張福全, 何 翠, 周惦武
(1.湖南大學(xué) 材料科學(xué)與工程學(xué)院,湖南 長沙 410082;2.湖南大學(xué) 汽車車身先進(jìn)設(shè)計制造國家重點(diǎn)實(shí)驗(yàn)室,湖南 長沙 410082)
高錳鋼形變過程中加工硬化機(jī)理的研究
張福全1*, 何 翠1, 周惦武2
(1.湖南大學(xué) 材料科學(xué)與工程學(xué)院,湖南 長沙 410082;2.湖南大學(xué) 汽車車身先進(jìn)設(shè)計制造國家重點(diǎn)實(shí)驗(yàn)室,湖南 長沙 410082)
采用Gleeble-3500試驗(yàn)機(jī)對ZGMn13Cr2高錳鋼進(jìn)行0. 1 s-1應(yīng)變速率下的室溫壓縮實(shí)驗(yàn),應(yīng)變量分別為5%, 30%和50%.利用金相顯微鏡、維氏顯微硬度機(jī)、XRD和TEM等方法,研究了壓縮變形量對ZGMn13Cr2顯微組織衍變及加工硬化機(jī)制的影響.結(jié)果表明:高錳鋼壓縮變形后晶粒內(nèi)出現(xiàn)大量變形帶,變形帶相互交叉、纏結(jié)、割截.壓縮變形量為5%時,高密度位錯相互纏結(jié)呈位錯胞或者位錯墻,壓縮變形量為30%時,基體內(nèi)出現(xiàn)形變孿晶,隨著變形量的進(jìn)一步增大,孿晶的密度和體積分?jǐn)?shù)增大,水韌態(tài)高錳鋼在壓縮變形量為50%的條件下,其顯微硬度與初始態(tài)相比提高了125%,達(dá)到HV560.8.XRD結(jié)果顯示,壓縮變形后基體組織為奧氏體和少量的碳化物,未發(fā)現(xiàn)相變誘發(fā)馬氏體組織.隨著變形量的增大,高錳鋼加工硬化機(jī)理由位錯強(qiáng)化機(jī)制向形變孿晶強(qiáng)化為主、位錯+少量層錯強(qiáng)化機(jī)制為輔的機(jī)制轉(zhuǎn)變.
高錳鋼;加工硬化機(jī)理;壓縮變形量;組織;性能
高錳鋼因具有高強(qiáng)度、高韌性、高耐磨性、良好的加工硬化能力而廣泛地應(yīng)用于礦山機(jī)械、鐵路、冶金、電力等承受沖擊載荷的設(shè)備中.近年來為提高高錳鋼鑄件在實(shí)際應(yīng)用中的加工硬化能力和耐磨性,研究者在合金化、表面預(yù)硬化等方向做出了大量的努力.如許云華等[1]、馮曉勇[2]利用高速重?fù)舻姆绞将@取表面納米化晶層,提出了納米晶強(qiáng)化機(jī)制.胡曉艷[3]利用爆炸硬化技術(shù)獲得了表層含高密度位錯和孿晶等微觀缺陷的加工硬化層.但是,關(guān)于高錳鋼的加工硬化機(jī)制,多年來并沒有統(tǒng)一的說法,除了形變誘發(fā)馬氏體相變硬化說[4]被大多數(shù)學(xué)者否定之外,還有孿晶硬化說[5-8]、位錯硬化說[9]、Fe-Mn-C原子團(tuán)硬化說[10]、綜合硬化說[11]、納米晶與非晶相鑲嵌硬化說[12]等.目前針對高錳鋼的研究主要在低應(yīng)變速率(10-2s-1以下)[13]、小能量多次沖擊[14]的工況下進(jìn)行,這與高錳鋼承受較高能量和高應(yīng)變速率的實(shí)際工況不符.本文則采用Gleeble-3500熱模擬機(jī)對高錳鋼在較高應(yīng)變速率、較大變形量條件下進(jìn)行壓縮實(shí)驗(yàn),探究其加工硬化規(guī)律及機(jī)制,為實(shí)際應(yīng)用中充分發(fā)揮高錳鋼的耐磨性和加工硬化能力提供理論依據(jù).
實(shí)驗(yàn)材料為ZGMn13Cr2,其主要化學(xué)成分見表1.采用中頻爐熔煉,樹脂石英砂造型,澆注標(biāo)準(zhǔn)Y形試塊.為獲得碳化物分布均勻、綜合性能優(yōu)良的奧氏體組織,試塊在真空管式爐內(nèi)(GSL1600)加熱至650 ℃保溫1.5 h,再以相同的升溫速率升至1 080 ℃保溫1.5 h后進(jìn)行水韌處理,經(jīng)線切割加工成Ф6 mm×9 mm的熱模擬標(biāo)準(zhǔn)試樣.
熱模擬壓縮實(shí)驗(yàn)在Gleeble-3500型試驗(yàn)機(jī)上進(jìn)行,壓縮過程中抽真空.試驗(yàn)采用中軸壓縮的方式,為減少摩擦力,試樣與壓頭之間添加潤滑油,為防止?jié)櫥臀廴緣侯^,壓頭和試樣之間墊鉭片,變形過程全部由微機(jī)處理系統(tǒng)控制并自動采集有關(guān)數(shù)據(jù),最后以表格形式輸出載荷-行程和真應(yīng)力-真應(yīng)變等數(shù)據(jù).熱模擬壓縮實(shí)驗(yàn)方案如下:變形溫度為298 K,應(yīng)變速率為0.1 s-1,變形量分別為5%, 30%和50%.
表1 ZGMn13Cr2高錳鋼的主要化學(xué)成分
利用OM, XRD(RigakuD/max2550V)及TEM(F20)對經(jīng)不同應(yīng)變量變形后的試樣進(jìn)行微觀組織結(jié)構(gòu)表征,利用HV-1000顯微維氏硬度計測量高錳鋼經(jīng)壓縮后的硬度.金相樣品的制備過程:試樣機(jī)械磨平拋光后,用4%硝酸和鹽酸酒精反復(fù)擦拭腐蝕80~90 s;TEM樣品的制備過程:機(jī)械拋光研磨至70~80m后,沖成Φ3 mm薄片,再減薄至40m,液氮冷卻至-30 ℃以下,采用3%HClO4+97%CH3COOH溶液進(jìn)行電解雙噴,雙噴電壓為75 V,電流為45 mA.
2.1 真應(yīng)力-真應(yīng)變曲線與加工硬化率曲線
高的加工硬化能力是高錳鋼在實(shí)際應(yīng)用過程中耐沖擊耐磨損的重要原因,通過真應(yīng)力-真應(yīng)變曲線所獲得的加工硬化率(θ=dσdε)曲線,可以很好地反映高錳鋼壓縮變形過程中內(nèi)部位錯、層錯、孿晶等相關(guān)的微觀缺陷的變化特征[15].圖1a為室溫下高錳鋼在Gleeble-3500機(jī)上以0.1 s-1恒應(yīng)變速率壓縮50%后獲取的真應(yīng)力-真應(yīng)變曲線,圖1b為對真應(yīng)力-應(yīng)變曲線求一階導(dǎo)數(shù)獲得的加工硬化率-真應(yīng)變曲線,圖1c為根據(jù)Hutchinson和Ridley[9]在壓縮過程中建立的純位錯密度模型擬合出來的加工硬化率曲線,相關(guān)函數(shù)如下:
(1)
ρdis=1.7×1016ε,
(2)
(3)
將式(2)代入式(1)后求導(dǎo)可得出式(3).其中α為常數(shù);G是剪切模量;b是柏氏矢量.相關(guān)文獻(xiàn)資料顯示[9],α=0.25,G=70 GPa,b=2.64×10-1nm.
ε
從圖1a可看出應(yīng)力隨著應(yīng)變量的增大而增大,曲線可分為3個階段:0<ε≤5%時為彈性變形階段,流變應(yīng)力幾乎呈線性迅速增加;5%<ε≤30%為直線硬化階段,流變應(yīng)力增加的趨勢有所放緩;30%<ε≤50%為拋物線硬化階段,流變應(yīng)力增加的趨勢進(jìn)一步減緩.從圖1b可看出加工硬化率曲線隨著應(yīng)變的增加先快速遞減,在約為5%處遞增,隨著變形的繼續(xù),加工硬化率曲線出現(xiàn)了一個平臺.
對比曲線b與曲線c可以看出在應(yīng)變量大于5%時,實(shí)驗(yàn)測得的加工硬化率曲線較純位錯模型擬合出來的加工硬化率曲線有一個明顯的增值,這表明在壓縮過程中基體硬化機(jī)理發(fā)生了變化,高錳鋼內(nèi)部強(qiáng)化機(jī)制并非為單一的位錯強(qiáng)化機(jī)制.經(jīng)后續(xù)的TEM和XRD可以證明由位錯強(qiáng)化機(jī)制變成位錯+層錯+孿晶強(qiáng)化機(jī)制.
2.2 XRD物相分析
圖2所示是應(yīng)變速率為0.1 s-1,壓縮變形量分別為5%, 30%和50%的XRD衍射圖譜,圖中顯示壓縮變形后物相仍為奧氏體和少量碳化物,并未檢測到ε-馬氏體.隨著壓縮量的增加,(111)γ衍射峰強(qiáng)度異常增加,而(311)γ和(200)衍射峰強(qiáng)度減小,說明高錳鋼晶粒內(nèi)部發(fā)生偏轉(zhuǎn),產(chǎn)生大量的(111)γ織構(gòu);各衍射峰的寬度增加,這是因?yàn)楦咤i鋼層錯能較低,約為23 mJ/m2[16],壓縮變形后層錯增加,生成形變孿晶,使晶粒碎化,孿晶的生成以及內(nèi)應(yīng)力的增大共同造成了衍射峰加寬這一現(xiàn)象.
2θ/(°)
2.3 壓縮量對微觀組織的影響
2.3.1 金相組織
圖3是應(yīng)變速率為0.1 s-1,壓縮變形量分別為5%, 30%和50%時高錳鋼的顯微組織圖片.在外部軸向壓縮應(yīng)力的作用下,基體內(nèi)部出現(xiàn)大量相互交叉、阻滯和割截的變形帶.變形量為5%時變形帶大多呈平直狀,間距較寬(如圖3(a)所示).變形量為30%時,變形帶密度增大,自身寬度變寬,出現(xiàn)折截狀臺階(如圖3(b)所示).變形量為50%時,變形帶的間距縮短,痕跡加深,密度進(jìn)一步增大,臺階狀變形帶明顯增加(如圖3(c)所示),相互交叉、阻滯和割截的變形帶,將基體分割成細(xì)小的區(qū)域,使得高錳鋼的硬度增大,高錳鋼加工硬化能力加強(qiáng).由于光學(xué)顯微鏡下無法清晰地辨別變形帶為滑移線還是孿晶,為了更進(jìn)一步地了解加工硬化的深層次原因和機(jī)制,必須對其微觀晶體缺陷進(jìn)行表征.
(a)5%
(b)30%
(c)50%
2.3.2 透射電鏡組織
圖4所示為室溫下應(yīng)變速率為0.1 s-1,壓縮變形量分別為5%, 30%和50%時高錳鋼的透射形貌及特征電子衍射花樣.圖4(a)為壓縮變形量為5%時高錳鋼的透射電鏡形貌,從圖中可看出高密度位錯相互纏結(jié)呈位錯胞或者位錯墻;圖4(b)(c)(d)是壓縮變形量為30%時透射電鏡形貌的明暗場及其衍射斑點(diǎn),從圖中可看出基體內(nèi)出現(xiàn)了形變孿晶和少量層錯;圖4(e)(f)(g)是壓縮變形量為50%時透射電鏡形貌的明暗場及其衍射斑點(diǎn),從圖中可看出孿晶衍射斑點(diǎn)強(qiáng)度增大,其密度和體積分?jǐn)?shù)增大.
由不同壓縮變形量的透射照片可還原靜態(tài)壓縮過程中高錳鋼內(nèi)部微觀晶體缺陷的變化情況:高錳鋼屬于FCC結(jié)構(gòu),晶體中的滑移系較多,在變形初期晶粒內(nèi)部的滑移系大量啟動,位錯則通過滑移、累積、重排、湮滅等方式在基體中形成大量平直的位錯墻和位錯胞[2],隨著變形的增大,位錯不斷增殖,位錯單個或多個連續(xù)分布或塞積于晶界處,大量塞積的位錯群引起應(yīng)力集中,當(dāng)局部的切應(yīng)力達(dá)到孿晶生成的臨界切應(yīng)力時,高錳鋼開始以孿生的形式進(jìn)行塑性變形.隨著變形量的繼續(xù)增大,孿晶體積分?jǐn)?shù)不斷增大,位錯密度也有所增大,局部區(qū)域?qū)\晶中間出現(xiàn)少量的層錯,孿晶及層錯形成了位錯難以逾越的壁壘,這將導(dǎo)致位錯運(yùn)動的阻力增大.綜上所述,隨著變形量的增大,高錳鋼在壓縮變形過程中加工硬化機(jī)制發(fā)生了改變,由位錯強(qiáng)化機(jī)制逐漸向位錯+少量層錯+形變孿晶機(jī)制轉(zhuǎn)變.
2.4 壓縮變形量對加工硬化能力的影響
硬度是衡量材料軟硬程度的一種指標(biāo),可通過顯微硬度來衡量高錳鋼承受靜態(tài)壓縮載荷后樣品加工硬化的程度.圖5所示是應(yīng)變速率為0.1 s-1,壓縮變形量分別為5%, 30%和50%時的顯微硬度變化曲線,硬度值均由5個點(diǎn)求平均值得到.
從圖中可知經(jīng)壓縮變形后高錳鋼顯微硬度隨變形量的增加近似呈線性增長,水韌態(tài)高錳鋼在壓縮變形量為50%的條件下,其顯微硬度與初始態(tài)的相比提高了125%,達(dá)到HV560.8,由此可知高錳鋼在變形量為50%的條件下加工硬化能力得到充分發(fā)揮.硬化能力受變形量的影響較大,這與高錳鋼在不同壓縮變形量時的微觀硬化機(jī)理不同有關(guān):在變形初期,對應(yīng)的強(qiáng)化機(jī)制為位錯強(qiáng)化,所以高錳鋼硬度增值較小,加工硬化并沒有得到充分發(fā)揮.隨著壓縮變形的繼續(xù)進(jìn)行,晶體內(nèi)應(yīng)力不斷增大,孿晶和層錯不斷形成,其強(qiáng)化機(jī)制為位錯+少量層錯+孿晶,孿晶和層錯對位錯的阻滯作用更強(qiáng),導(dǎo)致一定孿晶內(nèi)部會形成多系孿晶,孿晶系增多與孿晶重復(fù)交割強(qiáng)度加大使得碎化晶粒的尺寸進(jìn)一步減少,起到細(xì)化晶粒的作用,所以材料的硬度不斷增加.
圖4 室溫下應(yīng)變速率為0.1 s-1時不同壓縮變形量下高錳鋼的透射形貌及其電子衍射花樣
應(yīng)變
1)ZGMn13Cr2高錳鋼在恒應(yīng)變速率等溫壓縮時,流變應(yīng)力隨應(yīng)變的增大而增加, 0<ε≤0.05時為彈性變形階段,流變應(yīng)力幾乎呈線性迅速增加;0.05<ε≤0.30時為直線硬化階段,流變應(yīng)力增加的趨勢有所放緩;0.30<ε≤0.50時為拋物線硬化階段.
2)應(yīng)變速率為0.1 s-1時,壓縮量在0%~50%的形變范圍內(nèi)基體為奧氏體和少量碳化物,未發(fā)現(xiàn)相變誘發(fā)馬氏體組織.水韌態(tài)高錳鋼在壓縮變形量為50%的條件下,其顯微硬度與初始態(tài)的相比提高了125%,達(dá)到HV560.8.
3)壓縮變形量為5%時,基體內(nèi)部位錯密度較高,形成了大量平直的位錯墻和位錯胞,對應(yīng)的強(qiáng)化機(jī)制為位錯強(qiáng)化;壓縮變形量為30%時,基體內(nèi)出現(xiàn)形變孿晶;壓縮變形量為50%時,孿晶的密度和體積分?jǐn)?shù)進(jìn)一步增大,強(qiáng)化機(jī)制以形變孿晶強(qiáng)化為主,位錯+少量層錯為輔.
[1] 許云華,陳渝眉,熊建龍,等.沖擊載荷下應(yīng)變誘導(dǎo)高錳鋼表層組織納米化機(jī)制[J].金屬學(xué)報,2001,37(2):165-170.
XU Yun-hua, CHEN Yu-mei, XIONG Jian-long,etal. Mechanism of strain-induced nanocrystallization of Hadfield steel under high energy impact load[J]. Acta Metallrugica Sinica, 2001,37(2):165-170. (In Chinese)
[2] 馮曉勇.高速重?fù)魲l件下高錳鋼表面納米晶的制備及組織性能研究[D].秦皇島:燕山大學(xué)材料科學(xué)與工程學(xué)院,2015:12-19.
FENG Xiao-yong. Investigation on the nanocrystallization microstructure and properties of Hadfield steel induced by high speed pounding[D]. Qinhuangdao: College of Materials Science and Engineering, Yanshan University, 2015:12-19.(In Chinese)
[3] 胡曉艷.高錳鋼爆炸硬化專用炸藥與硬化機(jī)理的研究[D].合肥:中國科學(xué)技術(shù)大學(xué)工程科學(xué)學(xué)院,2014:76-79.
HU Xiao-yan. Explosive and mechanism of explosion hardening of high manganese steel[D]. Hefei: School of Engineering Science,University of Science and Technology of China, 2014:76-79. (In Chinese)
[4] 張維娜,劉振宇,王國棟.高錳TRIP鋼的形變誘導(dǎo)馬氏體相變及加工硬化行為[J].金屬學(xué)報,2010, 46(10):1230-1236.
ZHANG Wei-na, LIU Zhen-yu, WANG Guo-dong. Martensitic transformation induced by deformation and work-hardening behavior of high manganese trip steel[J]. Acta Metallrugica Sinica, 2010, 46(10):1230-1236. (In Chinese)
[5] IDRISSI H, RENARD K, RYELANDT L,etal. On the mechanism of twin formation in Fe-Mn-C TWIP steels[J]. Acta Materialia, 2010, 58(7):2464-2476.
[6] EFSTATHIOU C, SEHITOGLU H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel[J]. Acta Materialia, 2010, 58(5):1479-1488.
[7] WANG T S, HOU R J, LV B,etal. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation[J]. Materials Science & Engineering A, 2007, 465(1):68-71.
[8] IDRISSI H, RENARD K, SCHRYVERS D,etal. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels[J]. Scripta Materialia, 2010, 63(10):961-964.
[9] HUTCHINSON B, RIDLEY N. On dislocation accumulation and work hardening in Hadfield steel[J]. Scripta Materialia, 2006, 55(4):299-302.
[10]IGLESIAS C, SOLRZANO G, SCHULZ B. Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel[J]. Materials Characterization, 2009, 60(9):971-979.
[11]KARAMAN I, SEHITOGLU H, GALL K,etal. Deformation of single crystal Hadfield steel by twinning and slip[J]. Acta Materialia, 2000, 48(6):1345-1359.
[12]張增志.耐磨高錳鋼[M].北京:冶金工業(yè)出版社,2002:111-112.
ZHANG Zeng-zhi. Wear-resistant high manganese steel [M].Beijing: Metallurgical Industry Press, 2002:111-112.(In Chinese)
[13]BAYRAKTAR E, KHALID F A, LEVAILLANG C. Deformation and fracture behaviour of high manganese austenitic steel[J]. Journal of Materials Processing Technology,2004,147:145-154.
[14]祖方遒,李小蘊(yùn),劉蘭俊,等.不同相對沖擊功下高錳鋼組織與加工硬化機(jī)制的研究[J].材料熱處理學(xué)報,2006,27(2):71-74.
ZU Fang-qiu, LI Xiao-yun, LIU Lan-jun,etal. Research on microstructure and work hardening mechanism steel by simulating actual working condition[J]. Transactions of Materials and Heat Treatment, 2006,27(2):71-74. (In Chinese)
[15]項(xiàng)建英,宋仁伯,侯東坡,等.316L不銹鋼加工硬化機(jī)制及孿生行為[J].材料科學(xué)與工藝,2011,19(4):128-133.
XIANG Jian-ying, SONG Ren-bo, HOU Dong-po,etal. Mechanism of work hardening and twinning for 316L stainless steel[J]. Materials Science and Technology,2011,19(4):128-133.(In Chinese)
[16]LEE W S, CHEN T H. Plastic deformation and fracture characteristics of Hadfield steel subjected to high-velocity impact loading[J]. Journal of Mechanical Engineering Science, 2002, 216(10):971-982.
Study on Work Hardening Mechanism of Hadfield Steel during Deformation Process
ZHANG Fu-quan1?, HE Cui1,ZHOU Dian-wu2
(1.College of Materials Science and Engineering, Hunan Univ, Changsha, Hunan 410082,China; 2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan Univ, Changsha, Hunan 410082,China)
Compression test of ZGMn13Cr2 Hadfield steel was carried out by Gleeble-3500 thermal simulator at the deformation temperature of 298 K under a constant loading strain rate of 0.1 s-1and with the compressive deformation of 5%, 30%, and 50%, respectively. The effects of compressive deformations on the microstructure evolution and work hardening mechanism of ZGMn13Cr2 Hadfield steel were analyzed by optical microscope, vickers micro-hardness machine, transmission electron microscopy and X-ray diffraction. The test results show that a large number of deformation bands appeared in the grains of compressed high manganese steels. The deformation bands intersected, tangled and isolated with each other. A great deal of high density dislocation was entangled into dislocation cells or dislocation walls with the compression amount of 5%. Deformation twins appeared in the matrix when the compression amount was 30%. With the increasing of compressive deformation, the amount and volume fraction of the twins increased gradually. When the compression amount was 50%, the micro-hardness of water-quenched high manganese steel increased by 125% compared with the initial state, showing HV560.8. Meanwhile, XRD results show that the matrix structure remained austenite and with a bit of carbide, but no deformation-induced martensites were founded in these deformed samples. With the increasing of compressive deformation, work hardening mechanisms of Hadfield steel changed from dislocation strengthening into mainly relying on deformation twin supplemented by dislocation and stacking fault mechanisms.
Hadfield steel; work-hardening mechanism; compression amounts; microstructure; properties
1674-2974(2016)12-0011-06
2016-03-11 基金項(xiàng)目:湖南省戰(zhàn)略性新興產(chǎn)業(yè)科技攻關(guān)項(xiàng)目(湘財企指(2014)66號) 作者簡介:張福全(1962-),男,湖北大冶人,湖南大學(xué)教授,博士 ?通訊聯(lián)系人,E-mail:zhangfq@hnu.edu.cn
TG145
A