樊守芳
(綏化學(xué)院信息工程學(xué)院,黑龍江 綏化 152061)
一階分式遞歸數(shù)列的斂散性質(zhì)
樊守芳
(綏化學(xué)院信息工程學(xué)院,黑龍江 綏化 152061)
遞歸關(guān)系是一種簡潔高效的數(shù)學(xué)模型,傳統(tǒng)求解遞歸關(guān)系的方法主要是針對線性遞歸關(guān)系而建立的。本文通過詳細(xì)研究探討出一階分式遞歸關(guān)系對應(yīng)數(shù)列的斂散性,得出了一系列的結(jié)論。
遞歸關(guān)系;數(shù)列;極限;收斂;發(fā)散
(1)當(dāng)a=1時(shí),通項(xiàng)un=u1+(n-1)b;
(II)當(dāng)ad-bc≠0時(shí),可分下述幾種情況:
(1)當(dāng)c=0時(shí)
(2)當(dāng)c≠0時(shí)
(1)
(2)
(i)由(1)與(2)兩式可直接得出結(jié)論。
cu2+(d-a)u-b=0
(3)
(ii)i)結(jié)論顯然成立;
ii)由ad-bc≠0及a=-d得a2+bc≠0,所以:
(d-a)2+4bc=4(a2+bc)>0。
注:本定理結(jié)論是參考文獻(xiàn)[2]、[3]給出結(jié)論的推廣與完善。
[1] 唐雄. 用不動(dòng)點(diǎn)求某一類非線性遞推數(shù)列的通項(xiàng)[J].四川職業(yè)技術(shù)學(xué)院學(xué)報(bào),2007,(04):107.
[2] 孫志峰.關(guān)于一類遞推數(shù)列極限的求法的注解[J].高等數(shù)學(xué)研究,2007,(05):45-46.
[3] 張乾,陳之兵. 一類遞推數(shù)列極限的求法[J].高等數(shù)學(xué)研究,2006,(05):30-31
[4] 樊守芳.變系數(shù)非線性遞歸序列的極限[J].數(shù)學(xué)的實(shí)踐與認(rèn)識,2012,42(20):239-244.
[5] 樊守芳.非線性遞歸數(shù)列的極限[J].大學(xué)數(shù)學(xué),2011,28(1):182-185.
[6] 樊守芳.一類非線性遞歸序列的極限[J].數(shù)學(xué)的實(shí)踐與認(rèn)識,2009,39(2):146-148.
Convergence and divergence of first-order fractional recursive sequence
FAN Shou-fang
(School of Information Engineering,Suihua University, Suihua 152061, China)
The recursive relation is a simple and efficient mathematical model. The traditional method of solving recursive relations is mainly based on linear recursive relations. In this paper, a series of conclusions are obtained by studying the convergence and divergence of first-order fractional recursive sequence.
Recursive relation; Sequence; Limit; Convergence; Divergence
2016-09-29
2013年黑龍江省教育廳科學(xué)技術(shù)研究項(xiàng)目(12531841)
樊守芳(1965-),男,碩士,副教授。
O173.1
A
1674-8646(2016)22-0032-02