袁一方顧斌
·綜述·
碳量子點(diǎn)在口腔醫(yī)學(xué)領(lǐng)域的應(yīng)用前景展望*
袁一方顧斌
碳量子點(diǎn)是由碳原子通過(guò)排列組合形成的一類粒徑小于10nm,自帶熒光的納米材料,可透過(guò)細(xì)胞膜進(jìn)入細(xì)胞。碳量子點(diǎn)表面有諸多功能基團(tuán)及化學(xué)鍵,賦予其良好的理化性能和生物相容性;其具備低毒性甚至無(wú)毒性,不會(huì)對(duì)細(xì)胞產(chǎn)生明顯殺傷作用。利用碳量子點(diǎn)此類優(yōu)越性能,可用于細(xì)胞生物成像。碳量子點(diǎn)與某些離子、分子之間可形成化學(xué)鍵或靜電吸附,結(jié)合外源物質(zhì)后其熒光強(qiáng)度發(fā)生變化,從而起到熒光探針的作用,用以檢測(cè)外源物質(zhì)的含量。碳量子點(diǎn)還可與各種藥物結(jié)合,作為藥物載體進(jìn)入細(xì)胞釋放藥物,達(dá)到治療疾病的目的。結(jié)合碳量子點(diǎn)的這些特點(diǎn),可應(yīng)用于口腔醫(yī)學(xué)領(lǐng)域的研究,探索其對(duì)口腔組織各種細(xì)胞增殖、分化、凋亡、遷移等的影響;對(duì)牙科材料、藥物成分進(jìn)行檢測(cè);與化療藥物結(jié)合形成載藥復(fù)合體,應(yīng)用于口腔癌的治療。本文將就碳量子點(diǎn)在口腔醫(yī)學(xué)領(lǐng)域的潛在應(yīng)用作以綜述。
碳量子點(diǎn);熒光性;生物成像;熒光探針;載藥
近年來(lái),納米材料在生物醫(yī)學(xué)領(lǐng)域的應(yīng)用得到廣泛關(guān)注,像石墨烯、量子點(diǎn)、納米管、樹(shù)狀大分子、脂質(zhì)體、納米顆粒等材料,是粒徑小于100nm,由原子或分子通過(guò)排列組合創(chuàng)造出的具有特殊性能的新物質(zhì),自從成功應(yīng)用于微電子、半導(dǎo)體光物理領(lǐng)域后,現(xiàn)在被廣泛應(yīng)用于生物醫(yī)學(xué)研究領(lǐng)域[1-3]。
2004年,美國(guó)科學(xué)家通過(guò)純化電弧放電制備單純碳納米管時(shí),發(fā)現(xiàn)了一種新型熒光納米材料——碳量子點(diǎn)[4]。10多年來(lái),研究人員對(duì)碳量子點(diǎn)的合成工藝、性能及應(yīng)用進(jìn)行了大量的探索研究,發(fā)現(xiàn)這是一類其粒徑小于10nm,自帶熒光,具有良好理化性能的納米材料。
碳量子點(diǎn)的傳統(tǒng)合成方法主要有電弧放電法,激光消融法,電化學(xué)法[5]。這類合成方法存在工藝復(fù)雜,成本高,原料不易獲取,不綠色環(huán)保等缺點(diǎn)。所以探索碳量子點(diǎn)新型合成方法成為研究者們關(guān)注的焦點(diǎn),微波消解法和水熱法得到普遍認(rèn)可。這兩種合成方法具備合成工藝簡(jiǎn)單,成本低,原料無(wú)毒無(wú)害、廉價(jià)易得、綠色環(huán)保的優(yōu)點(diǎn)[6]。所用的原料涉及牛奶、橘汁、蘆薈、柚子皮、雞蛋膜[7-11]等生活中常見(jiàn)的可食用物質(zhì)或葡萄糖、組氨酸、維生素C、葉酸、乙酸[12-16]等容易獲得、無(wú)毒無(wú)害的化學(xué)物質(zhì),將其水溶液加熱或微波消解一定時(shí)間即可制得熒光碳量子點(diǎn)。
碳量子點(diǎn)具備良好的理化性能:體積??;通過(guò)功能化修飾,表面帶有羧基、羥基等化學(xué)基團(tuán),具備很好的親水性和生物相容性;自帶熒光,并具有熒光穩(wěn)定性;細(xì)胞毒性檢測(cè)發(fā)現(xiàn)碳量子點(diǎn)具備低毒性甚至無(wú)毒性,隨著近年來(lái)對(duì)其合成工藝的改進(jìn),更加提高了其生物安全性[17]。目前對(duì)碳量子點(diǎn)的研究主要集中在以下幾個(gè)方面:生物成像,熒光探針,生物醫(yī)學(xué)傳送系統(tǒng)[18]。而其在口腔醫(yī)學(xué)領(lǐng)域的應(yīng)用鮮有報(bào)道,本文將結(jié)合碳量子點(diǎn)在生物醫(yī)學(xué)方面的應(yīng)用,對(duì)其在口腔醫(yī)學(xué)領(lǐng)域的應(yīng)用價(jià)值進(jìn)行展望。
很多量子點(diǎn)材料都具有熒光性,因而被用于生物體內(nèi)或生物體外成像,如CdSe/ZnS量子點(diǎn)以及相關(guān)的芯殼納米粒[19,20]。然而由于這類納米材料中含有重金屬元素,作為潛在的生物危害,使其生物安全性受到質(zhì)疑。碳量子點(diǎn),因其化學(xué)成分簡(jiǎn)單、具有良好的熒光性、生物相容性和低毒性,引起了人們對(duì)其在生物成像方面應(yīng)用的重視。Yaping Sun等[21]首先報(bào)道了碳量子點(diǎn)在生物成像上的作用,隨后,越來(lái)越多的研究證實(shí)了這一點(diǎn)。有研究報(bào)道,以橙汁為原料,用水熱法合成熒光碳量子點(diǎn),用于人骨肉瘤細(xì)胞。碳量子點(diǎn)進(jìn)入腫瘤細(xì)胞,且對(duì)細(xì)胞無(wú)殺傷作用,紫外激發(fā)下可以觀察到綠色的熒光[8]。He Huang等[13]通過(guò)微波消解組氨酸的方法制備熒光碳量子點(diǎn),與人的胚胎腎臟細(xì)胞共同孵育,發(fā)現(xiàn)在細(xì)胞質(zhì)和細(xì)胞核中均可觀察到熒光。將葡萄糖與甘氨酸混合后的水溶液加熱,制備熒光碳量子點(diǎn),用于觀察A549,Sh-y5y和MTEC1細(xì)胞,在共聚焦顯微鏡下可以清晰的看到帶有熒光的細(xì)胞形態(tài)[12]。Jie Zhou等[22]通過(guò)水熱海藻酸鈉制備碳量子點(diǎn),與3T6細(xì)胞共同孵育,可以很好的觀察細(xì)胞對(duì)材料的攝取過(guò)程,相比于有機(jī)染料,避免了對(duì)組織細(xì)胞的損傷,可用于活細(xì)胞成像。以牛奶為原料水熱法合成熒光碳量子點(diǎn),使用人類U87細(xì)胞,細(xì)胞毒性檢測(cè)證明碳量子點(diǎn)無(wú)毒性,材料進(jìn)入細(xì)胞后,細(xì)胞帶有熒光,顯微鏡下可清晰地觀察到細(xì)胞形態(tài),為研究細(xì)胞的增殖、分化、遷移提供了良好的基礎(chǔ)[7]。Thomas等[14]微波消解維生素C,制得的碳量子點(diǎn)與MDCK和HeLa細(xì)胞共同孵育,兩種細(xì)胞均表現(xiàn)出很好的熒光影像。使用檸檬酸和谷胱甘肽為原料,采用微波消解的方法得到碳量子點(diǎn),用以來(lái)觀察MCF-7細(xì)胞,此制備方法熒光產(chǎn)率高,材料表現(xiàn)出良好的水溶性和生物相容性[23]。Weiwei Guan等[15]微波消解葉酸,與神經(jīng)膠質(zhì)瘤細(xì)胞共同孵育,共聚焦顯微鏡下觀察到帶有熒光的細(xì)胞,證明了碳量子點(diǎn)在生物成像方面的作用。
碳量子點(diǎn)表面有較多元素、功能基團(tuán)和化學(xué)鍵,可以與化學(xué)物質(zhì)發(fā)生物理或化學(xué)性鍵合,結(jié)合碳量子點(diǎn)的熒光性能,可用于生物體內(nèi)或生物體外某些元素或化學(xué)物質(zhì)的檢測(cè)。Ali Barati等以酸橙汁為原料,通過(guò)水熱法合成氮化碳量子點(diǎn),探索其在Hg+檢測(cè)上的應(yīng)用。實(shí)驗(yàn)發(fā)現(xiàn),碳量子點(diǎn)與Hg+結(jié)合后熒光強(qiáng)度發(fā)生變化,且隨著溶液中Hg+濃度的增加,熒光強(qiáng)度逐漸減弱,同樣的濃度下,Hg+溶液中熒光強(qiáng)度變化比率明顯高于其他金屬離子溶液,證實(shí)氮化后的碳量子點(diǎn)對(duì)Hg+有很高的敏感性和選擇性,可用于監(jiān)測(cè)湖水樣本中Hg+的含量[24]。Chun Sun等使用大蒜為原材料,將其微波24小時(shí)后的粉末溶于水中,水熱法制備得到氮硫化的碳量子點(diǎn),用于Fe3+的監(jiān)測(cè)。研究發(fā)現(xiàn)碳量子點(diǎn)與Fe3+結(jié)合后熒光發(fā)生變化,且與Fe3+的濃度有關(guān)。碳量子點(diǎn)的親水基團(tuán)與Fe3+結(jié)合,賦予了材料對(duì)Fe3+良好的敏感性,可檢測(cè)到極低濃度的Fe3+,從而應(yīng)用于監(jiān)測(cè)溶液中的Fe3+[25]。用檸檬酸和磷酸氫二鉀混合液微波消解制備碳量子點(diǎn),根據(jù)碳量子點(diǎn)熒光強(qiáng)度的變化可以分析牛奶中四環(huán)素的含量[26];以淀粉為原料,水熱法合成碳量子點(diǎn),可以檢測(cè)溶液中的H2O2含量[6];Hua Xu等將蘆薈搗碎制成水溶液,加熱后制得熒光碳量子點(diǎn),用于監(jiān)測(cè)食品中檸檬黃的含量[9]。Qi Wang等將雞蛋膜微波后的粉末溶于水中加熱得到碳量子點(diǎn),研究發(fā)現(xiàn)碳量子點(diǎn)與Cu2+結(jié)合后熒光明顯減弱,加入含有谷氨酸的溶液中,Cu2+與谷氨酸結(jié)合,從碳量子點(diǎn)上脫落,由于碳量子點(diǎn)具備熒光穩(wěn)定性,可重新發(fā)出熒光,利用此能量轉(zhuǎn)化過(guò)程來(lái)監(jiān)測(cè)溶液中的谷氨酸含量[11]。
化療藥物是治療腫瘤疾病的重要方法之一,然而靜脈給藥在殺傷腫瘤細(xì)胞的同時(shí)也會(huì)殺傷正常細(xì)胞,使得化療藥物存在很嚴(yán)重的毒副作用[27]。因此研制出能夠靶向攻擊腫瘤細(xì)胞并緩釋藥物的載體成為腫瘤疾病治療的研究熱點(diǎn)。新型載藥材料復(fù)合體應(yīng)具備示蹤、載藥、靶向、控釋的特點(diǎn)[28-31]。碳量子點(diǎn)因其良好的熒光性能,可用于載藥釋放過(guò)程的研究,其表面存在的化學(xué)基團(tuán)使其能夠與藥物和腫瘤細(xì)胞的靶向因子通過(guò)靜電吸附相結(jié)合,從而達(dá)到載藥和靶向性的目的;進(jìn)入細(xì)胞后利用pH值的改變破壞藥物與材料之間的靜電結(jié)合,使藥物從材料表面脫落,從而達(dá)到釋放藥物的目的[32]。
碳量子點(diǎn)對(duì)乳腺癌細(xì)胞有識(shí)別作用,可以促進(jìn)腫瘤細(xì)胞的內(nèi)吞攝取過(guò)程,Beibei Wang等[33]以檸檬酸和苯二胺為原料合成碳量子點(diǎn),并通過(guò)物理吸附在碳量子點(diǎn)上負(fù)載阿霉素,利用碳量子點(diǎn)熒光強(qiáng)度的改變觀察其進(jìn)入Hela細(xì)胞和L929細(xì)胞的過(guò)程,并通過(guò)細(xì)胞毒性檢測(cè)發(fā)現(xiàn)負(fù)載阿霉素的碳量子點(diǎn)對(duì)Hela細(xì)胞有更強(qiáng)的殺傷作用。碳量子點(diǎn)不僅具備細(xì)胞成像和輸送藥物的功能,同時(shí)可以直觀地觀察整個(gè)給藥和釋放過(guò)程。具有良好熒光性和生物相容性的碳量子點(diǎn)所構(gòu)成的給藥系統(tǒng),通過(guò)可見(jiàn)的藥物負(fù)載和釋放,有望在腫瘤疾病的化療過(guò)程中達(dá)到最大藥效和最小副作用的目的。Qing Wang等將碳量子點(diǎn)作為siRNA的載體,用于胃癌細(xì)胞的研究,證實(shí)碳量子點(diǎn)可以作為siRNA的載體,攜帶siRNA進(jìn)入腫瘤細(xì)胞,并起到成像作用[34]。Songeun Beack等人以甘油、聚乙二醇、檸檬酸為原料合成了碳量子點(diǎn),在其上負(fù)載抗黑色素瘤藥物Ce6,同時(shí)用透明質(zhì)酸做靶向因子,合成Cdot-Ce6-HA復(fù)合體,體外實(shí)驗(yàn)及動(dòng)物實(shí)驗(yàn)證實(shí)小鼠黑色素瘤細(xì)胞對(duì)載藥復(fù)合體的攝入量明顯多于單純藥物組,載藥復(fù)合體對(duì)黑色素瘤細(xì)胞產(chǎn)生了殺傷作用,熒光檢測(cè)及組織病理切片均表明靶向載藥復(fù)合體具備很好的抗腫瘤效應(yīng)[35]。
關(guān)于納米材料在口腔醫(yī)學(xué)領(lǐng)域應(yīng)用的報(bào)道,多集中在義齒基托、復(fù)合樹(shù)脂、人工骨材料方面[36,37],關(guān)于碳量子點(diǎn)的研究鮮有報(bào)道。相比于其他納米材料,碳量子點(diǎn)合成工藝簡(jiǎn)單,易于獲取;生物安全性高,適宜濃度下不會(huì)對(duì)組織細(xì)胞產(chǎn)生毒害作用;熒光性能穩(wěn)定,不易發(fā)生淬滅,易于存放,有望取代有機(jī)染料;生物相容性好,易進(jìn)入細(xì)胞。
上述研究結(jié)果表明,碳量子點(diǎn)在生物成像方面的作用已經(jīng)得到認(rèn)可,利用其穩(wěn)定的熒光性,可作為生物探針進(jìn)入細(xì)胞觀察細(xì)胞形態(tài),追蹤細(xì)胞的遷移。然而文獻(xiàn)鮮有報(bào)道其這一作用在口腔醫(yī)學(xué)領(lǐng)域的應(yīng)用。目前,口腔組織缺損修復(fù)是口腔疾病研究的重要課題之一,能否誘導(dǎo)干細(xì)胞重新分化為功能性細(xì)胞是研究的熱門[38,39]。利用碳量子點(diǎn)的熒光性能,與口腔相關(guān)細(xì)胞,如牙髓、牙齦、牙周間充質(zhì)干細(xì)胞等共同通孵育,進(jìn)而研究細(xì)胞的增值、分化、凋亡、遷移等過(guò)程,在口腔組織再生領(lǐng)域有很好的應(yīng)用價(jià)值。
材料作為醫(yī)學(xué)的輔助手段,一直以來(lái)都為推動(dòng)醫(yī)學(xué)進(jìn)步作出巨大貢獻(xiàn),口腔醫(yī)學(xué)更是與材料密不可分??衫锰剂孔狱c(diǎn)的相關(guān)特性,監(jiān)測(cè)漱口水、牙膏、生物凝膠、樹(shù)脂、粘接劑等牙科試劑或材料中特殊物質(zhì)的含量,以提高試劑或材料的安全性和有效性。
目前關(guān)于碳量子點(diǎn)載藥治療腫瘤的研究最為熱門,尤其在乳腺癌治療方面。已有報(bào)道證實(shí),碳量子點(diǎn)可以結(jié)合抗腫瘤藥物殺傷Hela細(xì)胞,因而可以推測(cè),碳量子點(diǎn)在口腔醫(yī)學(xué)領(lǐng)域,對(duì)口腔組織來(lái)源的腫瘤細(xì)胞也有很好的研究?jī)r(jià)值??谇活M面部腫瘤的治療方法主要有手術(shù)療法、化學(xué)療法、放射療法等,化療藥物存在諸多缺點(diǎn),例如對(duì)腫瘤組織不敏感,針對(duì)性差,機(jī)體毒副反應(yīng)嚴(yán)重等[40]。碳量子點(diǎn)良好的熒光性可以使藥物的作用途徑變的可見(jiàn),有利于研究藥物的作用機(jī)制;其與不同的化療藥物、腫瘤細(xì)胞靶向因子可通過(guò)靜電吸附結(jié)合,達(dá)到靶向作用,提高對(duì)口腔頜面部腫瘤的針對(duì)性;進(jìn)入細(xì)胞后靜電吸附可因腫瘤細(xì)胞內(nèi)酸性環(huán)境而發(fā)生斷裂,達(dá)到釋放藥物的目的;同時(shí)由于碳量子點(diǎn)體積的優(yōu)越性,可能攜帶藥物直接攻擊細(xì)胞核[41,42],從而提高化療藥物對(duì)口腔頜面部腫瘤的治療效率。
因此,結(jié)合碳量子點(diǎn)的體積優(yōu)越性、自帶熒光、生物相容性好、生物安全性高等特點(diǎn),將碳量子點(diǎn)應(yīng)用于口腔醫(yī)學(xué)領(lǐng)域,用于細(xì)胞成像、化學(xué)物質(zhì)成分檢測(cè)、抗腫瘤藥物載體,是一個(gè)具有創(chuàng)新性和實(shí)用性的研究方向,值得深入研究和探索。
[1]Koo O M,Rubinstein I,Onyuksel H.Role of nanotechnology in targeted drug delivery and imaging:a concise review[J]. Nanomedicine Nanotechnology Biology&Medicine,2005,1 (3):193-212
[2]Mehra N K,Mishra V,Jain N K.Receptor-based targeting of therapeutics[J].Therapeutic Delivery,2013,4(3):369-394
[3]Baker S.Luminescent Carbon Nanodots:Emergent Nanolights[J].Angewandte Chemie International Edition,2010, 49(38):6726-6744
[4]Xu X,Ray R,Gu Y.Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].Journal of the American Chemical Society,2004,126(40): 12736-12737
[5]Wang Y,Hu A.Carbon quantum dots:synthesis,properties and applications[J].Journal of Materials Chemistry C,2014, 2(34):6921-6939
[6]Jahanbakhshi M,Habibi B.A novel and facile synthesis of carbon quantum dots via salep hydrothermal treatment as the silver nanoparticles support:Application to electroanalytical determination of H2O2in fetal bovine serum[J].Biosensors& Bioelectronics,2016,81:143-150
[7]Wang L,Zhou H S.Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application [J].Analytical Chemistry,2014,86(18):8902-8905
[8]Sahu S,Behera B,Maiti T K.Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents[J].Chemical Communications,2012,48(70):8835-8837
[9]Hua X,Yang X,Gu L.Green Synthesisof Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples[J]. Journal of Agricultural&Food Chemistry,2015,63(30): 6707
[10]Lu W,Qin X,Liu S.Economical,Green Synthesis of Fluorescent Carbon Nanoparticles and Their Use as Probes for Sensitive and Selective Detection of Mercury(II)Ions[J].Analytical Chemistry,2012,84(12):5351-5357
[11]Wang Q,Liu X,Zhang L.Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application.Analyst[J].2012,137(22):5392-5397
[12]Du F,Li J,Hua Y,et al.Multicolor Nitrogen-Doped Carbon Dots for Live Cell Imaging[J].Journal of Biomedical Nanotechnology,2015,11(5):780-788
[13]Huang H,Li C,Zhu S.Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications[J].Langmuir the Acs Journal of Surfaces and Colloids, 2014,30(45):13542-13548
[14]Edison T N,Atchudan R,Sethuraman M G.Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications[J].Journal of Photochemistry and Photobiology B:Biology,2016,161:154
[15]Guan W,Wei G,Ling Y.Microwave-assisted polyol synthesis of carbon nitride dots from folic acid for cell imaging [J].International Journal of Nanomedicine,2014,9(Issue 1): 5071-5078
[16]Hou J,Wang L,Zhang P.Facile synthesis of carbon dots in an immiscible system with excitation-independent emission and thermally activated delayed fluorescence[J].Chemical Communications,2015,51(100):17768-17771
[17]Xu Z Q,Lan J Y,Jin J C.Mechanistic studies on the reversible photophysical properties of carbon nanodots at different pH[J].Colloids and Surfaces B:Biointerfaces,2015, 130:207-214
[18]Li H,Kang Z,Liu Y.Carbon nanodots:synthesis,properties and applications[J].Journal of Materials Chemistry, 2012,22(46):24230-24253
[19]Zhang Y,Qin W,Tang H.Efficient assembly of multiwalled carbon nanotube-CdSe/ZnS quantum dot hybrids with high biocompatibility and fluorescence property[J]. Colloids and Surfaces B:Biointerfaces,2011,87(2):346-352 [20]Reiss P,Protière M,Li L.Core/Shell semiconductor nanocrystals.Small[J],2009,5(2):154-221
[21]Sun Y P,Zhou B,Lin Y.Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence[J].Journal of the American Chemical Society,2006,128(24):7756-7767
[22]Zhou J,Deng W,Wang Y.Cationic carbon quantum dots derived from alginate for gene delivery:One-step synthesis and cellular uptake[J].Acta Biomaterialia,2016,42:209-217
[23]Wang Y,Zhuang Q,Ni Y.Facile Microwave-Assisted Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Sulfur-Codoped Carbon Quantum Dots for Cellular Imaging Applications[J],Chemistry.2015,21(37):13004-13011
[24]Barati A,Shamsipur M,Arkan E.Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime:Analytical applications and optimization using response surface methodology[J].Materials Science and Engineering C Materials for Biological Applications,2015,47 (47):325-332
[25]Sun C,Zhang Y,Wang P.Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe3+[J].Nanoscale Research Letters,2016,11(1):110-118
[26]Hou J,Li H,Wang L,et al.Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk[J].Talanta, 2016,146:34-40
[27]Cho H S,Dong Z,Pauletti G M.Fluorescent,Superparamagnetic Nanospheres forDrug Storage,Targeting,and Imaging:A Multifunctional Nanocarrier System for Cancer Diagnosis and Treatment[J].ACS Nano,2010,4(9):5398-5404
[28]Kruse V,Rottey S,Backer O D.Future Cancer Therapy with Molecularly Targeted Therapeutics:Challenges and Strategies [J].Biomolecules&Therapeutics,2011,19(4):371-389
[29]Zong A,Cao H,Wang F.Anticancer polysaccharides from natural resources:A review of recent research[J].Carbohydrate Polymers,2012,90(4):1395-1410
[30]Mora-Huertas C E,Fessi H,Elaissari A.Polymer-based nanocapsules for drug delivery[J].International Journal of Pharmaceutics,2010,385(1-2):113-142
[31]Spyratou E,Makropoulou M,Mourelatou E A.Biophotonic techniques for manipulation and characterization of drug delivery nanosystemsin cancer therapy[J].Cancer Letters,2012, 327(1-2):111-122
[32]Liu Z,Zhang N.pH-Sensitive polymeric micelles for programmable drug and gene delivery[J].Current Pharmaceutical Design,2012,18(23):3442-3451
[33]Wang B,Wang S,Wang Y.Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer[J].Biotechnology Letters,2016, 38(1):191-201
[34]Wang Q,Zhang C,Shen G.Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells[J].Journal of Nanobiotechnology,2014, 12(1):58
[35]Beack S,Kong W H,Jung H S,et al.Photodynamic therapy of melanoma skin cancer using carbon dot-chlorin e6-hyaluronate conjugate[J].Acta Biomaterialia,2015,26:295-305
[36]趙明哲,汲平.納米技術(shù)在口腔修復(fù)領(lǐng)域的應(yīng)用前景及進(jìn)展[J].口腔頜面修復(fù)學(xué)雜志,2008,9(1):76-78
[37]張雅麗,張少峰,楊彥偉,等.納米二氧化硅對(duì)氟硅云母玻璃陶瓷強(qiáng)度的影響[J].中華老年口腔醫(yī)學(xué)雜志,2011,9(4):196-200
[38]劉娜,張博,李芳菲,等.大鼠脂肪間充質(zhì)干細(xì)胞膜片的生物學(xué)特點(diǎn)研究[J].中華老年口腔醫(yī)學(xué)雜志,2013,11(2):54-69
[39]魯莉英,霍娜,劉洪臣.牙齦間充質(zhì)干細(xì)胞的研究進(jìn)展[J].口腔頜面修復(fù)學(xué)雜志,2016(4):249-252
[40]Raj R,Mongia P,Kumar S S,et al.Nanocarriers Based Anticancer Drugs:Current Scenario and Future Perceptions[J]. Current Drug Targets,2016,17(2):206-228
[41]Mora-Huertas C E,Fessi H,Elaissari A.Polymer-based nanocapsules for drug delivery[J].International Journal of Pharmaceutics,2010,385(1-2):113-142
[42]Talevi A,Gantner M E,Ruiz M E.Applications of nanosystems to anticancer drug therapy(Part I.Nanogels,nanospheres,nanocapsules)[J].Recent Pat Anticancer Drug Discov, 2014,9(1):83-98
The application prospect of carbon dots in the field of stomotology
YUAN Yi-fang,GU Bin(Institution:Institution of Stomatology,The General Hospital of China PLA,Beijing 100853,China)
Carbon quantum dots(QDs)are formed by the arrangement of carbon atoms,with a particle diameter of less than 10 nm.CDs display dependent photoluminescence(PL)behavior and can be taken into cells through cytomembrane. There are multiple functional groups and bands on the surface of CDs,which make CDs obtain the excellent physicochemical properties and biocompatibility.CDs show low cytotoxicity and even nontoxicity,exhibiting superior biosecurity.The remarkable characteristics of CDs can be applied in bioimaging.The molecule,ion and other elements can be conjugated to CDs through electrostatic interaction due to the multiple functional groups on the surface of CDs,which would change the PL of CDs.Utilizing this changing progress,CDs show as a probe to detect the content of these substances.What’s more, CDs combine with drugs as a drug delivery system for disease therapy.According to the properties of CDs,researchers can study the impact of this nanomaterial to cell proliferation,differentiation,apoptosis,and migration in oral tissues;detect the component of dental materials and agents;combine chemotherapeutics as drug delivery complexes for oral carcinoma therapy.In this paper,we will discuss the potential application of CDs in the field of stomotology on review.
carbon dots(CDs);photoluminescence(PL);bioimaging;fluorescence probe;drug loading
R782
A
1672-2973(2017)04-0248-05
2017-03-28)
國(guó)家自然科學(xué)基金(項(xiàng)目編號(hào):31670998;51473175)北京市科技新星計(jì)劃(Z141107001814101)
袁一方解放軍總醫(yī)院口腔科碩士生北京100853
顧斌通訊作者解放軍總醫(yī)院口腔科副主任醫(yī)師副教授北京100853