徐曼曼,徐運(yùn)
以缺血性卒中為代表的腦血管疾病是造成全世界人口致殘和致死的主要原因,動(dòng)脈斑塊和管壁的非侵入性體內(nèi)評(píng)估是指導(dǎo)診治的重要內(nèi)容[1]。隨著血管造影技術(shù)的發(fā)展,顱內(nèi)外動(dòng)脈狹窄的檢出率逐漸升高,也逐漸被大家認(rèn)識(shí)[2]。目前,傳統(tǒng)的血管成像方法有數(shù)字減影血管造影術(shù)(digital subtraction angiography,DSA)、計(jì)算機(jī)斷層掃描血管成像(computed tomography angiography,CTA)、磁共振血管成像(magnetic resonance angiography,MRA)等。由于這些血管成像方法的空間分辨率低,而顱內(nèi)動(dòng)脈血管小,位置深[3],僅能顯示顱內(nèi)動(dòng)脈狹窄程度,不能直接顯示病變血管管壁情況,難以確定顱內(nèi)動(dòng)脈狹窄性病變的原因[4]。病理學(xué)研究顯示,血管管壁異常主要包括顱內(nèi)動(dòng)脈粥樣硬化、夾層及煙霧病等。近期,高分辨率磁共振成像(high-resolution magnetic resonance imaging,HR-MRI)血管壁成像(vascular wall imaging,VWI)的出現(xiàn)彌補(bǔ)了傳統(tǒng)血管成像技術(shù)的缺陷,能直接評(píng)價(jià)管壁信息,可呈現(xiàn)出每種顱內(nèi)動(dòng)脈疾病的特征病變,有利于顱內(nèi)動(dòng)脈狹窄的精準(zhǔn)化診療。
1.1 診斷 由于種族和區(qū)域不同,缺血性卒中和顱內(nèi)動(dòng)脈疾病表現(xiàn)出群體性差異。北美白人中ICAS僅引起<10%缺血性卒中[5],但在亞洲人群中可引起50%~60%的卒中[6]。西班牙裔和黑人患者ICAS性卒中的相對(duì)比率是白人的5倍[7]。因此,全世界缺血性卒中最常見的原因可能是ICAS。
頸動(dòng)脈及冠狀動(dòng)脈研究顯示,斑塊位置、不穩(wěn)定斑塊特征及管壁重構(gòu)模式均是患者臨床表現(xiàn)、治療及預(yù)后的重要影響因素。不穩(wěn)定斑塊特征是大的脂質(zhì)核心、薄的纖維帽、新生血管形成等。近期,大腦中動(dòng)脈(middle cerebral artery,MCA)尸檢發(fā)現(xiàn)顱內(nèi)動(dòng)脈易損斑塊在頸動(dòng)脈顱外段中,HRMRI可以區(qū)分斑塊的易損性[8-10]。
1.1.1 斑塊位置 近年來,有學(xué)者用HR-MRI-VWI對(duì)顱內(nèi)動(dòng)脈的斑塊位置及其與臨床癥狀的相關(guān)性進(jìn)行了研究,使醫(yī)學(xué)研究者對(duì)斑塊位置有了進(jìn)一步了解。XU等[11]用VWI對(duì)92例MCA狹窄患者的粥樣斑塊位置進(jìn)行分析,發(fā)現(xiàn)斑塊主要分布于前壁和下壁,明顯多于上壁和后壁(P<0.001);與無癥狀性患者相比,癥狀性MCA狹窄患者斑塊主要位于上壁(P=0.016)。HUANG等[12]對(duì)38例癥狀性基底動(dòng)脈(basilar artery,BA)粥樣硬化患者的斑塊位置進(jìn)行研究,顯示以腹側(cè)斑塊(21.6%)為主(P<0.001)。KIM等[13]還發(fā)現(xiàn)MCA-M1段不同形狀與斑塊位置的相關(guān)性,直線型和U型血管斑塊大多位于上壁,而倒U型和S型血管斑塊多位于下壁,這也提示血管形狀可能是影響動(dòng)脈粥樣硬化斑塊發(fā)生位置的重要因素。
1.1.2 斑塊特征 YUAN等[14]對(duì)頸動(dòng)脈內(nèi)膜剝脫術(shù)患者斑塊進(jìn)行術(shù)前影像與術(shù)后病理對(duì)比分析,發(fā)現(xiàn)多對(duì)比加權(quán)像能更好地識(shí)別斑塊成分。HR-MRI信號(hào)特征與組織病理學(xué)也具有良好的一致性[15],此技術(shù)對(duì)脂質(zhì)核心、纖維帽等斑塊成分的檢測(cè)具有較高敏感性和特異性。在頸動(dòng)脈研究中,以肌肉信號(hào)作為參照,斑塊脂質(zhì)核心在T1加權(quán)成像(T1-weighted imaging,T1WI)序列上為等或高信號(hào),在T2WI上為低至高信號(hào);各序列上纖維帽為等至低信號(hào)。斑塊內(nèi)出血在T1WI上為高信號(hào),在T2WI上為各種信號(hào)強(qiáng)度;鈣化在各序列上均表現(xiàn)為低信號(hào)[15]。在HRMRI上觀察到的ICAS個(gè)案報(bào)告中,脂質(zhì)核在T1WI上為等信號(hào),在T2WI上為低信號(hào);纖維帽在T1WI和T2WI均為等信號(hào);鈣化在T1WI和T2WI為低信號(hào)[16]。
1.1.2.1 斑塊內(nèi)出血(intraplaque hemorrhage,IPH) IPH的診斷對(duì)區(qū)分斑塊易損性、預(yù)測(cè)卒中風(fēng)險(xiǎn)及臨床干預(yù)有重要價(jià)值。HR-MRI能對(duì)新鮮和近期發(fā)生的IPH進(jìn)行辨別,近期(1~6周)IPH在各個(gè)序列上均為高信號(hào),新鮮(<1周)IPH在時(shí)間飛躍序列(time of flight,TOF)及T1WI序列上呈高信號(hào),而在T2WI及質(zhì)子密度加權(quán)成像(proton density weighted imaging,PDWI)序列上呈等或低信號(hào)。XU等[17]發(fā)現(xiàn)有癥狀和無癥狀MCA狹窄患者的IPH的發(fā)生率有顯著性差異(19.6%vs3.2%,P=0.01)。最近,YU等[18]也報(bào)道癥狀性BA狹窄患者的IPH明顯高于無癥狀性患者(80.0%vs48.8%,P<0.01)。IPH在HR-MRI上可檢測(cè)的時(shí)間、最初表現(xiàn)和持續(xù)時(shí)間等都是值得關(guān)注的,有待進(jìn)一步研究。YAMADA等[19]研究證實(shí),對(duì)于存在IPH的頸動(dòng)脈斑塊行支架術(shù)和內(nèi)膜剝脫術(shù)后同側(cè)靜默腦梗死的發(fā)生率有顯著差異(61%vs13%,P=0.006),這一結(jié)果提示HR-MRI成像評(píng)價(jià)斑塊特征對(duì)制定臨床治療策略有一定指導(dǎo)意義。
1.1.2.2 脂質(zhì)核(lipid core,LC) 動(dòng)脈粥樣硬化性斑塊內(nèi)脂質(zhì)核占斑塊總體積40%以上時(shí),稱為大的脂質(zhì)核(large lipid core,LLC)。LLC是易損斑塊的另一個(gè)跡象[20]。頸動(dòng)脈研究證實(shí),HR-MRI上LC的信號(hào)區(qū)與組織病理學(xué)有較好的一致性[21]。同時(shí),在頸動(dòng)脈狹窄患者的研究中顯示,HR-MRI圖像上LLC與卒中事件相關(guān)[20]。目前,文獻(xiàn)中有關(guān)ICAS斑塊內(nèi)脂質(zhì)核心的報(bào)道較少,有待深入研究。
1.1.2.3 纖維帽(fibrous cap,F(xiàn)C) 纖維帽是覆蓋在脂質(zhì)核上的纖維結(jié)締組織。在頸動(dòng)脈狹窄患者中,病理學(xué)標(biāo)本顯示薄的纖維帽是不穩(wěn)定性斑塊的特征。HR-MRI顯示近期發(fā)生卒中的患者的頸動(dòng)脈斑塊厚度有顯著差異,纖維帽破裂(70%)和薄纖維膜(50%)明顯多于厚纖維帽(9%),表明纖維帽狀態(tài)可能也是卒中風(fēng)險(xiǎn)的預(yù)測(cè)因子[10]。盡管已有用HR-MRI觀察到顱內(nèi)動(dòng)脈粥樣硬化性病變(intracranial atherosclerotic disease,ICAD)斑塊纖維帽的報(bào)道[21],但還沒有關(guān)于纖維帽狀態(tài)與卒中之間相關(guān)性的系統(tǒng)性研究。
1.1.2.4 強(qiáng)化 通常認(rèn)為HR-MRI中斑塊強(qiáng)化與斑塊內(nèi)的新生血管及內(nèi)皮細(xì)胞的通透性增加有關(guān)。多數(shù)情況下,動(dòng)脈粥樣硬化斑塊在VWI上具有特征的表現(xiàn)——偏心性管壁增厚和強(qiáng)化[22]。許多研究表明斑塊強(qiáng)化與近期的卒中密切相關(guān),可作為其穩(wěn)定性的標(biāo)志,隨著時(shí)間的推移,癥狀性斑塊強(qiáng)化程度逐漸降低(急性期<4周,亞急性期4~12周,慢性期>12周)。然而,斑塊強(qiáng)化和缺血性卒中之間的關(guān)系可能受諸多因素的影響。雖然已有很多學(xué)者提出斑塊強(qiáng)化提示斑塊為易損斑塊,但依據(jù)仍不充分[23]。
1.2 治療
1.2.1 藥物治療 對(duì)頸動(dòng)脈斑塊給予他汀類藥物后,HR-MRI觀察到管壁面積減小、斑塊負(fù)荷減輕,延緩了疾病的進(jìn)展[24]。但是目前XU等[25]對(duì)1例頸內(nèi)動(dòng)脈顱內(nèi)段狹窄患者強(qiáng)化降脂、抗血小板聚集治療后,HR-MRI顯示斑塊消退。CHUNG等[26]對(duì)136例服用不同劑量的他汀類藥物治療顱內(nèi)動(dòng)脈粥樣硬化性急性卒中患者行HR-MRI檢查,發(fā)現(xiàn)使用他汀藥物患者的斑塊強(qiáng)化的體積顯著降低[非使用者(33.26±40.72),低劑量者(13.15±17.53),高劑量者(3.13±5.26);P=0.002]。這提示在顱內(nèi)動(dòng)脈粥樣硬化中,HR-MRI能夠作為觀察藥物療效的評(píng)價(jià)工具,但需要大樣本數(shù)據(jù)來支持。
1.2.2 介入治療 HR-MRI對(duì)斑塊進(jìn)行全面精確分析定位,有助于對(duì)顱內(nèi)動(dòng)脈狹窄患者行介入治療時(shí)選擇合適的器械及適當(dāng)?shù)牟课唬詼p少并發(fā)癥的出現(xiàn)。SHI等[27]用HR-MRI血管壁成像技術(shù)對(duì)MCA狹窄血管經(jīng)皮腔內(nèi)血管成形術(shù)(percutaneous transluminal angioplasty,PTA)和Wingspan支架植入進(jìn)行評(píng)估,顯示PTA改變了MCA管壁結(jié)構(gòu),導(dǎo)致斑塊不穩(wěn)定,而Wingspan支架植入能恢復(fù)MCA管徑,效果優(yōu)于PTA,這也提示HR-MRI能清晰顯示介入前后管壁及斑塊變化。但病例數(shù)較少,仍需深入探討HR-MRI用于ICAS血管介入治療的潛在價(jià)值。
MMD是一種病因不明的慢性進(jìn)展性腦血管疾病,特征為頸動(dòng)脈末端或其主要分支近端進(jìn)行性狹窄及閉塞或狹窄動(dòng)脈周圍形成異常血管。在東亞人群中,區(qū)分MMD與ICAS有一定挑戰(zhàn)性,MMD和ICAS的發(fā)病率均高,尤其是臨床表現(xiàn)和影像學(xué)特征類似的患者[28]。KIM等[29]報(bào)道,MMD和ICAS在病變血管閉塞段上表現(xiàn)出不同的管壁特征,在T1WI和T2WI圖像上MMD的管壁信號(hào)強(qiáng)度比ICAS的更均勻。RYOO等[30]首次使用HRMRI-VWI比較MMD(32例)和顱內(nèi)動(dòng)脈狹窄患者(16例)的研究中,發(fā)現(xiàn)MMD患者頸內(nèi)動(dòng)脈末端和MCA顯示環(huán)形強(qiáng)化,而ICAS患者在病變血管段呈現(xiàn)出偏心性強(qiáng)化。XU等[31]研究發(fā)現(xiàn)有58例(56.9%)MMD患者在基底節(jié)區(qū)有明顯的深部微流空(deep tiny flow voids,DTFV),而有DTFV的ICAS患者沒有此現(xiàn)象(P<0.001)。此結(jié)果在區(qū)分MMD和ICAS有潛在價(jià)值。MMD通常采用手術(shù)治療使血管再通,而ICAS者采取積極的藥物治療。故HR-MRI-VWI有助于提供管壁特征性信息,以獲取更精確的診斷來指導(dǎo)治療。
由于顱內(nèi)血管內(nèi)皮、內(nèi)膜突然撕裂,受到強(qiáng)有力的血液沖擊,循環(huán)血液流入其間隙導(dǎo)致IAD。IAD的發(fā)病率明顯低于顱外頸動(dòng)脈夾層,因此其相關(guān)研究較少[32]。IAD在亞洲人群中更常見。IAD是青年(即20~50歲)缺血性卒中的重要原因。52%的IAD有缺血癥狀。IAD的常規(guī)放射學(xué)檢查可見內(nèi)膜瓣、雙腔、壁內(nèi)血腫、動(dòng)脈瘤樣擴(kuò)張等。由于顱內(nèi)動(dòng)脈的管徑細(xì)小,走形迂曲,所以IAD的放射學(xué)診斷比較困難。雖然DSA是診斷IAD的金標(biāo)準(zhǔn),但只在少數(shù)病例(30%)中觀察到內(nèi)膜瓣或雙腔等可靠的標(biāo)志性改變。HR-MRI-VWI可檢測(cè)到IAD的病理學(xué)改變。WANG等[33]用VWI對(duì)76例顱內(nèi)椎動(dòng)脈夾層進(jìn)行評(píng)估,顯示61%的患者為壁內(nèi)血腫,50%為雙腔,42%為內(nèi)膜瓣。而TAKANO等[34]用三維HR-MRI技術(shù)檢測(cè)到87.5%的IAD的壁內(nèi)血腫。與二維相比,三維HR-MRI-VWI可以提供較高空間分辨率圖像,以獲取可視化病變。MIZUTANI[35]報(bào)道,83.9%的未破裂IAD在隨后2周至2個(gè)月內(nèi)發(fā)生了形態(tài)變化,其中61.5%表現(xiàn)為管腔的改善,18.3%隨訪造影顯示完全恢復(fù)正常。所以,IAD的HR-MRI結(jié)果會(huì)隨著時(shí)間而變化,我們根據(jù)這些改變做出正確診斷并制定精確的治療方案,以改善患者預(yù)后。
HR-MRI可以同時(shí)顯示顱內(nèi)動(dòng)脈的血管壁和管腔,并且用于評(píng)估各種顱內(nèi)血管病變的形態(tài)特征,來確定顱內(nèi)動(dòng)脈狹窄的原因,識(shí)別卒中機(jī)制,危險(xiǎn)患者分層,指導(dǎo)血管內(nèi)治療和評(píng)估治療反應(yīng),因此具有較好的發(fā)展前景。但目前HR-MRI仍有一定的局限性:其一,取材困難、尸檢數(shù)量有限使得顱內(nèi)動(dòng)脈HR-MRI血管成像缺乏病理學(xué)對(duì)照;其二,由于顱內(nèi)血管管徑小,走行復(fù)雜,影像評(píng)估需要高分辨率和高信噪比,使得HR-MRI掃描成為一個(gè)耗時(shí)的過程。所以未來需要前瞻性研究進(jìn)一步評(píng)估各種顱內(nèi)血管病變的管壁成像特征的預(yù)測(cè)值,揭示影像學(xué)與臨床風(fēng)險(xiǎn)的相關(guān)性,動(dòng)態(tài)跟蹤疾病進(jìn)展和治療效果。
[1] JOHNSTON S C,MENDIS S,MATHERS C D. Global variation in stroke burden and mortality:estimates from monitoring,surveillance,and modelling[J]. Lancet Neurol,2009,8(4):345-354.
[2] DIELEMAN N,VAN DER KOLK A G,ZWANENBURG J J,et al. Imaging intracranial vessel wall pathology with magnetic resonance imaging:current prospects and future directions[J]. Circulation,2014,130(2):192-201.
[3] KAMATH S. Observations on the length and diameter of vessels forming the circle of Willis[J]. J Anat,1981,133(Pt 3):419-423.
[4] BODLE J D,F(xiàn)ELDMANN E,SWARTZ R H,et al. High-resolution magnetic resonance imaging:an emerging tool for evaluating intracranial arterial disease[J]. Stroke,2013,44(1):287-292.
[5] SACCO R L,KARGMAN D E,ZAMANILLO M C.Race-ethnic differences in stroke risk factors among hospitalized patients with cerebral infarction:the Northern Manhattan Stroke Study[J]. Neurology,1995,45(4):659-663.
[6] GORELICK P B,WONG K S,BAE H J,et al. Large artery intracranial occlusive disease:a large worldwide burden but a relatively neglected frontier[J]. Stroke,2008,39(8):2396-2399.
[7] WHITE H,BODEN-ALBALA B,WANG C,et al.Ischemic stroke subtype incidence among whites,blacks,and Hispanics:the Northern Manhattan Study[J].Circulation,2005,111(10):1327-1331.
[8] CHEN X Y,WONG K S,LAM W W,et al. Middle cerebral artery atherosclerosis:histological comparison between plaques associated with and not associated with infarct in a postmortem study[J]. Cerebrovasc Dis,2008,25(1-2):74-80.
[9] YUAN C,MITSUMORI L M,F(xiàn)ERGUSON M S,et al.In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques[J]. Circulation,2001,104(17):2051-2056.
[10] YUAN C,ZHANG S X,POLISSAR N L,et al.Identi fi cation of fi brous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke[J]. Circulation,2002,105(2):181-185.
[11] XU W H,LI M L,GAO S,et al. Plaque distribution of stenotic middle cerebral artery and its clinical relevance[J]. Stroke,2011,42(10):2957-2959.
[12] HUANG B,YANG W Q,LIU X T,et al. Basilar artery atherosclerotic plaques distribution in symptomatic patients:a 3. 0T high-resolution MRI study[J]. Eur J Radiol,2013,82(4):e199-203.
[13] KIM B J,YOON Y,LEE D H,et al. The shape of middle cerebral artery and plaque location:high-resolution MRI fi nding[J]. Int J Stroke,2015,10(6):856-860.
[14] YUAN C,MITSUMORI L M,BEACH K W,et al. Carotid atherosclerotic plaque:noninvasive MR characterization and identi fi cation of vulnerable lesions[J]. Radiology,2001,221(2):285-299.
[15] DEGNAN A J,GALLAGHER G,TENG Z,et al. MR angiography and imaging for the evaluation of middle cerebral artery atherosclerotic disease[J]. AJNR Am J Neuroradiol,2012,33(8):1427-1435.
[16] TURAN T N,RUMBOLDT Z,GRANHOLM A C,et al.Intracranial atherosclerosis:correlation between in-vivo 3T high resolution MRI and pathology[J]. Atherosclerosis,2014,237(2):460-463.
[17] XU W H,LI M L,GAO S,et al. Middle cerebral artery intraplaque hemorrhage:prevalence and clinical relevance[J]. Ann Neurol,2012,71(2):195-198.
[18] YU J H,KWAK H S,CHUNG G H,et al. Association of intraplaque hemorrhage and acute infarction in patients with basilar artery plaque[J]. Stroke,2015,46(10):2768-2772.
[19] YAMADA K,YOSHIMURA S,KAWASAKI M,et al. Embolic complications after carotid artery stenting or carotid endarterectomy are associated with tissue characteristics of carotid plaques evaluated by magnetic resonance imaging[J]. Atherosclerosis,2011,215(2):399-404.
[20] U-KING-IM J M,TANG T Y,PATTERSON A,et al.Characterisation of carotid atheroma in symptomatic and asymptomatic patients using high resolution MRI[J]. J Neurol Neurosurg Psychiatry,2008,79(8):905-912.
[21] SAAM T,F(xiàn)ERGUSON M S,YARNYKH V L,et al.Quantitative evaluation of carotid plaque composition by in vivo MRI[J]. Arterioscler Thromb Vasc Biol,2005,25(1):234-239.
[22] SWARTZ R H,BHUTA S S,F(xiàn)ARB R I,et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrastenhanced MRI[J]. Neurology,2009,72(7):627-634.
[23] RYU C W,JAHNG G H,SHIN H S. Gadolinium enhancement of atherosclerotic plaque in the middle cerebral artery:relation to symptoms and degree of stenosis[J]. AJNR Am J Neuroradiol,2014,35(12):2306-2310.
[24] SAAM T,YUAN C,CHUN B,et al. Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging[J].Atherosclerosis,2007,194(2):e34-42.
[25] XU W H,LI M L,GAO S. Intracranial plaque regression after intensive medical treatments:a high-resolution MRI observation[J]. Ann Transl Med,2014,2(8):82.
[26] CHUNG J W,HWANG J,LEE M J,et al. Previous statin use and high-resolution magnetic resonance imaging characteristics of intracranial atherosclerotic plaque:the intensive statin treatment in acute ischemic stroke patients with intracranial atherosclerosis study[J]. Stroke,2016,47(7):1789-1796.
[27] SHI M,WANG S,ZHOU H,et al. Wingspan stenting of symptomatic middle cerebral artery stenosis and perioperative evaluation using high-resolution 3 Tesla MRI[J]. J Clin Neurosci,2012,19(6):912-914.
[28] YUAN M,LIU Z Q,WANG Z Q,et al. High-resolution MR imaging of the arterial wall in moyamoya disease[J].Neurosci Lett,2015,584:77-82.
[29] KIM J M,JUNG K H,SOHN C H,et al. High-resolution MR technique can distinguish moyamoya disease from atherosclerotic occlusion[J]. Neurology,2013,80(8):775-776.
[30] RYOO S,CHA J,KIM S J,et al. High-resolution magnetic resonance wall imaging fi ndings of Moyamoya disease[J].Stroke,2014,45(8):2457-2460.
[31] XU Y Y,LI M L,GAO S,et al. Non-moyamoya vessel network formation along steno-occlusive middle cerebral artery[J]. Neurology,2016,86(21):1957-1963.
[32] DEBETTE S,COMPTER A,LABEYRIE M A,et al. Epidemiology,pathophysiology,diagnosis,and management of intracranial artery dissection[J]. Lancet Neurol,2015,14(6):640-654.
[33] WANG Y,LOU X,LI Y,et al. Imaging investigation of intracranial arterial dissecting aneurysms by using 3 T high-resolution MRI and DSA:from the interventional neuroradiologists' view[J]. Acta Neurochir (Wien),2014,156(3):515-525.
[34] TAKANO K,YAMASHITA S,TAKEMOTO K,et al.MRI of intracranial vertebral artery dissection:evaluation of intramural haematoma using a black blood,variable- fl ipangle 3D turbo spin-echo sequence[J]. Neuroradiology,2013,55(7):845-851.
[35] MIZUTANI T. Natural course of intracranial arterial dissections[J]. J Neurosurg,2011,114(4):1037-1044.