殷如,洪葵
武漢大學(xué)藥學(xué)院 組合生物合成與新藥發(fā)現(xiàn)教育部重點實驗室,湖北 武漢 430071
絲狀真菌二倍半萜化合物及其合成酶
殷如,洪葵
武漢大學(xué)藥學(xué)院 組合生物合成與新藥發(fā)現(xiàn)教育部重點實驗室,湖北 武漢 430071
殷如, 洪葵. 絲狀真菌二倍半萜化合物及其合成酶. 生物工程學(xué)報, 2016, 32(12): 1631-1641.
Yin R, Hong K. Filamentous fungal sesterterpenoids and their synthases. Chin J Biotech, 2016, 32(12): 1631-1641.
相比其他萜類化合物,絲狀真菌來源的二倍半萜化合物數(shù)量較少,但具有廣泛的生理活性和藥用價值。已經(jīng)發(fā)現(xiàn)的絲狀真菌二倍半萜合成酶均由萜類環(huán)化酶和異戊烯基轉(zhuǎn)移酶兩個結(jié)構(gòu)域組成,表現(xiàn)出底物的非特異性和環(huán)化方式的多樣性。本文重點敘述了絲狀真菌來源的二倍半萜化合物以及其合成酶的結(jié)構(gòu)與功能特征,并對絲狀真菌二倍半萜化合物及其合成酶研究現(xiàn)狀作簡要概述。
絲狀真菌,二倍半萜化合物,二倍半萜合成酶
萜類化合物是所有異戊二烯聚合物及其衍生物的總稱,是小分子天然產(chǎn)物中最大的一類化合物,到目前為止已發(fā)現(xiàn)超過60 000多種[1],根據(jù)所含異戊二烯單位數(shù)目不同可分為單萜、倍半萜、二萜、二倍半萜和三萜等。萜類化合物廣泛存在于自然界,是構(gòu)成某些植物的香精、樹脂、色素等的主要成分。如玫瑰油、桉葉油、松脂等都含有多種萜類化合物。另外,某些動物的激素、維生素等也屬于萜類化合物。萜類化合物是小分子天然產(chǎn)物中結(jié)構(gòu)最多樣的化合物,其在藥物中也扮演著重要的角色。如單萜類的冰片、倍半萜類的過氧化物青蒿素、環(huán)狀二萜類的紫杉醇、單碳環(huán)形二倍半萜類的曼諾力得等[2]。
二倍半萜是萜類化合物中的稀有類型,只占萜類總數(shù)不到2%,主要分布在植物、真菌、海洋生物海綿、地衣及昆蟲分泌物中,絕大多數(shù)二倍半萜類化合物都是從海綿中提取分離得到的[3]。二倍半萜類化合物按照其結(jié)構(gòu)中碳環(huán)的數(shù)量可以分為以下幾類[4]:直線型二倍半萜、單碳環(huán)型二倍半萜、雙碳環(huán)型二倍半萜、三碳環(huán)型二倍半萜、四碳環(huán)型二倍半萜和混雜型二倍半萜,這些化合物大多具有廣泛的生理活性,如消炎[5]、抗菌[6]、抗結(jié)核[7]、抗癌[8]和細(xì)胞毒活性[9]等,在藥物開發(fā)中具有良好前景[10]。相比其他萜類合成酶,二倍半萜合成酶的研究主要集中在絲狀真菌二倍半萜合成酶的研究。自2013年從棒曲霉Aspergillus clavatus中克隆得到了第一個二倍半萜合成酶基因,通過大腸桿菌表達(dá)系統(tǒng)表達(dá)出蛇孢假殼素ophiobolin F合成酶AcOS[11],到目前為止報道了3個絲狀真菌來源的二倍半萜合成酶和1個改造后的二倍半萜合成酶。隨著對這些已知的二倍半萜合成酶蛋白序列、結(jié)構(gòu)與功能特征的了解,越來越多的二倍半萜合成酶將被挖掘、研究和利用。本文從絲狀真菌來源的二倍半萜化合物,絲狀真菌二倍半萜合成酶結(jié)構(gòu)與功能特征進(jìn)行簡要綜述。
從1965年至今發(fā)現(xiàn)的70種絲狀真菌來源的二倍半萜化合物,其化學(xué)結(jié)構(gòu)如圖1所示。palinurin A (1) 和B (2)[12]分離自海綿來源的小克銀漢霉菌Cunninghamellasp. NRRL5695,絲狀真菌來源的直線型二倍半萜至今只有這兩例報道。到目前為止還沒有發(fā)現(xiàn)絲狀真菌來源的單碳環(huán)型和雙碳環(huán)型二倍半萜化合物。來源于絲狀真菌的三碳環(huán)型二倍半萜化合物有37種,包括29種蛇孢假殼素ophiobolins類化合物(3-31) 和8種terretonins類化合物 (32-39),其骨架結(jié)構(gòu)不同,ophiobolins類二倍半萜化合物具有5-8-5三環(huán)骨架,terretonins類二倍半萜化合物為6-6-6三環(huán)骨架。
圖1 絲狀真菌來源的二倍半萜化合物Fig. 1 Sesterterpenoids from filamentous fungi.
從胡麻斑病菌Bipolaris oryzae中分離得到的ophiobolin A (3)[13]作為首個被發(fā)現(xiàn)的ophiobolins類化合物,除具有細(xì)胞毒和抗瘧疾活性外,還是一種重要的鈣調(diào)蛋白抑制劑[14-15],最新的研究表明化合物3具有顯著的抗腦膠質(zhì)瘤活性[16],而其衍生物3-anhydro-6-hydroxyophiobolin A (5) 能夠促進(jìn)PC12細(xì)胞α突觸蛋白的降解,在帕金森病的治療中有潛在應(yīng)用[17]。6-epi-3-anhydro ophiobolin B (7)[18]首次從異旋孢腔菌Cochliobolus heterostrophus分離得到的,同樣分離于該菌株中的還有ophiobolin C (8)、ophiobolin M (20-21),通過對秀麗隱桿線蟲Caenorhabditis elegans運(yùn)動性實驗發(fā)現(xiàn)20和21化合物有潛在的抗線蟲活性[19]。從內(nèi)臍蠕孢屬Drechslera gigantea中首次分離得到的ophiobolin E (9) 和8-epi-ophiobolin J (17),是一種潛在的真菌除草劑,其中分離得到的ophiobolin B (6) 對芽孢桿菌有很高的細(xì)胞毒活性,而分離得到的ophiobolin J (16) 對芽孢桿菌只有很低或者無抗菌活性[20]。從焦曲霉Aspergillus ustus分離得到的ophiobolin G (11) 和H (14) 都表現(xiàn)出對枯草芽孢桿菌的抑制作用[21]。6-epiophiobolin G (12)和6-epi-ophiobolin N (22) 從海洋翹孢霉屬Emericella variecolorGF10真菌中分離獲得[22]。從雙極霉屬Bipolaris分離的ophiobolin I (15) 具有細(xì)胞毒活性[23]。從海洋來源的曲霉屬Aspergillus calidoustus真菌分離得到的ophiobolin K (18) 和6-epi-ophiobolin K (19) 具有抗真菌、線蟲和細(xì)胞毒活性[24]。從Aspergillus屬中分離得到ophiobolin O (23) 和6-epi-ophiobolin O (24)[25],其中23不僅能抑制乳腺癌細(xì)胞株MCF-7的增殖,還能逆轉(zhuǎn)乳腺癌耐藥細(xì)胞株MCF-7/ADR對阿霉素的耐藥性[26],ophiobolin O可以增加阿霉素耐藥的乳腺癌細(xì)胞的敏感性,0.1 μmol/L ophiobolin O與阿霉素聯(lián)合用藥,可以使耐藥細(xì)胞的阿霉素IC50從(74.00±0.18) μmol/L降低到(6.67±0.98) μmol/L,約11倍[27]。從地衣來源的單格孢屬Ulocladium中分離到6-epi-ophiobolin G (12)、6-epi-21,21-O-dihydroophiobolin G (13) 和ophiobolin P-T (25-29),其中化合物12和29對Hep G2細(xì)胞表現(xiàn)出很強(qiáng)的細(xì)胞毒活性,其IC50分別為0.37和0.24 μmol/L,25和29化合物對芽孢桿菌表現(xiàn)出溫和的抗菌活性[28]。從海洋來源的土曲霉Aspergillus terreus分離得到terretonins (32) 和terretonins A-D (33-36) 類化合物[29],后續(xù)又從曲霉屬Aspergillus insuetus分離了terretonins E (37) 和F (38),37和38具有抑制線粒體呼吸鏈的功能[30],最近又從Aspergillussp. OPMF00272中分離到terretonins G (39) 對革蘭氏陽性菌有抑制作用,對革蘭氏陰性菌和真菌沒有抑制作用[31]。
已知來源于真菌的四碳環(huán)型二倍半萜化合物有13種,其骨架結(jié)構(gòu)各異。從海洋來源的異孢鐮刀菌Fusarium heterosporum中分離得到mangicols A-G (40-46),其中化合物40和41有顯著的消炎活性[32],又從該屬菌株中分離得到neomangicols A-C (47-49),化合物47和48對HCT-116人結(jié)腸癌細(xì)胞有細(xì)胞毒活性,其中化合物47還具有抗芽孢桿菌活性[33]。從紅樹林真菌Aspergillussp. 085242分離得到的asperterpenols A (50) 和B (51) 抑制乙酰膽堿酯酶的IC50值分別為2.3和3.0 μmol/L[34]。從變色曲霉Aspergillus variecolorMF138中分離得到的變色曲霉素variecolin (52) 也是一種新骨架結(jié)構(gòu)的四碳環(huán)型二倍半萜,是一種血管緊張肽Ⅱ受體結(jié)合抑制劑[35]。
混雜型二倍半萜化合物已發(fā)現(xiàn)有18種,結(jié)構(gòu)復(fù)雜多樣,具有多種生物活性。從植物內(nèi)生菌翹孢霉屬Emericellasp. AST0036中分離得到了emericellenes A-E (53-57)[36],從擬莖點霉屬Phomopsissp. XZ-26分離得到的terpestacin (58)能抑制腫瘤血管生成和具有溫和的抗菌活性[37]。鐮刀菌Fusarium subglutinans中分離得到的霉菌毒素fusaproliferin (59),對人結(jié)腸腺癌Caco-2細(xì)胞有細(xì)胞毒活性[38]。從Emericella purpurea分離得到的variecolol (60)、variecolactone (61)、variecoacetals A (62) 和B (63) 是該真菌免疫調(diào)節(jié)物質(zhì)成分[39]。從AspergillusCNM-713分離得到的aspergilloxide (64)[40]和從變色翹霉菌Emericella variecolor分離得到的emervaridione(65)[41]都屬于混雜型二倍半萜化合物。從海綿來源的青霉屬Penicillium citrinum真菌分離得到的cyclocitrinol (66)[42]、isocyclocitrinol A (67)、22-acetylisocyclocitrinol (68) 是3個骨架相同的混雜型二倍半萜化合物,其中67和68化合物對表皮葡球菌和腸球菌有抗菌活性[43]。將Emericella variecolor海洋真菌二倍半萜合成酶基因在米曲霉中異源表達(dá)分離得到stellata-2,6,19-triene (69),在細(xì)胞色素氧化酶作用下69進(jìn)一步被氧化成stellatic acid (70)[44]。
萜類的生物合成可以分為4步:1) 五碳單體二甲基丙烯焦磷酸 (Dimethylallyl diphosphate,DMAPP) 和異戊烯焦磷酸 (Isopentenyl diphosphate,IPP) 的合成;2) 聚合反應(yīng)形成線性多聚異戊烯焦磷酸前體;3) 環(huán)化或重排形成萜類骨架;4) 骨架的修飾。絲狀真菌中DMAPP和IPP通過甲羥戊酸 (MVA) 途徑合成。IPP在異構(gòu)酶作用下可以轉(zhuǎn)化為DMAPP。以DMAPP起始,在異戊烯基轉(zhuǎn)移酶 (Prenyltransferases,PT) 作用下與IPP首尾連接形成線性聚異戊烯基焦磷酸前體如牻牛兒基焦磷酸 (Geranyl diphosphate,GPP)、法尼基焦磷酸 (Farnesyl diphosphate,F(xiàn)PP)、牻牛兒基牻牛兒基焦磷酸(Geranylgeranyl diphosphate,GGPP) 和牻牛兒基法尼基焦磷酸 (Geranylfarnesyl diphosphate,GFPP) 等。然后萜類環(huán)化酶 (Terpene cyclase,TC) 對這些焦磷酸前體進(jìn)行環(huán)化或重排形成萜類骨架,進(jìn)一步后修飾 (如氧化、脫水等) 生成各種萜類化合物[45]。
已經(jīng)發(fā)現(xiàn)的來源于絲狀真菌的二倍半萜合成酶都是具有N端TC結(jié)構(gòu)域和C端PT結(jié)構(gòu)域的嵌合酶,能催化聚異戊烯基焦磷酸鏈延伸與環(huán)化兩步反應(yīng)形成二倍半萜化合物骨架。這種嵌合型的萜類合成酶最早在桃擬莖點霉菌Phomopsis amygdali中發(fā)現(xiàn),是催化二萜化合物殼梭孢 (菌)素合成的酶PaFS,其PT結(jié)構(gòu)域與TC結(jié)構(gòu)域能獨立發(fā)揮功能。單獨異源表達(dá)嵌合型二萜合成酶PaFS的N端和C端片段,可分別檢測到萜類環(huán)化酶活性與異戊烯基轉(zhuǎn)移酶活性[46]。2013年Chiba等根據(jù)PaFS的序列特征在棒曲霉菌Aspergillus clavatus基因組中同源檢索這類二萜合成酶時發(fā)現(xiàn)了acla_76850基因[11],將該基因在米曲霉表達(dá)系統(tǒng)表達(dá)檢測到了ophiobolin F化合物,又通過對該基因編碼蛋白的體外反應(yīng)證實了該蛋白是ophiobolin F合成酶AcOS。近幾年來根據(jù)AcOS氨基酸序列信息在不同菌株基因組中進(jìn)行同源比對分析,又挖掘出了費希新薩托菌Neosartorya fischeri中的sesterfisherol合成酶NfSS[47]和異冠裸胞殼菌Emericella variecolor中的stellatic acid合成酶EvSS[44]。根據(jù)嵌合酶的這種特性,Qin等通過來源于Emericella variecolor二倍半萜合成酶EvSS的PT結(jié)構(gòu)域與variediene二萜合成酶EvVS的TC結(jié)構(gòu)域重構(gòu)了一種新的二倍半萜合成酶,能合成新骨架的二倍半萜化合物[48]。本課題組在對一株合成ophiobolins類化合物紅樹林來源的焦曲霉研究中發(fā)現(xiàn)了具有二倍半萜合成酶功能的蛋白Au8003。
圖2為上述4例已經(jīng)發(fā)現(xiàn)的絲狀真菌二倍半萜合成酶序列,顯示這些酶的共同氨基酸序列特征,其N端為TC結(jié)構(gòu)域,含有DDXXD和NSE/DTE兩個保守區(qū)域,具有ClassTCⅠ特征[49-51]。其中DDXXD保守區(qū)域與Mg2+結(jié)合負(fù)責(zé)脫去底物末端的焦磷酸基團(tuán),是嚴(yán)格保守的。而NSE/DTE是非嚴(yán)格保守區(qū)域,其中天冬酰胺/天冬氨酸 (N/D) 可以被組氨酸 (H) 替換[44]。其C端為PT結(jié)構(gòu)域,含有兩個富含天冬氨酸的保守區(qū)[52-53]DDXXD (The first aspartate-rich motif,F(xiàn)ARM) 和DDXXN (The second aspartate-rich motif,SARM)。這兩個保守區(qū)是催化烯丙基底物反應(yīng)的活性位點,烯丙基底物通過Mg2+與其結(jié)合,催化聚異戊烯基鏈的延長[54-55]。FARM及其空間結(jié)構(gòu)周圍關(guān)鍵位置的氨基酸側(cè)鏈基團(tuán)的大小決定了疏水口袋的深度,從而控制產(chǎn)物的鏈長[56]。與異戊烯基轉(zhuǎn)移酶相比SAFM保守區(qū)最后一個氨基酸由天冬氨酸變成了天冬酰胺,這種變化對于催化機(jī)制的影響有待進(jìn)一步研究。在C端的G (Q/E) 比較保守,有研究表明該區(qū)域影響聚異戊烯基焦磷酸的鏈長[57]。
圖2 幾種二倍半萜合成酶氨基酸序列比對Fig. 2 Amino acid sequence alignment of several sesterterpene synthases. Highly conserved residues in the four sequences are black, shaded in gray are amino acid positions with 76%?95% of similarity, highly divergent amino acid positions are unshaded.
絲狀真菌二半萜合成酶除結(jié)構(gòu)上的嵌合性特征外,在催化功能上表現(xiàn)出非特異性,可以分別以DMAPP、GPP、FPP及GGPP為底物,添加IPP生成二倍半萜化合物骨架[11,46-48]。一些二倍半萜合成酶非特異性還進(jìn)一步體現(xiàn)在以下兩個方面:一方面在催化同一底物時得到多種的產(chǎn)物,如來源于Aspergillus clavatus的AcOS二倍半萜合成酶在催化GFPP形成ophiobolin F的同時也合成了另外3種二倍半萜化合物,這4種二倍半萜化合物的環(huán)化方式不同[11];另一方面一種二倍半萜合成酶能催化不同的反應(yīng),比如Emericella variecolor的EvVS萜類合成酶不僅催化二倍半萜 (2E)-α-cericerene的合成,還可以催化二萜variediene的合成[48]。
圖3 幾種真菌來源的二倍半萜化合物骨架結(jié)構(gòu)環(huán)化機(jī)制[11,47-48]Fig. 3 Proposed cyclization mechanism of several sesterterpenes skeleton from fungi[11,47-48].
根據(jù)目前報道的真菌二半萜合成酶合成的幾種二倍半萜化合物骨架結(jié)構(gòu)[11,47-48],推測這幾種結(jié)構(gòu)的環(huán)化機(jī)制如圖3所示,包括3步反應(yīng)。第一步,脫去焦磷酸的碳正離子與雙鍵發(fā)生親電加成反應(yīng),主要有兩種形式即C1與GFPP中的第3個雙鍵加成 (C1-Ⅲ) 或與第4個雙鍵加成(C1-Ⅳ),C1可以與雙鍵上的任意一個碳連接成環(huán);第二步,在第一次成環(huán)的基礎(chǔ)上碳正離子直接進(jìn)攻雙鍵形成新環(huán)或者通過氫離子遷移進(jìn)行重排后進(jìn)攻雙鍵成環(huán)。最后,碳正離子通過脫去相鄰碳上的氫離子或者從H2O中獲取OH-平衡電荷,完成環(huán)化反應(yīng)。通過對二倍半萜化合物骨架環(huán)化機(jī)制的分析,雖然只有C1-Ⅲ和C1-Ⅳ環(huán)化方式的報道,但C1與Ⅱ、Ⅴ也有直接親電加成的可能性,與烯鍵加成也有兩種連接方式,后續(xù)進(jìn)一步環(huán)化也具有多種選擇,平衡電荷的方式也有多種可能,形成不同結(jié)構(gòu)的二倍半萜化合物骨架。目前已經(jīng)分離得到了具有多種骨架結(jié)構(gòu)的二倍半萜化合物,其環(huán)化方式各不相同,所以二倍半萜合成酶催化底物的環(huán)化方式具有多樣性。
本課題組從文昌頭苑紅樹林木攬根系土壤中分離得到Aspergillus ustus094102,該菌株可產(chǎn)生ophiobolins二倍半萜化合物[26],通過對該菌株基因組的測序與生物信息學(xué)分析,以及基因敲除發(fā)現(xiàn)了與ophiobolin合成相關(guān)的基因au8003,體外蛋白功能分析表明Au8003是ophiobolin F合成酶,該酶具備上述絲狀真菌萜類合成酶特點,具有異戊烯基轉(zhuǎn)移酶和萜類環(huán)化酶兩種功能,能夠以DMAPP、GPP、FPP及GGPP為底物,添加IPP生成GFPP并環(huán)化形成ophiobolin F (相關(guān)結(jié)果另文發(fā)表),其環(huán)化機(jī)制及詳細(xì)的酶學(xué)特征還在進(jìn)一步研究中。
紅樹林真菌Aspergillus ustus094102可產(chǎn)生一系列ophiobolins二倍半萜化合物,其中ophiobolin O對耐藥乳腺癌細(xì)胞有抑制作用[26-27],有良好的成藥前景,對這類化合物合成酶的認(rèn)識,有利于解析ophiobolins二倍半萜化合物的生物合成途徑,為后續(xù)利用生物工程手段獲取大量化合物提供基礎(chǔ)。雖然二倍半萜化合物是萜類化合物的稀有類群,絲狀真菌來源的二倍半萜化合物已表現(xiàn)出多種潛在藥用價值。目前只有少數(shù)二倍半萜化合物如ophiobolin F、sesterfisherol等的合成酶被研究,其他二倍半萜骨架結(jié)構(gòu)如mangicols、terretonins、emericellenes和asperterpenol類的合成酶還有待認(rèn)識。對真菌二倍半萜合成酶進(jìn)一步挖掘與研究可以用來指導(dǎo)二倍半萜天然產(chǎn)物的發(fā)現(xiàn)。二倍半萜合成酶的晶體結(jié)構(gòu)研究對揭示其底物多樣性和環(huán)化機(jī)制多樣性具有重要意義,可為后續(xù)二倍半萜化合物生物合成提供理論基礎(chǔ),有利于指導(dǎo)利用代謝工程和合成生物學(xué)手段進(jìn)行二倍半萜化合物的人工合成。
[1] Guan Z, Xue D, Abdallah II, et al. Metabolic engineering ofBacillus subtilisfor terpenoid production. Appl Microbiol Biotechnol, 2015, 99(22): 9395-9406.
[2] Ajikumar PK, Tyo K, Carlsen S, et al. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm, 2008, 5(2): 167-190.
[3] Wang L, Yang B, Lin XP, et al. Sesterterpenoids. Nat Prod Rep, 2013, 30(3): 455-473.
[4] Liu Y, Wang L, Jung JH, et al. Sesterterpenoids. Nat Prod Rep, 2007, 24(6): 1401-1429.
[5] Schumacher M, Juncker T, Schnekenburger M, et al. Natural compounds as inflammation inhibitors. Genes Nutr, 2011, 6(2): 89-92.
[6] Baquero F, Coque TM, de la Cruz F. Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother, 2011, 55(8): 3649-3660.
[7] García A, Bocanegra-García V, Palma-Nicolás JP, et al. Recent advances in antitubercular natural products. Eur J Med Chem, 2012, 49: 1-23.
[8] Sithranga Boopathy N, Kathiresan K. Anticancer drugs from marine flora: an overview. J Oncol, 2010, 2010: 214186. doi: 10.1155/2010/214186.
[9] Villa FA, Gerwick L. Marine natural product drugdiscovery: leads for treatment of inflammation, cancer, infections, and neurological disorders. Immunopharmacol Immunotoxicol, 2010, 32(2): 228-237.
[10] Zhang C, Liu Y. Targeting cancer with sesterterpenoids: the new potential antitumor drugs. J Nat Med, 2015, 69(3): 255-266.
[11] Chiba R, Minami A, Gomi K, et al. Identification of ophiobolin F synthase by a genome mining approach: a sesterterpene synthase fromAspergillus clavatus. Org Lett, 2013, 15(3): 594?597.
[12] El Sayed KA, Mayer AM., Kelly M, et al. The biocatalytic transformation of furan to amide in the bioactive marine natural product palinurin. J Org Chem, 1999, 64(25): 9258-9260.
[13] Nozoe S, Morisaki M, Tsuda K, et al. The structure of ophiobolin, a C25 terpenoid having a novel skeleton. J Am Chem Soc, 1965, 87(21): 4968-4970.
[14] Leung PC, Taylor WA, Wang JH, et al. Role of calmodulin inhibition in the mode of action of ophiobolin a. Plant Physiol, 1985, 77(2): 303-308.
[15] Peters C, Mayer A. Ca2+/calmodulin signals the completion of docking and triggers a late step of vacuole fusion. Nature, 1998, 396(6711): 575-580.
[16] Dasari R, Masi M, Lisy R, et al. Fungal metabolite ophiobolin A as a promising anti-glioma agent:in vivoevaluation, structure-activity relationship and unique pyrrolylation of primary amines. Bioorg Med Chem Lett, 2015, 25(20): 4544-4548.
[17] Xue D, Wang Q, Chen Z, et al. 3-anhydro-6-hydroxy-ophiobolin A, a fungal sesterterpene fromBipolaris oryzaeinduced autophagy and promoted the degradation of α-synuclein in PC12 cells. Bioorg Med Chem Lett, 2015, 25(7): 1464-1470.
[18] Shen X, Krasnoff SB, Lu SW, et al. Characterization of 6-epi-3-anhydroophiobolin B fromCochliobolus heterostrophus. J Nat Prod, 1999, 62(6): 895-897.
[19] Tsipouras A, Adefarati AA, Tkacz JS, et al. Ophiobolin M and analogues, noncompetitive inhibitors of ivermectin binding with nematocidal activity. Bioorg Med Chem, 1996, 4(4): 531-536.
[20] Evidente A, Andolfi A, Cimmino A, et al. Ophiobolin E and 8-epi-ophiobolin J produced byDrechslera gigantea, a potential mycoherbicide of weedy grasses. Phytochemistry, 2006, 67(20): 2281-2287.
[21] Cutler HG, Crumley FG, Cox RH, et al. Ophiobolins G and H: new fungal metabolites from a novel source,Aspergillus ustus. J Agric Food Chem, 1984, 32(4): 778-782.
[22] Hong W, Takuya Itoh, Masahiro Kinoshita, et al. Cytotoxic sesterterpenes, 6-epi-ophiobolin G and 6-epi-ophiobolin N, from marine derived fungusEmericella variecolorGF10. Tetrahedron, 2004, 60(28): 6015-6019.
[23] Ahn JW, Lee MK, Choi SU, et al. Cytotoxic ophiobolins produced byBipolarissp.. J Microbiol Biotechnol, 1998, 8: 406-408.
[24] Rodrigues de Carvalho C, Vieira Mde L, Cantrell CL, et al. Biological activities of ophiobolin K and 6-epi-ophiobolin K produced by the endophytic fungusAspergillus calidoustus. Nat Prod Res, 2016, 30(4): 478-481.
[25] Zhang D, Fukuzawa S, Satake M, et al. Ophiobolin O and 6-epi-ophiobolin O, two new cytotoxic sesterterpenes from the marine derived fungusAspergillussp.. Nat Prod Commun, 2012, 7(11): 1411-1414.
[26] Yang T, Lu Z, Meng L, et al. The novel agent ophiobolin O induces apoptosis and cell cycle arrest of MCF-7 cells through activation of MAPK signaling pathways. Bioorg Med Chem Lett, 2012(1), 22: 579-585.
[27] Sun W, Lv C, Zhu T, et al. Ophiobolin-O reverses adriamycin resistanceviacell cycle arrest and apoptosis sensitization in adriamycin-resistant human breast carcinoma (MCF-7/ADR) cells. Marine Drugs, 2013, 11(11): 4570-4584
[28] Wang QX, Bao L, Yang XL, et al. Ophiobolins P-T, five new cytotoxic and antibacterial sesterterpenes from the endolichenic fungusUlocladiumsp.. Fitoterapia, 2013, 90: 220-227.
[29] Li GY, Li BG, Yang T, et al. Sesterterpenoids, terretonins A-D, and an alkaloid, asterrelenin, fromAspergillus terreus. J Nat Prod, 2005, 68(8): 1243-1246.
[30] López-Gresa MP, Cabedo N, González-Mas MC, et al. Terretonins E and F, inhibitors of the mitochondrial respiratory chain from the marine-derived fungusAspergillus insuetus. J Nat Prod, 2009, 72(7): 1348-1351.
[31] Fukuda T, Kurihara Y, Kanamoto A, et al. Terretonin G, a new sesterterpenoid antibiotic from marine-derivedAspergillussp. OPMF00272. J. Antibiot, 2014, 67(8): 593-595.
[32] Renner MK, Jensen PR, Fenical W. Mangicols: structures and biosynthesis of a new class of sesterterpene polyols from a marine fungus of the genusFusarium. J Org Chem, 2000, 65(16): 4843-4852.
[33] Renner MK., Jensen PR, Fenica W. Neomangicols: structures and absolute stereochemistries of unprecedented halogenated sesterterpenes from a marine fungus of the genusFusarium. J Org Chem, 1998, 63(23), 8346-8354.
[34] Xiao Z, Huang H, Shao C, et al. Asperterpenols A and B, new sesterterpenoids isolated from a mangrove endophytic fungusAspergillussp. 085242. Org Lett, 2013, 15(10): 2522-2525.
[35] Hensens OD, Zink D, Williamson JM, et al. Variecolin, a sesterterpenoid of novel skeleton fromAspergillus variecolorMF138. J Org Chem, 1991, 56 (10): 3399-3403.
[36] Xu YM, Espinosa-Artiles P, Liu MX, et al. Secoemestrin D, a cytotoxic epitetrathiodio xopiperizine and emericellenes A-E, five sesterterpenoids fromEmericellasp. AST0036, a fungal endophyte ofAstragalus lentiginosus. J Nat Prod, 2013, 27, 76(12): 2330-2336.
[37] Xiang L, Lu C, Hu Z, et al. Secondary metabolites ofPhomopsissp. XZ-26, an endophytic fungus fromCamptotheca acuminate. Eur J Org Chem, 2009, 2009(18): 2975-2982.
[38] Sewram V, Nieuwoudt TW, Marasas WF, et al. Determination of the fusarium mycotoxins, fusaproliferin and beauvericin by high-performance liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr A, 1999, 858(2): 175-185.
[39] Fujimoto H, Nakamura E, Okuyama E, et al. Immunomodulatory constituents from an ascomycete,Emericella aurantio-brunnea. Chem Pharm Bull, 2000, 48(10): 1436-1441.
[40] Cueto M, Jensen PR, Fenical W. Aspergilloxide, a novel sesterterpene epoxide from a marine-derived fungus of the genusAspergillus. Org Lett, 2002, 4(9): 1583-1585.
[41] Liangsakul J, Pornpakakul S, Sangvichien E, et al. Emervaridione and varioxiranediol, two new metabolites from the endophytic fungus,Emericella variecolor.Tetrahedron Lett, 2011, 52(48): 6427-6430.
[42] Kozlovsky AG, Zhelifonova VP, Ozerskaya SM, et al. Cyclocitrinol, a new fungal metabolite fromPenicillium citrinum. Pharmazie, 2000, 55(6): 470-471.
[43] Amagata T, Amagata A, Tenney K, et al. Unusual C25 steroids produced by a sponge-derivedPenicillium citrinum. Org Lett, 2003, 5(23): 4393-4396.
[44] Matsuda Y, Mitsuhashi T, Quan Z, et al. Molecular basis for stellatic acid biosynthesis: a genome mining approach for discovery of sesterterpene synthases. Org Lett, 2015, 17(18): 4644-4647.
[45] Chang MC, Keasling JD. Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol, 2006, 2(12): 674-681.
[46] Toyomasu T, Tsukahara M, Kaneko A, et al. Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Proc Natl Acad Sci USA, 2007, 104(9): 3084-3088.
[47] Ye Y, Minami A, Mandi A, et al. Genome mining for sesterterpenes using bifunctional terpene synthases reveals a unified intermediate of di/sesterterpenes. J Am Chem Soc, 2015, 137(36):11846?11853.
[48] Qin B, Matsuda Y, Mori T et al. An unusual chimeric diterpene synthase from emericella variecolor and its functional conversion into a sesterterpene synthase by domain swapping. Angew Chem Int Ed Engl, 2016, 55(5): 1658-1661.
[49] Gao Y, Honzatko RB, Peters RJ. Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep, 2012, 29(10): 1153-1175.
[50] Wendt KU, Schulz GE. Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure, 1998, 6(2): 127-133.
[51] Christianson DW. Structural biology and chemistry of the terpenoid cyclases. Chem Rev, 2006, 106(8): 3412-3442.
[52] Chen A, Kroon PA, Poulter CD. lsoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree and predictions of secondary structure. Protein Sci, 1994, 3(4): 600-607.
[53] Wang K, Ohnuma S. Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. Trends Biochem Sci, 1999, 24(11): 445-451.
[54] Song L, Poulter CD. Yeast farnesyl-diphosphate synthase site-directed mutagenesis of residues in highly conserved prenyltransferase domain-I and domain-II. Proc Natl Acad Sci USA, 1994, 91(8): 3044-3048.
[55] Tarshis LC, Proteau PJ, Kellogg BA, et al. Regulation of product chain length by isoprenyl diphosphate synthases. Proc Natl Acad Sci USA, 1996, 93(26): 15018-15023.
[56] Wang C, Chen Q, Fan D, et al. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in brassicaceae plants. Mol Plant, 2016, 9(2): 195-204.
[57] Hemmi H, Noike M, Nakayama T, et al. An alternative mechanism of product chain-length determination in type III geranylgeranyl diphosphate synthase. Eur J Biochem, 2003, 270(10): 2186-2194.
(本文責(zé)編 陳宏宇)
Filamentous fungal sesterterpenoids and their synthases
Ru Yin, and Kui Hong
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, Hubei, China
Although the number of sesterterpenoids is fewer than other terpenoids reported, they have presented a wide range of biological activities and medicinal value. Reported filamentous fungal sesterterpene synthases are special on bifunctional two catalytically independent domains: prenyltransferase and terpene cyclase, but less specific on substrates selection and diverse ways of cyclization. This article reviews the research advances in filamentous fungal sesterterpenoids and their synthases, especially describes filamentous fungal sesterterpenoids and the structure and function characteristics of sesterterpene synthase.
filamentous fungi, sesterterpenoids, sesterterpene synthases
Kui Hong. Tel: +86-27-68752442; E-mail: kuihong31@whu.edu.cn
Received:March 30, 2016;Accepted:May 4, 2016
Supported by:National High Technology Research and Development Program of China (863 Program) (No. 2012AA092201), National Basic Research and Development Program of China (973 Program) (No. 2012CB721001).
國家高技術(shù)研究發(fā)展計劃 (863 計劃) (No. 2012AA092201),國家重點基礎(chǔ)研究發(fā)展計劃 (973 計劃) (No. 2012CB721001) 資助。