 830054)

      令γ*(D)表示有向圖D的雙控制數(shù),Dm[Dn]表示有向圖Dm和Dn的字典式積,其中Dm,Dn的階數(shù)m,n分別大于等于2.本文首先給出Dm[Dn]的雙控制數(shù)的上下界,然后確定如下有向圖的雙控制數(shù)的確切值:Dm[Kn];Km[Dn];Km1,m2,…,mt[Dn];Cm[Dn];Pm[Cn]及Pm[Pn].

      雙控制數(shù);字典式積;有向圖

      10.7612/j.issn.1000-2537.2016.06.014

      *通訊作者,E-mail:liujuan1999@126.com

      猜你喜歡
      新疆自治區(qū)新疆師范大學(xué)有向圖
      1-9月份新疆自治區(qū)規(guī)模以上原煤產(chǎn)量同比增長31.1%
      1-7月份新疆自治區(qū)原煤產(chǎn)量為21835.64萬t 同比增長32.5%
      1-6月份新疆自治區(qū)規(guī)模以上企業(yè)原煤產(chǎn)量同比增長28.8%
      有向圖的Roman k-控制
      超歐拉和雙有向跡的強(qiáng)積有向圖
      關(guān)于超歐拉的冪有向圖
      呂蓓佳作品
      屈慧作品
      新形勢(shì)下少數(shù)民族政治參與實(shí)證研究——基于第十一、十二屆新疆自治區(qū)人大代表的分析
      有向圖的同構(gòu)判定算法:出入度序列法
      绥芬河市| 耒阳市| 田林县| 个旧市| 北票市| 美姑县| 余庆县| 林州市| 二连浩特市| 定日县| 泸州市| 雷波县| 广东省| 唐海县| 衡东县| 贵港市| 葫芦岛市| 开化县| 兴山县| 仁布县| 汽车| 陆川县| 黑水县| 内黄县| 大英县| 河北省| 绩溪县| 紫云| 红原县| 伊金霍洛旗| 丹江口市| 兰西县| 阿荣旗| 当阳市| 仁怀市| 怀集县| 平遥县| 襄城县| 开江县| 库尔勒市| 麻江县|