王貝貝,釋 凱,劉建新,劉紅云
(浙江大學(xué)動(dòng)物科學(xué)學(xué)院,浙江杭州 310058)
干奶期熱應(yīng)激對(duì)奶牛新生犢牛機(jī)體健康及頭胎母牛繁殖與產(chǎn)奶性能的影響
王貝貝,釋 凱,劉建新,劉紅云*
(浙江大學(xué)動(dòng)物科學(xué)學(xué)院,浙江杭州 310058)
干奶期是奶牛生產(chǎn)中的關(guān)鍵階段,該時(shí)期熱應(yīng)激可影響奶牛新生犢牛的機(jī)體健康及育成后頭胎母牛的生產(chǎn)性能。本文圍繞新生犢牛生長(zhǎng)、免疫、糖代謝及頭胎母牛繁殖與產(chǎn)奶性能等5個(gè)方面,綜述了干奶期熱應(yīng)激對(duì)奶牛新生犢牛機(jī)體健康及頭胎母牛繁殖與產(chǎn)奶性能的影響,旨在為熱應(yīng)激干奶牛的管理提供指導(dǎo),最終為奶牛場(chǎng)高效生產(chǎn)管理提供理論依據(jù)。
熱應(yīng)激;奶牛;干奶期;犢牛;頭胎母牛
熱應(yīng)激是動(dòng)物對(duì)高溫環(huán)境所產(chǎn)生的非特異性應(yīng)答反應(yīng)的總和,據(jù)研究,當(dāng)環(huán)境溫度超過(guò)25℃或溫濕指數(shù)(THI)超過(guò)72時(shí),奶牛處于熱應(yīng)激狀態(tài)[1]。熱應(yīng)激可增加奶牛的直腸溫度和呼吸頻率,并延長(zhǎng)其站立時(shí)間[2]。同時(shí),熱應(yīng)激可影響奶牛的免疫力、繁殖及產(chǎn)奶性能[3]。干奶期是指在母牛妊娠最后2個(gè)月采用人為方法使其停止產(chǎn)奶的時(shí)期,是奶牛生產(chǎn)中的關(guān)鍵階段[4]。胎兒在干奶期快速發(fā)育,該時(shí)期胎兒的體重增加占其初生重的70%~80%[5],此時(shí)奶牛熱應(yīng)激可影響胎兒在子宮內(nèi)的發(fā)育。干奶期也是乳腺細(xì)胞快速更新的時(shí)期,該時(shí)期奶牛熱應(yīng)激可影響乳腺發(fā)育進(jìn)而影響下一泌乳周期的產(chǎn)奶量[6]。另外,在分娩前后21 d的圍產(chǎn)期,奶牛需要經(jīng)歷妊娠、分娩、泌乳及日糧結(jié)構(gòu)改變等系列變化,此階段奶牛熱應(yīng)激容易導(dǎo)致其免疫功能紊亂及能量負(fù)平衡[7]。最近研究發(fā)現(xiàn),干奶期熱應(yīng)激還可影響奶牛新生犢牛的機(jī)體健康及育成后頭胎母牛(下文簡(jiǎn)稱(chēng)頭胎母牛)的生產(chǎn)性能,而犢牛及頭胎母牛是優(yōu)質(zhì)奶牛群發(fā)展的基礎(chǔ)[8]。因此,本文圍繞干奶期熱應(yīng)激對(duì)奶牛新生犢牛機(jī)體健康及頭胎母牛繁殖與產(chǎn)奶性能影響的相關(guān)研究進(jìn)行綜述,旨在闡明干奶期熱應(yīng)激對(duì)奶牛新生犢牛及頭胎母牛的危害,為熱應(yīng)激干奶牛的管理提供指導(dǎo),最終為奶牛場(chǎng)高效生產(chǎn)管理提供理論依據(jù)。
1.1 對(duì)新生犢牛初生重的影響 大量研究表明,干奶期熱應(yīng)激影響奶牛新生犢牛的初生重。與干奶期配備降溫設(shè)備(配備灑水裝置和風(fēng)扇,THI>72,下文簡(jiǎn)稱(chēng)CL)的奶牛所產(chǎn)的犢牛相比,熱應(yīng)激(無(wú)灑水裝置和風(fēng)扇,THI>72,下文簡(jiǎn)稱(chēng)HT)奶牛所產(chǎn)犢牛的初生重、斷奶重及12月齡體重均顯著降低,但2組犢牛從出生到斷奶及12月齡期間的體增重和平均日增重?zé)o顯著差異,說(shuō)明2組犢牛斷奶重及12月齡體重的差異跟初生重有關(guān),而跟該期間的生長(zhǎng)速率無(wú)關(guān)[9-11]。但Monteiro等[12]報(bào)道,HT奶牛和CL奶牛所產(chǎn)犢牛的初生重?zé)o顯著差異。HT奶牛所產(chǎn)犢牛初生重降低可能與妊娠期縮短有關(guān)[10-13]。Tao等[10]指出,與CL奶牛相比,HT奶牛的妊娠期縮短4 d。而奶牛在妊娠最后2個(gè)月其胎兒體重增加占初生重的70%~80%[5],并且在妊娠最后一周胎兒平均日增重約為0.5 kg/d[14],所以妊娠期縮短4 d可能導(dǎo)致?tīng)倥3跎販p少約2 kg。另外,HT奶牛所產(chǎn)犢牛初生重降低可能與胎盤(pán)發(fā)育不完善及母體營(yíng)養(yǎng)不足有關(guān)。母體的營(yíng)養(yǎng)物質(zhì)和氧氣通過(guò)胎盤(pán)提供給胎兒[15],干奶期母體熱應(yīng)激可通過(guò)降低胎盤(pán)重量和血漿妊娠特異性蛋白B的濃度影響胎盤(pán)功能[16-17],進(jìn)而影響胎兒的生長(zhǎng)。另外,Wu等[18]報(bào)道,高溫可降低動(dòng)物干物質(zhì)采食量,干奶期母體營(yíng)養(yǎng)不足可顯著降低胎兒初生重。但Do發(fā)現(xiàn),與HT奶牛相比,CL奶牛的干物質(zhì)采食量有下降趨勢(shì),而HT奶牛所產(chǎn)犢牛的初生重顯著低于CL奶牛所產(chǎn)犢牛,說(shuō)明產(chǎn)前適當(dāng)減少能量攝入不影響犢牛的初生重。
1.2 對(duì)新生犢牛成活率的影響 干奶期熱應(yīng)激影響奶牛新生犢牛的成活率。Monteiro等[9]發(fā)現(xiàn),CL奶牛與HT奶牛所產(chǎn)犢牛的死胎率無(wú)顯著差異,但CL奶牛所產(chǎn)犢牛的死胎率有下降趨勢(shì)。Eltarabany等[19]報(bào)道,處于高THI條件下的奶牛所產(chǎn)犢牛的死胎率顯著高于處于低THI條件下的奶牛(5.9% vs 3.8%)。另外,CL奶牛所產(chǎn)犢牛由于疾病、畸形和發(fā)育遲緩而在發(fā)育期前就離開(kāi)牛群的百分比顯著低于HT奶牛所產(chǎn)犢牛(2.4% vs 18.2%)[9,20]。干奶期熱應(yīng)激影響新生犢牛的成活率可能與妊娠期縮短有關(guān)。Jenkins等[21]發(fā)現(xiàn),妊娠期長(zhǎng)短與新生犢牛的成活率有顯著關(guān)系。
2.1 干奶期熱應(yīng)激對(duì)新生犢牛被動(dòng)免疫的影響 干奶期熱應(yīng)激影響奶牛新生犢牛的被動(dòng)免疫。Tao等[10]發(fā)現(xiàn),與CL奶牛所產(chǎn)犢牛相比,HT奶牛所產(chǎn)犢牛的總血漿蛋白、總血清IgG含量及IgG吸收效率顯著降低,說(shuō)明母體熱應(yīng)激導(dǎo)致其犢牛的IgG吸收下降。而2組奶牛初乳中的IgG含量無(wú)顯著差異,說(shuō)明母體熱應(yīng)激可能影響新生犢牛小腸對(duì)IgG的吸收效率,從而影響犢牛初乳的被動(dòng)轉(zhuǎn)移[10]。另外,Monteiro等[11]給HT奶牛和CL奶牛所產(chǎn)犢牛飼喂在干奶期處于熱中性區(qū)奶牛的初乳,發(fā)現(xiàn)CL奶牛所產(chǎn)犢牛的IgG吸收效率顯著提高;而給干奶期處于熱中性區(qū)的奶牛所產(chǎn)犢牛分別飼喂HT奶牛和CL奶牛的初乳,2組犢牛的IgG吸收效率無(wú)顯著差異,進(jìn)一步說(shuō)明干奶期熱應(yīng)激可能影響奶牛新生犢牛小腸對(duì)IgG的吸收效率,從而影響犢牛的被動(dòng)免疫。
2.2 干奶期熱應(yīng)激對(duì)新生犢牛細(xì)胞免疫及體液免疫的影響 目前認(rèn)為,干奶期熱應(yīng)激影響奶牛新生犢牛的細(xì)胞免疫,但不影響其體液免疫。有研究表明,母體產(chǎn)前熱應(yīng)激可影響胎兒的淋巴細(xì)胞功能[22]。 Tao等[10]發(fā)現(xiàn),與CL奶牛所產(chǎn)犢牛相比,HT奶牛所產(chǎn)犢牛的外周血單核細(xì)胞增殖速率顯著降低,說(shuō)明奶牛干奶期熱應(yīng)激影響其犢牛T淋巴細(xì)胞功能。同時(shí),2組犢牛第7天的外周血單核細(xì)胞增殖刺激指數(shù)顯著高于第28、42、56天[10],這可能是因?yàn)槟阁w的白細(xì)胞通過(guò)初乳轉(zhuǎn)移到胎兒體內(nèi)[23]。在犢牛出生第28及42天注射卵清蛋白,2組犢牛的血清IgG含量無(wú)顯著差異,說(shuō)明奶牛干奶期熱應(yīng)激不影響犢牛斷奶前的體液免疫[10-11]。但Monteiro等[11]發(fā)現(xiàn),HT奶牛和CL奶牛所產(chǎn)犢牛的全血細(xì)胞增殖速率無(wú)顯著差異,而HT奶牛所產(chǎn)犢牛第7天的全血細(xì)胞增殖速率顯著高于CL奶牛所產(chǎn)犢牛。兩者結(jié)果的差異可能是因?yàn)轱曃共煌跞榧盃倥Q獫{皮質(zhì)醇濃度不同。Tao等[10]發(fā)現(xiàn),HT奶牛及CL奶牛所產(chǎn)犢牛斷奶前的血漿皮質(zhì)醇濃度無(wú)顯著差異;但Monteiro等[11]發(fā)現(xiàn),CL奶牛所產(chǎn)犢牛出生后前2周的血漿皮質(zhì)醇濃度顯著高于HT奶牛所產(chǎn)犢牛,而皮質(zhì)醇是免疫抑制劑,可抑制細(xì)胞增殖[24]。
干奶期熱應(yīng)激影響奶牛新生犢牛出生后早期糖代謝。Monteiro等[12]發(fā)現(xiàn),HT奶牛所產(chǎn)犢牛出生32 d后其血漿非酯化脂肪酸和β-羥丁酸濃度顯著提高,且HT奶牛所產(chǎn)犢牛的干物質(zhì)采食量顯著低于CL奶牛所產(chǎn)犢牛。但Quigley等[25]報(bào)道,奶牛干物質(zhì)采食量降低可導(dǎo)致其血漿β-羥丁酸濃度相應(yīng)下降。這一矛盾的結(jié)果可能是因?yàn)槟阁w熱應(yīng)激改變了犢牛對(duì)不同能量來(lái)源的利用,HT奶牛所產(chǎn)犢??赡芨蛴诶闷咸烟牵皇侵舅峄蛲w[12]。另外,Monteiro等[12]發(fā)現(xiàn),對(duì)犢牛進(jìn)行葡萄糖耐量試驗(yàn)(GTT)后,HT奶牛所產(chǎn)犢牛的血漿葡萄糖清除速度顯著高于CL奶牛所產(chǎn)犢牛,2組犢牛的血漿胰島素清除速率無(wú)顯著差異;而進(jìn)行胰島素耐量試驗(yàn)(IC)后兩組犢牛的血漿葡萄糖濃度未見(jiàn)明顯差異,但HT奶牛所產(chǎn)犢牛的血漿胰島素清除速度顯著低于CL奶牛所產(chǎn)犢牛。Tao等[3]發(fā)現(xiàn),給HT奶牛和CL奶牛所產(chǎn)犢牛飼喂初乳后,HT奶牛所產(chǎn)犢牛的血漿胰島素濃度顯著高于CL奶牛所產(chǎn)犢牛。但Tao等[26]在犢牛55日齡時(shí)進(jìn)行GTT和IC,發(fā)現(xiàn)HT奶牛所產(chǎn)犢牛的血漿葡萄糖清除速率顯著高于CL奶牛所產(chǎn)犢牛,而2組犢牛的血漿胰島素濃度變化無(wú)顯著差異。上述差異可能是因?yàn)闊釕?yīng)激公犢牛和母犢牛有不同糖代謝,Monteiro等[12]及Tao等[3]試驗(yàn)組只有母犢牛,但Tao等[26]試驗(yàn)組有公犢牛和母犢牛。熱應(yīng)激公犢牛進(jìn)行IC后,其血漿胰島素和葡萄糖濃度無(wú)顯著變化[27]。
干奶期熱應(yīng)激影響頭胎母牛的繁殖性能。Monteiro等[9]發(fā)現(xiàn),與CL頭胎母牛相比,HT頭胎母牛顯著提高輸精30 d后成功妊娠母牛的輸精次數(shù)(2.0vs2.5),因而其相應(yīng)妊娠年齡有增加趨勢(shì)。但2組頭胎母牛輸精50 d后成功妊娠母牛的輸精次數(shù)、初次配種日齡及產(chǎn)犢日齡均無(wú)顯著差異[9]。Dahl等[20]報(bào)道,HT頭胎母牛的輸精次數(shù)顯著高于CL頭胎母牛(2.6±0.3)vs(1.8±0.3)。2組頭胎母牛繁殖性能的差異可能是由于干奶期熱應(yīng)激影響頭胎母牛的初次配種體重。Archbold等[28]發(fā)現(xiàn),奶牛初次配種體重及體況評(píng)分與其發(fā)情率和產(chǎn)犢日齡有顯著關(guān)系。另外,謝玉芝等[29]報(bào)道,孕鼠產(chǎn)前熱應(yīng)激可能通過(guò)代謝機(jī)制增加仔鼠生殖腺GABA受體在細(xì)胞膜的密度,從而增強(qiáng)抑制性神經(jīng)遞質(zhì)在發(fā)育中的作用,進(jìn)一步阻礙新生仔鼠生殖腺的正常發(fā)育。因此,2組頭胎母牛繁殖性能的差異也可能是干奶期熱應(yīng)激影響新生犢牛生殖腺的正常發(fā)育進(jìn)而影響其育成后的繁殖性能。
干奶期熱應(yīng)激影響頭胎母牛的產(chǎn)奶性能。有研究發(fā)現(xiàn),HT頭胎母牛泌乳期前35周的產(chǎn)奶量顯著低于CL頭胎母牛,但2組頭胎母牛所產(chǎn)牛奶的乳脂、乳蛋白、乳糖、脂肪蛋白比及體細(xì)胞評(píng)分均無(wú)顯著差異[9,20],2組頭胎母牛產(chǎn)奶量的差異與產(chǎn)犢及泌乳期體重?zé)o關(guān)[9,20],但可能與奶牛干奶期熱應(yīng)激導(dǎo)致其犢牛早期脂肪沉積速率及育成后初次配種體重不同有關(guān)。Tao[26]等發(fā)現(xiàn),與CL奶牛所產(chǎn)犢牛相比,HT奶牛所產(chǎn)犢牛增強(qiáng)其斷奶后的全身胰島素反應(yīng),因此可能加速犢牛早期脂肪生成與沉積。Lohakare等[30]報(bào)道,犢牛早期脂肪沉積過(guò)快可影響其乳腺發(fā)育,從而影響第一個(gè)泌乳期的產(chǎn)奶量。Archbold等[28]發(fā)現(xiàn),奶牛初次配種體重及體況評(píng)分與其產(chǎn)奶性能有顯著關(guān)系。2組頭胎母牛所產(chǎn)牛奶的乳成分無(wú)顯著差異,說(shuō)明產(chǎn)奶量的差異可能因?yàn)槿橄偕掀ぜ?xì)胞數(shù)量不同,而與乳腺上皮細(xì)胞活性無(wú)關(guān)[9]。此外,奶牛干奶期熱應(yīng)激可能通過(guò)表觀(guān)遺傳學(xué)修飾改變子代乳腺基因的表達(dá),進(jìn)而影響頭胎母牛的產(chǎn)奶性能[31]。
干奶期是奶牛生產(chǎn)中的關(guān)鍵階段,該時(shí)期奶牛熱應(yīng)激可降低新生犢牛的初生重和成活率,同時(shí)可影響新生犢牛的被動(dòng)免疫、細(xì)胞免疫、糖代謝及頭胎母牛的繁殖與產(chǎn)奶性能,從而對(duì)實(shí)際生產(chǎn)造成損失。因此,有效緩解奶牛干奶期熱應(yīng)激顯得尤為重要。目前相關(guān)方面的研究并不充分,并且現(xiàn)有研究的試驗(yàn)方法均是干奶期通過(guò)物理降溫觀(guān)察其對(duì)新生犢牛機(jī)體健康及頭胎母牛繁殖與產(chǎn)奶性能的影響。所以,是否可以在干奶期添加某種緩解熱應(yīng)激的物質(zhì),研究其對(duì)犢牛機(jī)體健康及頭胎母牛繁殖與產(chǎn)奶性能的影響值得進(jìn)一步討論。另外,干奶期熱應(yīng)激對(duì)奶牛新生犢牛機(jī)體健康及頭胎母牛繁殖與產(chǎn)奶性能影響的機(jī)理并不清楚,亟需深入研究。
[1] 龍艷麗, 王強(qiáng). 奶牛熱應(yīng)激及其防控措施[J]. 中國(guó)畜牧獸醫(yī)文摘, 2015, 31(5): 112‐113.
[2] Strong R A, Silva E B, Cheng H W, et al. Acute brief heat stress in late gestation alters neonatal calf innate immune functions[J]. J Dairy Sci, 2015, 98(11): 7771‐7783.
[3] Tao S, Dahl G E. Invited review: heat stress ef f ects during late gestation on dry cows and their calves[J]. J Dairy Sci, 2013, 96(7): 4079‐4093.
[4] 包瀾濤, 孫慶華. 奶牛干奶期的飼養(yǎng)要點(diǎn)及注意事項(xiàng)[J].獸醫(yī)導(dǎo)刊, 2016, (4): 60.
[5] 李志山, 王旭紅. 提高犢牛成活率的飼養(yǎng)管理措施[J]. 畜牧獸醫(yī)科技信息, 2009, (4): 69.
[6] Wohlgemuth S E, Ramirez‐Lee Y, Tao S, et al. Short communication: effect of heat stress on markers of autophagy in the mammary gland during the dry period[J]. J Dairy Sci, 2016, 99(6): 4875‐4880.
[7] 杜兵耀, 馬晨, 楊開(kāi)倫, 等. 圍產(chǎn)期奶牛的生理特點(diǎn)及營(yíng)養(yǎng)代謝特征研究進(jìn)展[J]. 乳業(yè)科學(xué)與技術(shù), 2016, 39(1): 14‐18.
[8] 左黎明. 奶牛場(chǎng)犢牛的護(hù)理技術(shù)[J]. 中國(guó)畜牧獸醫(yī)文摘, 2015, 31(12): 70.
[9] Monteiro A P A, Tao S, Thompson I M T, et al. In utero heat stress decreases calf survival and performance through the fi rst lactation[J]. J Dairy Sci, 2016, 99(10): 8443‐8450.
[10] Tao S, Monteiro A P, Thompson I M, et al. Ef f ect of late‐gestation maternal heat stress on growth and immune function of dairy calves[J]. J Dairy Sci, 2012, 95(12): 7128‐7136.
[11] Monteiro A P, Tao S, Thompson I M, et al. Ef f ect of heat stress during late gestation on immune function and growth performance of calves: isolation of altered colostral and calf factors[J]. J Dairy Sci, 2014, 97(10): 6426‐6439.
[12] Monteiro A P, Guo J R, Weng X S, et al. Ef f ect of maternal heat stress during the dry period on growth and metabolism of calves[J]. J Dairy Sci, 2016, 99(5): 3896‐3907.
[13] Do Amaral B C, Connor E E, Tao S, et al. Heat‐stress abatement during the dry period: does cooling improve transition into lactation[J]. J Dairy Sci, 2009, 92(12): 5988‐5999.
[14] Muller L D, Beardsley G L, Ellis R P, et al. Calf response to the initiation of parturition in dairy cows with dexamethasone or dexamethasone with estradiol benzoate[J]. J Anim Sci, 1975, 41(6): 1711‐1716.
[15] Brett K E, Ferraro Z M, Yockelllelievre J, et al. Maternal‐fetal nutrient transport in pregnancy pathologies: the role of the placenta[J]. Int J Mol Sci, 2014, 15(9): 16153‐16185.
[16] Yates D T, Green A S, Limesand S W. Catecholamines mediate multiple fetal adaptations during placental insufficiency that contribute to intrauterine growth restriction: lessons from hyperthermic sheep[J]. J Pregnancy, 2011: 740408.
[17] Thompson I M, Tao S, Branen J, et al. Environmental regulation of pregnancy‐specif i c protein B concentrations during late pregnancy in dairy cattle[J]. J Anim Sci, 2013, 91(1): 168‐173.
[18] Wu G, Bazer F W, Wallace J M, et al. Board‐invited review: intrauterine growth retardation: implications for the animal sciences[J]. J Anim Sci, 2006, 84(9): 2316‐2337.
[19] El‐Tarabany M S, El‐Tarabany A A. Impact of maternal heat stress at insemination on the subsequent reproductive performance of Holstein, Brown Swiss and their crosses[J]. Theriogenology, 2015, 84(9): 1523‐1529.
[20] Dahl G E, Tao S, Monteiro A P. Effects of late‐gestation heat stress on immunity and performance of calves[J]. J Dairy Sci, 2016, 99(4): 3193‐3198.
[21] Jenkins G M, Amer P, Stachowicz K, et al. Phenotypic associations between gestation length and production, fertility, survival, and calf traits[J]. J Dairy Sci, 2016, 99(1): 418‐426.
[22] Merlot E, Couret D, Otten W. Prenatal stress, fetal imprinting and immunity[J]. Brain Behav Immun, 2008, 22(1): 42‐51.
[23] Nechvatalova K, Kudlackova H, Leva L, et al. Transfer of humoral and cell‐mediated immunity via colostrum in pigs[J]. Vet Immunol Immunopathol, 2011, 142(1‐2): 95‐100.
[24] Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity[J]. J Steroid Biochem Mol Biol, 2010, 120(2–3): 69‐75.
[25] Quigley J D, Bernard J K. Effects of nutrient source and time of feeding on changes in blood metabolites in young calves[J]. J Anim Sci, 1992, 70(5): 1543‐1549.
[26] Tao S, Monteiro A P A, Hayen M J, et al. Short communication: maternal heat stress during the dry period alters postnatal whole‐body insulin response of calves[J]. J Dairy Sci, 2013, 97(2): 897‐901.
[27] O'Brien M D, Rhoads R P, Sanders S R, et al. Metabolic adaptations to heat stress in growing cattle[J]. Domest Anim Endocrinol, 2010, 38(2): 86‐94.
[28] Archbold H, Shalloo L, Kennedy E, et al. Influence of age, body weight and body condition score before mating start date on the pubertal rate of maiden Holstein‐Friesian heifers and implications for subsequent cow performance and prof i tability[J]. Animal, 2012, 6(7): 1143‐1151.
[29] 謝玉芝, 謝佳, 陳忠, 等. 產(chǎn)前熱應(yīng)激對(duì)仔鼠生殖腺GABA能神經(jīng)元受體發(fā)育的影響[J]. 中國(guó)獸醫(yī)科學(xué), 2011, (3): 298‐302.
[30] Lohakare J D, Südekum K H, Pattanaik A K. Nutrition‐induced changes of growth from birth to fi rst calving and its impact on mammary development and first‐lactation milk yield in dairy heifers: a review[J]. Asian‐Aust J Anim Sci, 2012, 25(9): 1338‐1350.
[31] Singh K, Molenaar A J, Swanson K M, et al. Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production[J]. Animal, 2012, 6(3): 375‐381.
Effects of Heat Stress during the Dry Period of Dairy Cows on Body Health of Newborn Calves, Fertility and Milk Production of First Lactation Cows
WANG Bei‐bei, SHI Kai, LIU Jian‐xin, LIU Hong‐yun*
(College of Dairy Science, Zhejiang University, Zhejiang Hangzhou 310058, China)
The dry period is a critical time in the production cycle of dairy cows. Heat stress during the dry period could prevent the body health and production performance of the of f spring. Thus, the ef f ects of heat stress during the dry period of dairy cows on body health of newborn calves, fertility and milk production of fi rst lactation cows were summarized in this review, based on the calves growth, immunity, glycometabolism, fertility and milk production of fi rst lactation cows. The main purpose of this paper is to provide guidance for management of dry cows under heat stress, and to provide theoretical basis for ef f ective management of dairy farms.
Heat stress; Dairy cows; Dry period; Calves; First lactation cows
S823.4
A
10.19556/j.0258-7033.2017-09-008
2017-04-26;
2017-06-18
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0500503);國(guó)家自然科學(xué)基金(31672447)
王貝貝(1994-),女,浙江麗水人,碩士研究生,主要從事反芻動(dòng)物營(yíng)養(yǎng)研究,E-mail: 21617083@zju.edu.cn
*通訊作者:劉紅云,博士,副教授,博士生導(dǎo)師,E-mail: hyliu@zju.edu.cn