李紅梅,王顯
? 綜述 ?
TLR4/MyD88/NF-κB信號(hào)通路與動(dòng)脈粥樣硬化性心血管疾病的相關(guān)性研究進(jìn)展
李紅梅1,2,王顯1,2
動(dòng)脈粥樣硬化性心血管疾?。ˋSCVD)是近年提出的一個(gè)新概念,包括心、腦及外周血管等疾病,其病因和發(fā)病機(jī)制尚未闡明。目前認(rèn)為ASCVD是一種慢性非特異性炎性疾病,由免疫反應(yīng)介導(dǎo)并與細(xì)胞因子失衡、炎癥細(xì)胞活化等密切相關(guān)[1]。多種原因?qū)е卵軆?nèi)膜增生是動(dòng)脈血管對(duì)各種損傷的一種反應(yīng),也是經(jīng)皮冠狀動(dòng)脈介入術(shù)(PCI)術(shù)后再狹窄的重要標(biāo)志[2,3]。血管平滑肌細(xì)胞(VSMC)被各種損傷刺激激活后,由靜息狀態(tài)轉(zhuǎn)變?yōu)樵鲋潮硇筒⒁菩械絻?nèi)膜下,參與合成各種細(xì)胞外基質(zhì),在內(nèi)膜增生過程中具有重要作用。越來越多的證據(jù)表明各種組織損傷能夠通過誘導(dǎo)先天免疫反應(yīng),激活Toll樣受體4(TLR4),并介導(dǎo)下游信號(hào)傳遞分子髓樣分化因子88(MyD88)進(jìn)行胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo),使NF-κB移位到細(xì)胞核,啟動(dòng)腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)、白細(xì)胞介素-6(IL-6)等炎性細(xì)胞因子的轉(zhuǎn)錄,級(jí)聯(lián)式放大炎癥反應(yīng),誘導(dǎo)血管損傷,最終導(dǎo)致ASCVD的發(fā)生[4-6]。本文就TLR4/MyD88/NF-κB信號(hào)通路在ASCVD中的作用作一綜述。
1.1 TLR4的結(jié)構(gòu)、分布及配體Toll樣受體(TLR)最早在
果蠅胚胎發(fā)育過程中被發(fā)現(xiàn)[7],而TLR4是第一個(gè)進(jìn)行深入研究的哺乳動(dòng)物TLR。TLR4屬于I型跨膜蛋白,由緊密相連的胞外區(qū)、跨膜區(qū)和胞內(nèi)區(qū)3個(gè)部分組成,胞外區(qū)由富含亮氨酸的數(shù)百個(gè)重復(fù)序列構(gòu)成,可識(shí)別配體—病原相關(guān)分子模式,跨膜區(qū)由富含半胱氨酸的結(jié)構(gòu)域組成,可將信號(hào)轉(zhuǎn)導(dǎo)入細(xì)胞,胞內(nèi)區(qū)則與白介素1受體1的結(jié)構(gòu)相似,含有Toll同源結(jié)構(gòu)域和不同長(zhǎng)短梭基端的短尾肽,在介導(dǎo)信號(hào)通路活化過程中發(fā)揮重要作用[8]。TLR4在除B細(xì)胞、T細(xì)胞、自然殺傷細(xì)胞以外的免疫細(xì)胞及心肌細(xì)胞、微血管內(nèi)皮細(xì)胞、巨噬細(xì)胞、平滑肌細(xì)胞、脂肪細(xì)胞、中性粒細(xì)胞等中均有分布,其配體涵蓋熱休克蛋白60、脂多糖(LPS)、類脂A和纖維蛋白原等,不同配體結(jié)合可產(chǎn)生不同生物學(xué)效應(yīng)[9]。
1.2 TLR4的生物學(xué)活性及在ASCVD病程進(jìn)展中的作用目
前認(rèn)為ASCVD雖然與血漿脂質(zhì)增加有關(guān),但更多的是與斑塊不同形成階段所伴隨的炎癥和免疫反應(yīng)相關(guān)。越來越多的證據(jù)指向同一個(gè)重要角色——TLR4,TLR4在ASCVD的起始、進(jìn)展、斑塊不穩(wěn)定乃至破裂等不同時(shí)期均發(fā)揮著重要作用,其介導(dǎo)的信號(hào)通路已成為研究ASCVD發(fā)病機(jī)制的
新靶點(diǎn)。TLR4是介導(dǎo)免疫炎癥反應(yīng)的主要模式識(shí)別受體之一,當(dāng)病原體入侵或損傷部位存在內(nèi)源性配體,如氧化低密度脂蛋白(ox-LDL)時(shí),TLR4通路即被活化,激活NF-κB,釋放大量炎癥因子,誘導(dǎo)單核/巨噬細(xì)胞在內(nèi)膜下聚集、促使平滑肌細(xì)胞增殖遷移并激活蛋白酶聯(lián)反應(yīng),導(dǎo)致彈性蛋白、基質(zhì)蛋白及膠原蛋白降解,加之持續(xù)的炎癥反應(yīng),使動(dòng)脈壁變薄,不穩(wěn)定性增加,最終引起斑塊破裂、血栓形成而出現(xiàn)急性心血管事件。有研究圍繞激活TLR4的兩種活性氧化脂質(zhì)展開,即氧化低密度脂蛋白27(27-OH)和醛4-羥基壬烯酸(HNE),兩者都在動(dòng)脈粥樣硬化(AS)斑塊和AS的發(fā)病過程中起到重要作用,其機(jī)制可能與持續(xù)釋放的炎癥因子激活巨噬細(xì)胞TLR4及其NF-κB下游信號(hào),導(dǎo)致斑塊不穩(wěn)定和破裂有關(guān)[10]。多項(xiàng)研究發(fā)現(xiàn)[11-14],TLR4信號(hào)通路激活后可合成大量白介素家族的炎癥因子, 且這些因子均被證實(shí)與AS密切相關(guān),可直接促使平滑肌細(xì)胞增生,加速冠狀動(dòng)脈粥樣硬化炎癥過程?;A(chǔ)研究發(fā)現(xiàn),應(yīng)用TLR4配體刺激AS小鼠,可使小鼠頸動(dòng)脈斑塊面積增加,大量炎性細(xì)胞浸潤(rùn)在不穩(wěn)定斑塊纖維帽部位,提示激動(dòng)TLR4可刺激斑塊形成,且TLR4與血管炎癥和血管重構(gòu)有關(guān),參與易損斑塊的形成和發(fā)展[15]。
2.1 MyD88的生物學(xué)性狀MyD88是含有TLR結(jié)構(gòu)域的接頭蛋白,屬于TLR信號(hào)通路中的下游信號(hào)分子,主要在腎、肝、脾、肌肉組織等多種非髓樣組織中表達(dá),也常分布在胸腺細(xì)胞、單核細(xì)胞等免疫細(xì)胞中,具有重要的生物學(xué)作用[16]。MyD88有3個(gè)功能結(jié)構(gòu)域,即N端死亡區(qū)(DD)、中間區(qū)及C端的Toll區(qū),其中DD區(qū)是信號(hào)轉(zhuǎn)導(dǎo)接頭分子相互作用的核心結(jié)構(gòu),DD區(qū)和中間區(qū)共同被表達(dá)后可與白細(xì)胞介素-1受體相關(guān)激酶(IRAK)結(jié)合并引發(fā)其自磷酸化,繼而迅速激活下游NF-κB分子,促使炎性細(xì)胞因子的合成和釋放,終致炎癥反應(yīng)的發(fā)生[17,18]。
2.2 TLR4/MyD88信號(hào)通路與ASCVD的相關(guān)性隨著研究的深入,我們發(fā)現(xiàn)AS是一種炎癥反應(yīng)過程,貫穿AS病變?nèi)?,Toll樣受體尤其是TLR4作為經(jīng)典的炎癥反應(yīng)通路跨膜信號(hào)轉(zhuǎn)導(dǎo)受體,在AS過程中起到關(guān)鍵作用。由TLR4介導(dǎo)的信號(hào)通路包括MyD88依賴性和非依賴性途徑。MyD88依賴途徑主要通過TIR區(qū)域向胞內(nèi)進(jìn)行信號(hào)傳遞,激活c-Jun氨基端蛋白激酶(JNK)和NF-κB等轉(zhuǎn)錄因子,促發(fā)炎性細(xì)胞和化學(xué)因子釋放。MyD88非依賴途徑則通過部分TIR區(qū)域分別與MyD88銜接子樣蛋白進(jìn)行交互作用,最終激活NF-κB而引發(fā)炎癥反應(yīng)[19]。研究發(fā)現(xiàn)[20],AS早期血管平滑肌細(xì)胞遷移至內(nèi)膜下轉(zhuǎn)變?yōu)榕菽?xì)胞過程中,可在中層平滑肌細(xì)胞中檢測(cè)到表達(dá)上調(diào)的TLR4及MyD88分子,而管腔內(nèi)持續(xù)的炎癥反應(yīng)又可促使膠原進(jìn)一步暴露,引起動(dòng)脈內(nèi)膜結(jié)構(gòu)改變,大幅度加快易損斑塊形成。新近有學(xué)者對(duì)MyD88與動(dòng)脈粥樣硬化之間的相互關(guān)系做了部分前期工作,發(fā)現(xiàn)高脂飼養(yǎng)的MyD88基因敲除小鼠動(dòng)脈粥樣硬化發(fā)展速度明顯減慢,TLR4/MyD88通路失去活性,化學(xué)因子水平減低,對(duì)巨噬細(xì)胞募集力減弱,可有效抑制AS進(jìn)程[21]。現(xiàn)有研究已明確,急性心血管事件的發(fā)生與斑塊的易損性有著密切聯(lián)系,斑塊的形成與發(fā)展是炎癥反應(yīng)進(jìn)展的結(jié)果,炎性細(xì)胞聚集產(chǎn)生基質(zhì)降解酶,促發(fā)斑塊內(nèi)血管新生并改變局部斑塊結(jié)構(gòu),使其不穩(wěn)定性增加而易于破裂。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),Apo-E基因敲除小鼠合并TLR4基因缺陷,可對(duì)斑塊的組成產(chǎn)生直接影響,使斑塊中脂質(zhì)和巨噬細(xì)胞成分降低,抑制促炎因子表達(dá),維持斑塊穩(wěn)定性[22,23]。有學(xué)者研究發(fā)現(xiàn),缺陷型MyD88模型鼠血管粥樣斑塊的局部炎癥反應(yīng)較正常小鼠為輕,下游TNF-α的表達(dá)量減少,血管內(nèi)皮完整性及斑塊穩(wěn)定性更好[24]。由此可見,TLR4/MyD88信號(hào)通路在ASCVD發(fā)生發(fā)展的多個(gè)環(huán)節(jié)起到關(guān)鍵作用,切斷此通路對(duì)維持斑塊穩(wěn)定性至關(guān)重要,找出此通路特定靶點(diǎn)進(jìn)行干預(yù),或許可為防治ASCVD提供有效策略。
3.1 NF-κB的結(jié)構(gòu)與功能NF-κB是一種首先在成熟B細(xì)胞和漿細(xì)胞中發(fā)現(xiàn)的特殊蛋白,其轉(zhuǎn)錄因子由Rel/NF-κB家族的多肽成員組成,廣泛存在于人體的組織細(xì)胞中,其激活后以血管壁炎癥為主要特征,在AS中扮演了非常重要的角色,為ASCVD發(fā)病的始動(dòng)機(jī)制之一[25,26]。NF-κB通過不同的二聚體形式對(duì)不同靶基因進(jìn)行精細(xì)的表達(dá)調(diào)控,其中發(fā)揮主要生理作用的二聚體是NF-κB p65和p50組成的異源二聚體。NF-κB在ASCVD病變過程中通過精細(xì)調(diào)控血管平滑肌細(xì)胞、內(nèi)皮細(xì)胞、巨噬細(xì)胞,靜息狀態(tài)下,NF-κB與抑制蛋白IKB結(jié)合成無活性狀態(tài)的三聚體存在于細(xì)胞質(zhì)中,當(dāng)受到細(xì)胞外刺激信號(hào)后,NF-κB誘導(dǎo)激酶被激活發(fā)生磷酸化,暴露出核定位位點(diǎn),使激活后的NF-κB轉(zhuǎn)移至細(xì)胞核中,大量分泌炎癥因子及趨化因子,造成局部血管脂質(zhì)沉積,快速促發(fā)平滑肌細(xì)胞增殖遷移,單核細(xì)胞聚集,細(xì)胞大量凋亡、泡沫細(xì)胞形成,直接影響斑塊穩(wěn)定性[27,28]。
3.2 NF-κB在AS進(jìn)展中的作用研究發(fā)現(xiàn)[29],NF-κB信號(hào)通路的異常激活與AS發(fā)生發(fā)展密切相關(guān)。在AS病變?cè)缙?,ox-LDL在血管內(nèi)皮沉積,導(dǎo)致局部炎性反應(yīng)及內(nèi)皮細(xì)胞黏附因子表達(dá),而這些因子的表達(dá),主要由NF-κB的基因調(diào)控完成[30]。隨后在AS病變進(jìn)展中,NF-κB調(diào)控單核和平滑肌細(xì)胞遷移分化為泡沫細(xì)胞并大量釋放IL-1β,TNFα,IL-6,白細(xì)胞介素-12(IL-12)和IFNγ等炎癥因子,加劇斑塊局部炎癥反應(yīng)[31,32]。有實(shí)驗(yàn)研究發(fā)現(xiàn)[33],通過高脂喂養(yǎng)的AS模型小鼠在AS形成過程中存在IKK介導(dǎo)的內(nèi)皮細(xì)胞內(nèi)NF-κB信號(hào)通路激活。此外,細(xì)胞內(nèi)基質(zhì)降解在AS斑塊的形成和失穩(wěn)定中起到重要作用,核心因子基質(zhì)金屬蛋白酶與組織中的NF-κB存在協(xié)同作用,共同破壞血管基底膜,加速AS的發(fā)生及粥樣硬化斑塊的不穩(wěn)定[34]。
3.3 NF-κB與易損斑塊形成目前已在多項(xiàng)實(shí)驗(yàn)研究中證實(shí)易損斑塊中NF-κB表達(dá)增強(qiáng),研究發(fā)現(xiàn),NF-κB可通過調(diào)節(jié)P-選擇素、E-選擇素、ICAM-1、VCAM-1等黏附因子,促進(jìn)已遷移入病灶的單核細(xì)胞向內(nèi)皮移行,增強(qiáng)淋巴細(xì)胞與單核細(xì)胞間的相互作用,介導(dǎo)更多細(xì)胞形成泡沫細(xì)胞并進(jìn)入斑塊內(nèi),形成大的脂質(zhì)核心,加劇斑塊易損性[35,36]。這與臨床研究中得到的結(jié)論相一致,有研究報(bào)道不穩(wěn)定心絞痛患者NF-κB表達(dá)顯著增強(qiáng),其誘發(fā)因素與ox-LDL直接相關(guān),其變化趨勢(shì)與C反應(yīng)蛋白(CRP)的改變相同[37]。另有研究發(fā)現(xiàn),CRP可擴(kuò)大NF-κB激活后產(chǎn)生的炎癥反應(yīng)及斑塊易損性,此病理變化在ACS中最為突出,且研究證實(shí)NF-κB的激活發(fā)生在ACS事件之前,嚴(yán)重影響轉(zhuǎn)歸,推測(cè)NF-κB活化導(dǎo)致易損斑塊破裂繼發(fā)急性血栓形成是ACS發(fā)病重要機(jī)制之一[38]。
研究證實(shí)NF-κB通過TLR4參與ASCVD的發(fā)生和發(fā)展,TLR4的信號(hào)傳導(dǎo)途徑最終都能夠激活NF-κB來完成炎癥反應(yīng)和趨化因子釋放以及內(nèi)皮細(xì)胞黏附因子的表達(dá),當(dāng)ox-LDL內(nèi)源性配體侵入血管內(nèi)皮細(xì)胞時(shí),TLR4通路即被活化,啟動(dòng)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo),通過中間關(guān)鍵分子MyD88而最終激活NF-κB,誘導(dǎo)單核/巨噬細(xì)胞在內(nèi)膜下聚集移行,攝取大量脂質(zhì)轉(zhuǎn)化為泡沫細(xì)胞,泡沫細(xì)胞崩解形成脂質(zhì)斑塊。此外,多種TLRs的配體PAMP在誘發(fā)炎癥反應(yīng)的同時(shí)尚能誘導(dǎo)細(xì)胞自噬的發(fā)生,TLR4即可通過IFN誘導(dǎo)MyD88活化從而激活細(xì)胞自噬。AS早期的細(xì)胞自噬能減少泡沫細(xì)胞的積聚,抑制斑塊的形成和發(fā)展,而在AS中晚期,血管平滑肌細(xì)胞的自噬則可促進(jìn)斑塊纖維帽變薄,使斑塊向不穩(wěn)定方向發(fā)展。綜上所述,TLR4/MyD88/NF-κB信號(hào)通路在ASCVD發(fā)生發(fā)展過程中發(fā)揮著重要作用,通過誘導(dǎo)免疫細(xì)胞的浸潤(rùn)和活化、促進(jìn)脂質(zhì)核心形成、降低纖維帽厚度等方式增加斑塊易損性并最終誘發(fā)斑塊破裂,造成臨床急性心血管事件的發(fā)生。
TLR4/MyD88/NF-κB信號(hào)通路與機(jī)體的免疫炎癥反應(yīng)關(guān)系密切,參與了ASCVD的發(fā)生發(fā)展,不論是其上游的TLR4、MyD88、NF-κB等關(guān)鍵分子,還是其下游產(chǎn)物IL-1、IL-6、TNF-α等,在ACS發(fā)生過程中皆有明顯升高,可見此通路與ASCVD之間具有密切的相關(guān)性,其關(guān)鍵分子和蛋白不僅可作為ASCVD的危險(xiǎn)度預(yù)警因子,也可作為心血管事件發(fā)生的治療和預(yù)后評(píng)價(jià)指標(biāo)。近年來,各學(xué)者通過基因敲除、基因沉默和蛋白通道化學(xué)阻斷劑阻斷TLR4/MyD88/NF-κB信號(hào)通路等方法在分子水平、細(xì)胞水平及動(dòng)物整體水平對(duì)ASCVD發(fā)生發(fā)展過程的研究取得了很大進(jìn)展,但深入的機(jī)制研究和基因靶向干預(yù)藥物研發(fā)仍然是目前亟待解決的難題。我們期待有更多對(duì)TLR4/MyD88/NF-κB信號(hào)通路的深入研究,以便進(jìn)一步明確其分子機(jī)制,為治療ASCVD及靶向藥物的研發(fā)提供新的思路和干預(yù)靶點(diǎn)。
[1] Brown WV,Remaley AT,Ridker PM. JCL Roundtable: is inflammation a future target in preventing arteriosclerotic cardiovascular disease[J].J Clin Lipidol, 2015,9(2):119-28.
[2] Liu N,Liu JT,Ji YY,et al. C-reactive protein triggers inflammatory responses partly via TLR4/IRF3/NF-κB signaling pathway in rat vascular smooth muscle cells[J]. Life Sci,2010,87(11-12):367-3,74.
[3] Park S,Yoon SJ,Tae HJ,et al. RAGE and cardiovascula disease[J].Front Biosci,2011,16:486-97.
[4] Maslinska D,Laure-Kamionowska M,Maslinska S. Toll-like receptors as an innate immunity bridge to neuroinflammation in medulloblastoma[J]. Folia Neuropathol,2012,50(4):375-81.
[5] Prakash P,Kulkarni PP,Lentz SR,et al. Cellular fibronectin containing extra domain A promotes arterial thrombosis in mice through platelet Toll-like receptor[J]. Blood,2015,125(20):3164-72.
[6] Kim YK,Shin JS,Nahm MH. NOD-Like Receptors in Infection,Immunity, and Diseases[J]. Yonsei Med J,2016,57(1):5-14.
[7] Carl Hashimoto,Hudson,Kathryn V. The Toll gene of drosophila,required for dorsal-ventral embryonic polarity,appears to encode a transmembrane protein[J]. Cell,1988,52(2):269-79.
[8] Frey H,Schroeder N,Manon-Jensen T,et al. Biological interplay between proteoglycans and their innate immune receptors in inflammation[J]. FEBS J,2013,280(10):2165-79.
[9] Rocha DM,Caldas AP,Oliveira LL,et al. Saturated fatty acids trigger TLR4-mediated inflammatory response[J].Atherosclerosis,2016, 244:211-5.
[10] Gargiulo S,Gamba P,Testa G,et al. Relation between TLR4/NF-κB signaling pathway activation by 27-hydroxycholesterol and 4-hydroxynonenal, and atherosclerotic plaque instability[J]. Aging Cell,2015,14(4):569-81.
[12] Asdonk T,Steinmetz M,Krogmann A,et al. MDA-5 activation by cytoplasmic double-stranded RNA impairs endothelial function and aggravates atherosclerosis[J]. J Cell Mol Med,2016,29.
[13] Menghini R,Campia U,Tesauro M,et al. Toll-like receptor 4 mediates endothelial cell activation through NF-κB but is not associated with endothelial dysfunction in patients with rheumatoid arthritis[J]. Plos one,2014,9:1-9.
[14] Han L,Zhang M,Wang M,et al. High Mobility Group Box-1 Promotes Inflammation-Induced Lymphangiogenesis via Toll-Like Receptor 4-Dependent Signalling Pathway[J]. Plos one,2016,11(4):e0154187.
[15] Sun JY,Li DL,Dong Y,et al. Baicalin inhibits toll-like receptor 2/4 expression and downstream signaling in rat experimental periodontitis[J]. Int Immunopharmacol,2016,21(36):86-93.
[16] Naro C,Sette C. Dissecting a Hub for Immune Response:Modeling the Structure of MyD88[J]. Structure,2016,24(3):349-51.
[17] Xu T,Wang Y,Li J,et al. Comparative genomic evidence for duplication of TLR1 subfamily and miiuy croaker TLR1 perceives LPS stimulation via MyD88 and TIRAP[J]. Fish Shellfish Immunol,2016,16(56):336-48.
[18] Sindhu S,Al-Roub A,Koshy M,et al. Palmitate-Induced MMP-9 Expression in the Human Monocytic Cells is Mediated through the TLR4-MyD88 Dependent Mechanism[J]. Cell Physiol Biochem,2016,39(3):889-900.
[19] Yayi H,Yeda X,Huaxin W,et al. Toll-like receptor 7 involves the injury in acute kidney ischemia/reperfusion of STZ-induced diabetic rats[J]. Acta Cir Bras,2016,1(7):448-55.
[20] Stoll LL,Denning GM,Li WG,et al. Regulation of endotoxin-induced pro-inflammatory activation in human coronary artery cells:expression of functional membrane-bound CD14 by human coronary artery smooth muscle cells[J]. J Immunol,2004,173(2):1336-43.
[21] Jun Wei,Xuelan Huang,Zhaobo Zhang,et al. MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells[J]. Molecular Immunology,2013,55(4):303-9.
[22] Miry Blich,Amnon Golan,Gil Arvatz,et al. Macrophages activation by heparanase is mediated by TLR-2and TLR-4 and associates with plaque progression[J]. Arterioscler Thromb Vasc Biol,2013,33(2):e56-e65.
[23] Norata GD,Garlaschelli K,Ongari M,et al. Effect of the Tolllike receptor 4 (TLR-4) variants on intima-media thickness and monocyte-derived macrophage response to LPS[J]. Journal of Internal Medicine,2005,258(1):21-7.
[24] Yan H,Ma Y,Li Y,et al. Insulin inhibits inflammation and promotes atherosclerotic plaque stability via PI3K-Akt pathway activation[J].Immunol Lett, 2016,170(8):7-14.
[25] Alexander Awgulewitsch,Mark W. Majesky.Interpreting Inflammation:Smooth Muscle Positional Identity and NF-kB Signaling[J].Arterioscler Thromb Vasc Biol, 2013,33(6):1113-5.
[26] F Liao,A Andalibi,F C deBeer,et al. Genetic control of inflammatory gene induction and NF-kappa B-like transcription factor activation in response to an atherogenic diet in mice[J]. J Clin Invest,1993,91(6):2572-9.
[27] Landry DB,Couper LL,Bryant SR,et al. Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1[J]. Am J Pathol,1997,151(4):1085-95.
[28] Luciana L. Molinero,Maria-Luisa Alegre. Role of T cell-NF-κB in Transplantation[J]. Transplant Rev (Orlando),2012,26(3):189-200.
[29] Orr AW,Hahn C,Blackman BR,et al. PAK signaling regulates oxidant-dependent NF-κB activation by flow[J]. Circ Res,2008,103(6):671-9.
[30] Chih-Pei Lin,Po-Hsun Huang,Chung Fang Lai,et al. Simvastatin Attenuates Oxidative Stress, NF-κB Activation, and Artery Calcification in LDLR-/- Mice Fed with High Fat Diet via Downregulation of Tumor Necrosis Factor-α and TNF Receptor[J]. Plos One,2015,10(12):e0143686.
[31] Changchun Cao,Yifan Zhu,Wen Chen,et al. IKKε Knockout Prevents High Fat Diet Induced Arterial Atherosclerosis and NF-κB Signaling in Mice[J]. Plos One,2013,8(5):e64930.
[32] Hui Zhai,Qing-Jie Chen,Xiao-Ming Gao,et al. Inhibition of the NF-κB pathway by R65 ribozyme gene via adeno-associatedvirus serotype 9 ameliorated oxidized LDL induced human umbilical vein endothelial cell injury[J]. Int J Clin Exp Pathol,2015,8(9):9912-21.
[33] Gareus R,Kotsaki E,Xanthoulea S,et al. Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis[J]. Cell Metabo lism,2008,8(5):372-83.
[34] A. Wayne Orr,John M. Sanders,Melissa Bevard,et al. The subendothelial extracellular matrix modulates NF-κB activation by flow:a potential role in atherosclerosis[J]. J Cell Biol,2005,169(1):191-202.
[35] Hongya Liu,Kai Chen,Wenqiang Feng,et al. TLR4-MyD88/Mal-NF-kB Axis Is Involved in Infection of HSV-2 in Human Cervical Epithelial Cells[J]. Plos One, 2013,8(11):e80327.
[36] Burton MA,Nilank CS,Gatha JS,et al. Short-term Mg deficiency upregulates protein kinase C isoforms in cardiovascular tissues and cells; relation to NF-kB, cytokines, ceramide salvage sphingolipid pathway and PKC-zeta:hypothesis and review[J]. Int J Clin Exp Med,2014,7(1):1-21.
[37] Li JJ,Fang CH,Chen MZ,et al. Activation of nuclear factor-kB and correlation with elevated plasma c-reactive protein in patients with unstable angina[J]. Heart Lung Circ,2004,13(2):173-8.
[38] Liuzzo G,Santamaria M,Biasucci LM,et al. Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of Creactive protein[J]. J Am Coll Cardiol,2007,49(2):185-94.
本文編輯:孫竹
R543.5 【文獻(xiàn)標(biāo)志碼】 A 【文獻(xiàn)標(biāo)志碼】1674-4055(2017)09-1132-03
國(guó)家自然基金課題(81473519);北京中醫(yī)藥大學(xué)重點(diǎn)學(xué)科開放課題(2013-ZDXKKF-27)
1100700 北京,北京中醫(yī)藥大學(xué)東直門醫(yī)院;2100700北京,北京中醫(yī)藥大學(xué)心血管病研究所
王顯,E-mail:wx650515@163.com
10.3969/j.issn.1674-4055.2017.09.33