王慰軍, 楊桂林, 張 馳, 陳慶盈
(中國科學(xué)院 寧波材料技術(shù)與工程研究所, 浙江省機(jī)器人與智能制造裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室, 浙江 寧波 315201)
全向移動(dòng)機(jī)器人驅(qū)動(dòng)萬向輪的設(shè)計(jì)與實(shí)現(xiàn)
王慰軍, 楊桂林, 張 馳, 陳慶盈
(中國科學(xué)院 寧波材料技術(shù)與工程研究所, 浙江省機(jī)器人與智能制造裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室, 浙江 寧波 315201)
全向移動(dòng)機(jī)器人使用無解耦機(jī)構(gòu)的驅(qū)動(dòng)萬向輪在轉(zhuǎn)向時(shí)會(huì)派生出額外的滾輪滾動(dòng)輸出,這會(huì)導(dǎo)致運(yùn)動(dòng)的不穩(wěn)定以及增加控制算法復(fù)雜性.為了解決驅(qū)動(dòng)萬向輪轉(zhuǎn)向運(yùn)動(dòng)與驅(qū)動(dòng)運(yùn)動(dòng)之間的耦合問題,通過在驅(qū)動(dòng)萬向輪內(nèi)加入差速行星齒輪機(jī)構(gòu),合理地設(shè)置該行星齒輪組的輸出傳動(dòng)比,可以將轉(zhuǎn)向時(shí)的派生滾動(dòng)輸出從轉(zhuǎn)向運(yùn)動(dòng)中解耦,實(shí)現(xiàn)了對(duì)機(jī)器人運(yùn)動(dòng)的精確控制,提高了機(jī)器人運(yùn)動(dòng)平穩(wěn)性.最后通過對(duì)機(jī)器人進(jìn)行運(yùn)動(dòng)學(xué)分析,得到了輸入轉(zhuǎn)速與機(jī)器人運(yùn)動(dòng)速度之間的關(guān)系,驗(yàn)證了機(jī)器人的全向移動(dòng)功能,并為機(jī)器人運(yùn)動(dòng)控制提供了依據(jù).
全向移動(dòng)機(jī)器人; 差速行星齒輪; 運(yùn)動(dòng)學(xué)分析; 解耦; 驅(qū)動(dòng)萬向輪
全向輪式移動(dòng)機(jī)器人因比腿式移動(dòng)機(jī)器人更易于加工制造,承載能力和效率更高,運(yùn)動(dòng)靈活以及能在狹窄和擁擠的環(huán)境中運(yùn)行,而得到了越來越廣泛的應(yīng)用[1].目前輪式移動(dòng)機(jī)器人常采用的輪子有3種:普通輪、全向輪以及球形輪[2].普通輪就是日常所見的在各類車輛上使用的輪子;全向輪是在普通輪的圓周上再安裝上一定數(shù)量的滾子,又被稱為麥克納母輪;球形輪是一種形狀為球形的滾輪[3].三者之中普通輪結(jié)構(gòu)最簡(jiǎn)單,但是其不能提供全向移動(dòng)功能.麥克納母輪的設(shè)計(jì)以及控制較為繁瑣,由于輪子的圓周上均勻分布著許多小的滾子,在運(yùn)動(dòng)時(shí)不可避免地產(chǎn)生振動(dòng)和打滑,而球形輪的運(yùn)動(dòng)控制又較為困難[4].基于上述原因,在設(shè)計(jì)全向移動(dòng)機(jī)器人時(shí)考慮采用另外一種形式的輪子,即:萬向輪作為移動(dòng)機(jī)器人的移動(dòng)基礎(chǔ)部件[5].因其具有2個(gè)運(yùn)動(dòng)自由度,運(yùn)動(dòng)過程又可保持連續(xù),所以它可提供完全的機(jī)動(dòng)性與靈活性并且能實(shí)現(xiàn)全向移動(dòng)功能.
所要設(shè)計(jì)的驅(qū)動(dòng)萬向輪[6-8]具有繞水平輪軸滾動(dòng)和繞垂直軸轉(zhuǎn)動(dòng)的自由度,通過2個(gè)電機(jī)分別給這2個(gè)方向的運(yùn)動(dòng)自由度提供動(dòng)力,只要控制這2個(gè)電機(jī)就可以實(shí)現(xiàn)對(duì)該萬向輪的控制[9-12].基本設(shè)計(jì)思路是:一個(gè)電機(jī)(稱為驅(qū)動(dòng)電機(jī))通過傳動(dòng)系統(tǒng)把運(yùn)動(dòng)傳遞給滾輪,使它滾動(dòng);另一個(gè)電機(jī)(稱為轉(zhuǎn)向電機(jī))通過傳動(dòng)系統(tǒng)把運(yùn)動(dòng)傳遞給支撐框架,使它帶動(dòng)滾輪實(shí)現(xiàn)轉(zhuǎn)向運(yùn)動(dòng)[13-15].其具體原理如圖1所示,圖中數(shù)字表示萬向輪上各個(gè)齒輪和滾輪的標(biāo)號(hào).
圖1 驅(qū)動(dòng)萬向輪傳動(dòng)原理Fig.1 Driven principle of powered caster wheel
但此時(shí)會(huì)出現(xiàn)一個(gè)問題,從圖1中可以看出齒輪6通過支撐軸安裝在轉(zhuǎn)向框架上,轉(zhuǎn)向電機(jī)通過傳動(dòng)齒輪帶動(dòng)滾輪繞垂直軸線轉(zhuǎn)向時(shí)會(huì)使齒輪6在繞齒輪5轉(zhuǎn)動(dòng)的同時(shí)繞自身支撐軸旋轉(zhuǎn),這樣會(huì)使?jié)L輪在轉(zhuǎn)向時(shí)產(chǎn)生額外的滾動(dòng)輸出,形成轉(zhuǎn)向運(yùn)動(dòng)與滾動(dòng)輸出的運(yùn)動(dòng)耦合.這部分額外的滾輪運(yùn)動(dòng)將會(huì)造成驅(qū)動(dòng)萬向輪的運(yùn)動(dòng)不穩(wěn)定,并且將增加控制算法的復(fù)雜性,使得整體協(xié)調(diào)控制難度加大.為了解決上述問題,必須設(shè)法從結(jié)構(gòu)設(shè)計(jì)上消除這部分額外的滾動(dòng)輸出.為此,考慮在驅(qū)動(dòng)傳動(dòng)系統(tǒng)和轉(zhuǎn)向傳動(dòng)系統(tǒng)之間加入一個(gè)差速行星齒輪組,利用該差速行星齒輪組具有的1個(gè)輸入可以產(chǎn)生2個(gè)輸出的特性,使轉(zhuǎn)向電機(jī)的運(yùn)動(dòng)分為2個(gè)部分:一部分通過傳動(dòng)系統(tǒng)帶動(dòng)滾輪轉(zhuǎn)向,另一部分通過傳動(dòng)系統(tǒng)帶動(dòng)滾輪轉(zhuǎn)動(dòng),這樣只要這2個(gè)運(yùn)動(dòng)獲得一定的匹配就可以把額外的滾動(dòng)輸出消除,使得額外的滾動(dòng)輸出運(yùn)動(dòng)從轉(zhuǎn)向運(yùn)動(dòng)中得到解耦.具體原理如圖2所示,數(shù)字表示各個(gè)齒輪標(biāo)號(hào).
圖2 加入解耦機(jī)構(gòu)的驅(qū)動(dòng)萬向輪傳動(dòng)原理Fig.2 Driven principle of powered caster wheel with decoupled mechanism
下面對(duì)驅(qū)動(dòng)萬向輪的運(yùn)動(dòng)解耦原理進(jìn)行分析.此處設(shè)驅(qū)動(dòng)電機(jī)的輸入轉(zhuǎn)速為nd,轉(zhuǎn)向電機(jī)輸入轉(zhuǎn)速為ns,驅(qū)動(dòng)電機(jī)通過傳動(dòng)系統(tǒng)傳遞給輪子的輸出轉(zhuǎn)速為ndr,轉(zhuǎn)向電機(jī)通過傳動(dòng)系統(tǒng)傳遞給框架轉(zhuǎn)向時(shí)的轉(zhuǎn)速為nsk,由轉(zhuǎn)向所引起的輪子額外轉(zhuǎn)速為nsr,輪子最終的滾動(dòng)轉(zhuǎn)速為nr.
其中各組齒輪傳動(dòng)比表示如下:
由此可得各轉(zhuǎn)速如下:
nr=ndr+nsr,
(1)
(2)
(3)
(4)
(5)
由以上關(guān)系式可見,只要合理設(shè)置各個(gè)齒輪的齒數(shù)使得關(guān)系式(6)得到滿足,就可以消除轉(zhuǎn)向電機(jī)對(duì)于輪子滾動(dòng)輸出的影響,達(dá)到運(yùn)動(dòng)解耦的目的.
(6)
圖3 驅(qū)動(dòng)萬向輪結(jié)構(gòu)圖Fig.3 The structure diagram of powered caster wheel
在移動(dòng)機(jī)器人本體上將驅(qū)動(dòng)萬向輪進(jìn)行合理布局,這里采用2個(gè)驅(qū)動(dòng)萬向輪和2個(gè)隨動(dòng)輔助萬向輪的組合形式,對(duì)角線對(duì)稱布置,最后設(shè)計(jì)形成的移動(dòng)機(jī)器人的外形結(jié)構(gòu)如圖4所示.
該全向移動(dòng)機(jī)器人主要由本體、2個(gè)驅(qū)動(dòng)萬向輪、2個(gè)隨動(dòng)輔助萬向輪以及連接本體和各個(gè)萬向輪的懸架結(jié)構(gòu)所組成.4個(gè)萬向輪安裝在本體底部并呈對(duì)角線對(duì)稱布置,保證整個(gè)機(jī)器人在執(zhí)行直行、側(cè)行、斜行、原地旋轉(zhuǎn)等運(yùn)動(dòng)時(shí)的平穩(wěn)性和可靠性.因底部采用了四輪布局方式,所以本體與各個(gè)萬向輪需要通過懸架連接在一起,這樣能保證機(jī)器人在凹凸不平的路面上平穩(wěn)行走以及四輪同時(shí)著地,通過懸架結(jié)構(gòu)中的彈簧能有效減少和降低機(jī)器人在運(yùn)行過程中的振動(dòng)與噪音,并能根據(jù)實(shí)時(shí)路況做到相應(yīng)的自適應(yīng)調(diào)節(jié).其中驅(qū)動(dòng)萬向輪與本體的連接采用四點(diǎn)支撐、兩點(diǎn)導(dǎo)向懸架,隨動(dòng)輔助萬向輪與本體連接采用單點(diǎn)支撐、單點(diǎn)導(dǎo)向懸架.整個(gè)機(jī)器人的運(yùn)動(dòng)由2個(gè)驅(qū)動(dòng)萬向輪的驅(qū)動(dòng)電機(jī)(如圖5所示)通過傳動(dòng)系統(tǒng)來實(shí)現(xiàn),機(jī)器人的運(yùn)行方向變換由安裝在2個(gè)驅(qū)動(dòng)萬向輪上的轉(zhuǎn)向電機(jī)(如圖5所示)通過傳動(dòng)系統(tǒng)來實(shí)現(xiàn).因此,我們可以對(duì)驅(qū)動(dòng)萬向輪上的各個(gè)電機(jī)作運(yùn)動(dòng)控制,通過各電機(jī)的聯(lián)動(dòng)就可以實(shí)現(xiàn)整個(gè)機(jī)器人在不改變運(yùn)動(dòng)姿勢(shì)的前提下實(shí)現(xiàn)直行、側(cè)行、斜行、原地旋轉(zhuǎn)等各種運(yùn)動(dòng),這樣就實(shí)現(xiàn)了所要求的全向移動(dòng).
如圖6所示,建立移動(dòng)機(jī)器人在平面內(nèi)的位姿坐標(biāo)系,其中全局坐標(biāo)為XOY,固定在機(jī)器人上的局部坐標(biāo)為XROYR,P點(diǎn)為移動(dòng)機(jī)器人的質(zhì)心,θ為
圖4 全向移動(dòng)機(jī)器人外形結(jié)構(gòu)Fig.4 The outline structure of omnidirectional mobile robot
圖5 全向移動(dòng)機(jī)器人萬向輪布局Fig.5 Caster wheel configuration of omnidirectional mobile robot
圖6 移動(dòng)機(jī)器人位姿Fig.6 The position and posture of mobile robot
機(jī)器人的轉(zhuǎn)動(dòng)角度.因此,該機(jī)器人在平面上的位姿可以表示為ξ=[xyθ]T.假設(shè)機(jī)器人本體以及輪子是剛體,所設(shè)計(jì)的全向移動(dòng)機(jī)器人應(yīng)用于室內(nèi)環(huán)境,通過上述結(jié)構(gòu)設(shè)計(jì)使得每個(gè)輪子都與地面垂直,每個(gè)輪子與地面只有1個(gè)接觸點(diǎn).因此,當(dāng)滿足輪子與地面純滾動(dòng)和無相對(duì)滑動(dòng)的條件時(shí),輪子與地面接觸點(diǎn)處的速度為0,即:該點(diǎn)在垂直于輪子平面方向的速度和沿著運(yùn)動(dòng)方向上的速度為0.由此得到輪子在純滾動(dòng)和無相對(duì)滑動(dòng)的條件為[16]:
(7)
(8)
(9)
式中:R(θ)為全局坐標(biāo)系轉(zhuǎn)化為機(jī)器人局部坐標(biāo)系的變換矩陣;[lα]為各輪子在機(jī)器人本體上的支撐點(diǎn)在機(jī)器人坐標(biāo)系中的極坐標(biāo)位置;β為每個(gè)輪子相對(duì)于機(jī)器人本體的轉(zhuǎn)向角度;e為萬向輪水平軸線相對(duì)于垂直軸線的偏置距離;r為輪子半徑;
ρ
所設(shè)計(jì)的全向移動(dòng)機(jī)器人由4個(gè)萬向輪組成,它們的布局位置為對(duì)角線對(duì)稱布置.由式(7)和式(8)可以得到移動(dòng)機(jī)器人的運(yùn)動(dòng)學(xué)方程如下:
(10)
(11)
式中is,id為驅(qū)動(dòng)萬向輪內(nèi)部轉(zhuǎn)向和驅(qū)動(dòng)傳動(dòng)系統(tǒng)傳動(dòng)比.
基于驅(qū)動(dòng)萬向輪設(shè)計(jì)了一種全新的全向移動(dòng)機(jī)器人.其中所設(shè)計(jì)的驅(qū)動(dòng)萬向輪可以提供連續(xù)順滑的運(yùn)動(dòng),使得機(jī)器人在不改變自身姿態(tài)的情況下可以沿平面內(nèi)任意方向運(yùn)動(dòng),真正實(shí)現(xiàn)了全向移動(dòng).同時(shí)利用差速行星齒輪機(jī)構(gòu)對(duì)驅(qū)動(dòng)萬向輪在轉(zhuǎn)向時(shí)所引起的輪子額外滾動(dòng)運(yùn)動(dòng)進(jìn)行解耦,使得驅(qū)動(dòng)萬向輪在轉(zhuǎn)向時(shí)無額外的輪子滾動(dòng)輸出,這樣保證了控制精度,提高了機(jī)器人運(yùn)動(dòng)穩(wěn)定性.最后,通過建立移動(dòng)機(jī)器人的運(yùn)動(dòng)學(xué)模型,分析得到了控制電機(jī)輸入轉(zhuǎn)速與機(jī)器人運(yùn)動(dòng)速度之間的關(guān)系,驗(yàn)證了機(jī)器人所具備的全向移動(dòng)功能以及驅(qū)動(dòng)輪的正確設(shè)置方式,并為機(jī)器人運(yùn)動(dòng)控制提供了依據(jù).
[1] BISCHOFF Rainer. Field and service robotics[M]. London: Springer, 1998: 485-492.
[2] HOLMBERG R. Design and development for powered-caster holonomic mobile robot[D]. Palo Alto: Stanford University, Department of Mechanical Engineering, 2000:8-17.
[3] SAHA S K, ANGELES J, DARCOVICH J. The design of kinematically isotropic rolling robots with omnidirectional wheels[J]. Mechanism and Machine Theory, 1995, 30(8): 1127-1137.
[4] GOSSELIN C, ANGELES J. Singularity analysis of closed-loop kinematic chains[J]. IEEE Transactions on Robotics and Automations, 1990, 6(3):281-290.
[5] LI Yuan-ping. Slip modelling estimation and control of omnidirectional wheel mobile robots with powered caster wheel[D]. Singapore: National University of Singapore, Department of Mechanical Engineering, 2009: 5-15.
[6] CAMPION G, BASTIN G, D’ ANDREA-NOVEL B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Transactions on Robotics and Automations, 1996, 12(1):47-62.
[7] 曹其新,張蕾. 輪式自主移動(dòng)機(jī)器人[M].上海: 上海交通大學(xué)出版社,2012:40-48. CAO Qi-xin, ZHANG Lei, Wheeled autonomous mobile robot[M]. Shanghai: Shanghai Jiaotong University press, 2012:40-48.
[8] 王曙光. 移動(dòng)機(jī)器人原理與設(shè)計(jì)[M]. 北京:人民郵電出版社,2013:32-38. WANG Shu-guang. Principle and design of mobile robot[M]. Beijing: People’s Posts and Telecommunications Press, 2013:32-38.
[9] PIN F G, KILLOUGH S M. A new family of omnidirectional and holonomic wheeled platforms for mobile robots[J]. IEEE Transactions on Robotics and Automation, 1994, 10(4):480-489.
[10] YI B J, KIM W K.The kinematics for redundantly actuated omnidirectional mobile robots[J]. Journal of Robotic Systems, 2002, 19(6):255-267.
[11] MUIR P F, NEWMAN C P. Kinematic modeling of wheeled mobile robots[J]. Journal of Robotic Systems, 1987, 4(2):281-340.
[12] AGULLO J, CARDONA S, VIVANCOS J. Kinematics of vehicles with directional sliding wheels[J]. Mechanism and Machine Theory, 1987, 22(4):295-301.
[13] SONG J B, BYUN K S. Design and control of a four-wheeled omnidirectional mobile robot with steerable omnidirectional wheels[J]. Journal of Robotic Systems, 2004, 21(4):193-208.
[14] ALEXANDER J C, MADDOCKS J H. On the kinematics of wheeled mobile robots[J]. International Journal of Robotics Research, 1989, 8(5):15-27.
[15] ZHAO Y, BEMENT S L. Kinematics, dynamics and control of wheeled mobile robots[J]. IEEE International Conference on Robotics & Automation, 1992, 1(1):91-96.
[16] WADA M, TAKAGI A, MORI S. A mobile platform with a dual-wheel caster-drive mechanism for holonomic and omnidirectional mobile robots[J]. Journal of the Robotics Society of Japan, 2000, 18(8):1166-1172.
[17] WADA M, TAKAGI A, MORI S. Caster drive mechanisms for holonomic and omnidirectional mobile platforms with no over constraint[J]. IEEE International Conference on Robotics & Automation, 2000, 2(2):1531-1538.
[18] WADA M. A synchro-caster drive system for holonomic and omnidirectional mobile robots[C]. 26th Annual Conference of the IEEE Industrial Electronics Society, Nagoya, Aichi, Oct. 22-28, 2000.
Design and realization of powered caster wheel for omnidirectional mobile robot
WANG Wei-jun, YANG Gui-lin, ZHANG Chi, CHEN Qing-ying
(Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology of Zhejiang Province, Ningbo Institute of Material and Engineering Technology, Chinese Academy of Science, Ningbo 315201, China)
The powered caster wheel without special decoupled mechanism that is used by the omnidirectional mobile robot can produce an extra rolling motion output of the wheel when it is making the wheel turn. It is due to the motion couple between the steering motion and driving motion. This phenomenon can lead to the motion instability and increase the complexity of the robot’s motion control algorithm, which is not beneficial to the mobile robot’s practical application and maneuverability. In order to solve the powered caster wheel’s motion couple problem between the steering motion and driving motion, a differential planet gear was mounted between the steering transmission system and driving transmission system. By setting reasonable output transmission ratio and right motion orientation of the differential planet gear, the extra rolling motion could be decoupled from the steering motion, which could make a great contribution to the stability of the robot’s motion and accurate motion control. Finally, the kinematics of the robot had been analyzed, from which the relationship of the input motor speed and the robot’s velocity could be obtained. Through utilizing, the result of kinematics analyzing the robot’s ability of the omnidirectional mobility can be testified and the foundation of the robot’s motion control can be provided.
omnidirectional mobile robot; differential planet gear; kinematics analysis; decouple; powered caster wheel
2016-01-07.
本刊網(wǎng)址·在線期刊:http://www.zjujournals.com/gcsjxb
NSFC-浙江兩化融合聯(lián)合基金資助項(xiàng)目(U1509202).
王慰軍(1981—),男,浙江寧波人,工程師,碩士,從事機(jī)器人技術(shù)及自動(dòng)化裝備研究,E-mail: 1473315071@qq.com.http://orcid.org//0000-0001-9524-5649
10.3785/j.issn. 1006-754X.2016.06.017
TP 242.6; TH 122
A
1006-754X(2016)06-0633-06