袁偉,錢瑩,史鐵鈞,何濤,陳楊
(合肥工業(yè)大學(xué)化學(xué)與化工學(xué)院,安徽 合肥 230009)
袁偉,錢瑩,史鐵鈞,何濤,陳楊
(合肥工業(yè)大學(xué)化學(xué)與化工學(xué)院,安徽 合肥 230009)
首先用端氨基聚醚、二苯甲烷二異氰酸酯(MDI)制備出兩端含有氨基的聚醚型聚脲,然后用合成的聚醚型聚脲、雙酚A和多聚甲醛為原料進(jìn)行曼尼希反應(yīng)合成出聚醚脲型苯并嗪(PUBZ),經(jīng)高溫固化后形成韌性優(yōu)良的樹脂。用FTIR、1H NMR分析了PUBZ的化學(xué)結(jié)構(gòu),證實了所得的目標(biāo)產(chǎn)物;用DSC對PUBZ的固化特性進(jìn)行研究;用拉伸測試分析了含不同長度聚醚鏈PUBZ樹脂的力學(xué)性能;用DMA和TGA測試分析了含不同長度聚醚鏈PUBZ樹脂的熱性能。結(jié)果表明:聚醚鏈段越長,PUBZ的固化溫度越高,PUBZ樹脂的玻璃化轉(zhuǎn)變溫度越低,相反其熱穩(wěn)定性越好;在力學(xué)性能中端氨基聚醚D-400/PUBZ樹脂的韌性最好。
聚醚;聚脲;苯并嗪;高韌性;合成;力學(xué)性能;熱穩(wěn)定性
端氨基聚醚是一類由伯胺或仲胺基封端的氧化烯烴低聚物,又稱聚醚胺或聚醚多胺。端氨基聚醚鏈段具有很好的柔性,端氨基聚醚主要用于聚脲、聚氨酯合成原料和環(huán)氧樹脂活性增韌劑[5-6]。直接采用多元胺與多異氰酸酯反應(yīng)可以得到聚脲,利用胺與異氰酸酯反應(yīng)速度快以及聚脲分子結(jié)構(gòu)中高極性的脲基容易形成脲氫鍵的特點,聚脲在快速固化型面漆和腐蝕防護(hù)涂料等領(lǐng)域得到應(yīng)用[7-8]。聚醚型聚脲結(jié)構(gòu)由脲鍵等剛性結(jié)構(gòu)和鏈中的聚醚軟段結(jié)構(gòu)組成,軟段結(jié)構(gòu)使得聚脲具有良好的柔順性和斷裂伸長率,而且軟段結(jié)構(gòu)越長,支鏈越少,聚脲分子間的作用力越強(qiáng),結(jié)構(gòu)越規(guī)整,拉伸強(qiáng)度也越大[9];硬段結(jié)構(gòu)中強(qiáng)極性的脲鍵和剛性的苯環(huán)對聚脲的強(qiáng)度也起著巨大的作用,剛性結(jié)構(gòu)中,脲鍵和苯環(huán)越多,強(qiáng)度越大[10-11]。
本文合成了不同分子量(230、400、2000)的高韌性聚醚脲型苯并嗪(PUBZ),將聚醚脲成功引入苯并嗪的結(jié)構(gòu)中。采用的端氨基聚醚、MDI和雙酚 A原料都是線性長鏈,合成的聚醚脲型苯并 嗪支鏈少,產(chǎn)物的黏度大幅度降低,改善了苯并 嗪的加工性能,聚醚脲基團(tuán)降低了苯并 嗪的玻璃化轉(zhuǎn)變溫度,并成功實現(xiàn)了對苯并嗪的增韌。進(jìn)一步研究了合成的苯并嗪化學(xué)結(jié)構(gòu)、固化行為、聚合物的熱力學(xué)性能和熱分解性,為高耐熱性材料的進(jìn)一步應(yīng)用提供了理論和實驗依據(jù)。
圖1 PUBZ單體合成反應(yīng)式Fig.1 Reaction equation of PUBZ monomer
1.1 實驗藥品
端氨基聚醚(JEFFAM INE D系列,分子量230、400、2000)(工業(yè)品),Huntsman公司,分別記為D-230、D-400、D-2000;二苯甲烷二異氰酸酯(分析純),麥克林試劑;多聚甲醛(化學(xué)純),國藥集團(tuán);雙酚A(分析純),國藥集團(tuán);N,N-二甲基乙酰胺(DMAC)(分析純),國藥集團(tuán);去離子水,實驗室自制。
1.2 主要分析測試儀器
紅外光譜(FTIR),Nicolet 6700傅里葉紅外光譜分析儀,KBr壓片,4000~400 cm?1;核磁共振,瑞士Bruker AVANCE AV 400型核磁共振儀,CDCl3為溶劑,TMS為內(nèi)標(biāo);差示掃描量熱(DSC),瑞士METTLER 821e/400差示掃描量熱儀,氮氣氛圍,80 ml·min?1;熱重分析儀(TGA),TGA Q5000,美國TA公司,氮氣氛圍,10℃·min?1;動態(tài)熱機(jī)械分析儀(DMA),DMTAQ800,美國TA公司,空氣氛圍,5℃·min?1;電子萬能試驗機(jī),REGER 3010,深圳瑞格爾公司(中國),10 mm·min?1。
1.3 聚醚脲型苯并嗪(PUBZ)的合成
帶有攪拌棒及冷凝管 150 ml的三口燒瓶加入0.01 mol(2.5 g)MDI和0.02 mol(8 g)端氨基聚醚(D-400),加入40 ml的DMAC為溶劑,升溫70℃,加熱回流反應(yīng)4 h,制備出端氨基聚脲,室溫冷卻,將冷卻的聚醚脲加入0.04 mol(1.2 g)多聚甲醛,室溫攪拌0.5 h,后加入0.01 mol(2.28 2 g)雙酚A并加入少量的DMAC調(diào)節(jié)黏度,反應(yīng)升溫85℃,反應(yīng)6 h后停止反應(yīng),旋轉(zhuǎn)蒸發(fā)去除溶劑和產(chǎn)物的水,最后真空干燥即可得到聚醚脲型苯并嗪(D-400/PUBZ)黏稠的黃色液體。其中端氨基聚醚(D-230、D-2000)制備的聚醚脲型苯并嗪分別記為 D-230/PUBZ、D-2000/PUBZ。反應(yīng)路線如圖1所示。
1.4 聚醚脲型苯并嗪樹脂的制備
圖2 聚苯并嗪樹脂的外觀Fig.2 Appearance of polybenzoxazine resins
2.1 FTIR分析
圖3為D-400/PUBZ的紅外譜圖。圖中1540 cm?1是HN—CO—NH的特征峰,3330 cm?1很強(qiáng)的吸收峰為聚脲的仲胺的吸收峰,1695 cm?1為聚脲中C═O的吸收峰,935 cm?1為苯并嗪的特征峰,是與嗪環(huán)相連的苯環(huán)的特征吸收峰,1102 cm?1有很強(qiáng)的吸收峰為聚醚中醚鍵,1230 cm?1為苯并嗪的醚鍵吸收峰,1378 cm?1為苯并嗪上C—N的吸收峰,1500、1600 cm?1處是三取代苯環(huán)伸縮振動的特征吸收峰,2700~3000 cm?1為甲基和亞甲基的吸收峰。根據(jù)這些特征峰的存在,證明樣品具有聚脲和苯并嗪的特征結(jié)構(gòu)[12-13]。
圖3 D-400/PUBZ的紅外譜圖Fig.3 FTIR spectrum of D-400/PUBZ
2.2 1H NMR 分析
圖4為D-400/PUBZ的1H NMR譜圖,以CDCl3為測試溶劑,從圖中可以分析得到:δ=7.2處為溶劑CDCl3的吸收峰,δ=5.3表示苯并嗪中的—O—CH2—N—氫a的質(zhì)子峰,δ=4.3表示嗪環(huán)—CH2—氫b的質(zhì)子峰,δ=5.0表示聚脲中的—NH—氫c的質(zhì)子峰,δ=3.6表示聚醚中—CH2—氫d的質(zhì)子峰,δ=1.2表示聚醚中—CH3氫e的質(zhì)子峰,δ=2.2表示聚醚中CH氫g的質(zhì)子峰,δ=2.0表示雙酚A中—CH3氫f的質(zhì)子峰,峰δ=7.1~7.4表示苯環(huán)上Ar—H的質(zhì)子峰,從而表明所合成的為所需的結(jié)構(gòu)[14]。
圖4 D-400/PUBZ的1H NMR譜圖Fig.4 1H NMR spectrum of D-400/PUBZ
2.3 DSC分析
圖5為3種不同PUBZ的DSC譜圖,D-230/PUBZ的固化溫度為212℃,D-400/PUBZ的固化溫度為217℃,D-2000/PUBZ的固化溫度為230℃,此固化峰為苯并嗪開環(huán)的溫度。隨著原料的聚醚鏈段的增長,其固化溫度越高,D-230/PUBZ和D-400/PUBZ的固化溫度相差不大,由于兩種苯并嗪環(huán)單體的分子量相差不大,嗪環(huán)的密度差別也不大。隨著聚醚鏈段越長,苯并嗪環(huán)的密度降低,放熱焓越低,這是由于苯并嗪環(huán)的稀釋效應(yīng)所導(dǎo)致[15]。
圖5 PUBZ的DSC譜圖Fig.5 DSC spectrum of PUBZ
2.4 拉伸性能分析
230/PUBZ樹脂的斷裂強(qiáng)度為84.96 MPa,楊氏模量為2632.74 MPa,斷裂伸長率為5.82%,斷裂能為2.92 MJ·cm?3,具有很高的強(qiáng)度和模量但是斷裂伸長率較低,并沒有屈服點,屬于一種強(qiáng)而硬的材料;D-2000/PUBZ樹脂的斷裂強(qiáng)度為0.3 MPa,楊氏模量為0.46 MPa,斷裂伸長率為120.86%,斷裂能為0.22 MJ·cm?3,具有很好的斷裂伸長率但是強(qiáng)度和模量較弱,斷裂伸長率很好,屬于一種軟而弱的材料,實用價值并不高;對比之下,D-400/PUBZ樹脂的斷裂強(qiáng)度為 27.11 MPa,屈服強(qiáng)度為 33.29 MPa,彈性模量為 1181.97 MPa,斷裂伸長率為73.38%,斷裂能為19.58 MJ·cm?3,材料有屈服點存在大形變區(qū)域,斷裂能反映材料的拉伸韌性的大小,斷裂能明顯高于 D-230/PUBZ、D-2000/PUBZ兩種樣品,這種材料具有“強(qiáng)而韌”的特點,其韌性得到了很大的改善[16]。
圖6~圖8為3種PUBZ樹脂的應(yīng)力應(yīng)變曲線,表1為PUBZ樹脂的拉伸性能參數(shù),從表中可以看出 D-2000/PUBZ樹脂的力學(xué)性能差的原因是聚醚胺鏈段過長,分子量過大,則苯并嗪環(huán)密度低,導(dǎo)致固化后的材料交聯(lián)密度下降,分子鏈的堆積松散,直接導(dǎo)致材料的力學(xué)性能下降[17]。
圖6 D-230/PUBZ樹脂的應(yīng)力應(yīng)變曲線Fig.6 Stress-strain curves of D-230/PUBZ resins
圖7 D-400/PUBZ樹脂的應(yīng)力應(yīng)變曲線Fig.7 Stress-strain curves of D-400/PUBZ resins
圖8 D-2000/PUBZ樹脂的應(yīng)力應(yīng)變曲線Fig.8 Stress-strain curves of D-2000/PUBZ resins
2.5 DMA分析
圖9為PUBZ樹脂的儲能模量曲線,在儲能模量中可以看出在室溫下D-230/PUBZ、D-400/PUBZ樹脂的儲能模量分布分別為 1.5、2.5 GPa,D-2000/PUBZ樹脂的儲能模量低于檢測限。儲能模量反映材料形變過程中由于彈性而儲存的能量,D-400/PUBZ的儲能模量是最高的,3種材料的儲能模量下降趨勢很明顯,表明聚醚脲鏈段的引入可以改變苯并嗪的性脆特點。D-2000的模量最低可能是分子量過大,苯并嗪的固化密度低所導(dǎo)致[18]。
表1 PUBZ樹脂的拉伸性能參數(shù)Table 1 Tensile parameters of PUBZ resins
圖9 PUBZ樹脂的儲能模量曲線Fig.9 Storage modulus curves of PUBZ resins
圖10為PUBZ樹脂的tanδ曲線,損耗角δ的正切值反映固化體系玻璃化轉(zhuǎn)變溫度,D-230/PUBZ和D-400/PUBZ的Tg都為64℃,D-2000/PUBZ的Tg為?38℃,D-2000/PUBZ的Tg最低,該體系交聯(lián)密度相對最低,固化物分子運動能力強(qiáng),3種材料的Tg相比其他體系苯并嗪的Tg要低很多,隨著聚醚鏈段的增長,Tg顯著降低,在柔性聚醚鏈段的存在,使得苯并嗪的固化體系在較低溫度就可能出現(xiàn)局部分子鏈段運動,導(dǎo)致松弛轉(zhuǎn)變溫度范圍變低變寬[19]。
圖10 PUBZ樹脂的損tanδ曲線Fig.10 tanδ curves of PUBZ resins
圖11 PUBZ樹脂的TGA譜圖Fig.11 TGA spectrum of PUBZ resins
圖12 PUBZ的DTG譜圖Fig.12 DTG spectrum of PEU-BOZ resins
表2 PUBZ樹脂的熱性能參數(shù)Table 2 Thermal parameters of PUBZ resins
2.6 TGA分析
圖11、圖12為PUBZ樹脂的TGA、DTG曲線,表2為PUBZ樹脂的熱性能參數(shù)。從表2中可以看出,D-2000/PUBZ樹脂失重5%的溫度為342℃,熱穩(wěn)定性最好,但是D-400/PUBZ樹脂800℃的殘?zhí)悸首罡邽?4%;隨著原料的聚醚鏈段的增長,其熱穩(wěn)定性越好,可能的原因是C—N的存在是材料的一個弱點,C—N鍵比C—C鍵的鍵能弱,C—N鍵的存在是影響苯并嗪熱性能的一個重要原因。聚醚胺鏈段的增長,單位質(zhì)量中嗪環(huán)的密度降低,C—N鍵的密度越小,反而熱穩(wěn)定性越好[14,20]。
[1]RAN Q C, TIAN Q, LI C, et al. Investigation of processing, thermal, and mechanical properties of a new composite matrix-benzoxazine containing aldehyde group [J]. Polymers for Advanced Technologies, 2010, 21(3): 170-176.
[2]SCHAFER H, ARNEBOLD A, STELTEN J, et al. Bifunctional benzoxazines: synthesis and polymerization of resorcinol based single isomers [J]. Journal of Polymer Science, 2015, 12: 1-9.
[3]ARDTANANTA H, WAHID M H, SASAKI M, et al. Performance enhancement of polybenzoxazine by hybridization with polysiloxane [J]. Polymer, 2008, 49: 4585-4591.
[4]LLIQADAS G, TUZUN A, RONDA J, et al. Polybenzoxazines: new players in the bio-based polymers arena [J]. Polymer Chemisty, 2014, 5: 6636-44.
[5]PATIL P N, RATH S K, SHARMA S K, et al. Free volumes and structural relaxations in diglycidyl ether of bisphenol-A based epoxy-polyether amine networks [J]. Soft Matter, 2013, 9: 3589-3599.
[6]HEIEH T H, KINLOCH A J, MASANIA K, et al. The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles [J]. Polymer, 2010, 51(26): 6284-6294.
[7]BROWN E N, KESSLER M R, SOTTOS N R, et al. In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene [J]. Journal of Microencapsulation, 2003, 20(6): 719-730.
[8]YI J, BOYCE M C, LEE G F, et al. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes [J]. Polymer, 2006, 47(1): 319-329.
[9]SAWARYN C, LANDFESTR K, TADEN A, et al. Advanced chemically induced phase separation in thermosets: polybenzoxazines toughened with multifunctional thermoplastic main-chain benzoxazine prepolymers [J]. Polymer, 2011, 52(15): 3277-3287.
[10]ZHAN Z J, HOLZWORTH K, NASSER S N. Milled glass reinforced polyurea composites: the effect of surface treatment [J]. Composite Materials and Joining, 2013, 7: 35-38.
[11]CHO H, RINALDI R G, BOYCE M C. Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyuria [J]. Soft Matter, 2013, 9: 6319-6330.
[12]XU G M, SHI T J, LIU J H, et al. Preparation of a liquid benzoxanzine based on cardanol and the thermal stability of its graphene oxide composites [J]. Journal of Applied Polymer Science, 2014, 10: 1-8.
[13]TAKEICHI T, KANO T, AGAG T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets [J]. Polymer, 2005, 46: 12172-12180.
[14]AGAG T, GEIGER S, ALHASSAN S M, et al. Low-viscosity polyether-based main-chain benzoxazine polymers: precursors for flexible thermosetting polymers [J]. Macromolecules, 2010, 43: 7122-7127.
[15]ZHAO P, ZHOU Q, YUAN Y, et al. Reaction induced phase separation in thermosetting/thermosetting blends: effects of imidazole content on the phase separation of benzoxazine/epoxy blends [J]. RSC Advances, 2014, 4: 61634-61642.
[16]TAKEICHI T, THONGPRADITH S, HIRAI S, et al. Syntheses of novel benzoxazines having vinyl groups and thermal properties of the thermosets[J]. High Performance Polymers, 2012, 24: 765-774.
[17]TUZUN A , LIGADAS G, RONDA J C, et al. Integrating plant oils into thermally curable main-chain benzoxazine polymers via ADMET polymerization [J]. European Polymer Journal, 2015, 67: 503-512.
[18]JUBSILP C, TAKEICHI T, RIMDUSIT S, et al. Property enhancement of polybenzoxazine modified with dianhydride [J]. Polymer Degradation and Stability, 2011, 96: 1047-1053.
[19]RIMDUSIT S, PIRSTPINDVONG S. Toughening of polybenzoxazine by alloying with urethane prepolymer and flexible epoxy: a comparative study [J]. Polymer Engineering and Science, 2005, 45(3): 288-2986.
[20]LIU J, AGAG T, ISHIDA H. Main-chain benzoxazine oligomers: a new approach for resin transfer moldable neat benzoxazines for high performance applications [J]. Polymer, 2010, 51: 5688-5694.
Synthesis and mechanical properties of high toughness benzoxazine based on polyether-urea
YUAN Wei, QIAN Ying, SHI Tiejun, HE Tao, CHEN Yang
(School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China)
A new class of polyether-urea-based benzoxazine (PUBZ) exhibits perfect toughness properties after thermal treatment has been developed and synthesized via two steps. Firstly, amine-terminated polyether-based polyurea was synthesized using amine-terminated polyether and diphenyl methane diisocyanate (MDI) as raw materials. Secondly, PUBZ was prepared from amine-terminated polyether-based polyurea, bisphenol-A and paraformaldehyde through Mannich reaction. The structure of PUBZ has been confirmed by FTIR and1H NMR. The curing behavior was characterized by DSC. The effect of different length of polyether chains on the mechanical properties of PUBZ has been evaluated by dynamic mechanical analysis (DMA) in a tensile deformation. Thermal properties of PUBZ have been studied by DMA and thermogravimetric analysis (TGA). The results showed that the longer polyether chains, the higher curing temperature of the PUBZ. The lower glass transition temperature of the PUBZ, the better thermal stability. When the molecular weight of amine-terminated polyether was 400 and D-400/PUBZ resin exhibited the highest toughness.
polyether; polyurea; benzoxazine; high toughness; synthesis;mechanical property;thermal stability
Prof. SHI Tiejun, stjhfut@163.com
O 631
:A
:0438—1157(2017)01—0385—06
10.11949/j.issn.0438-1157.20160656
2016-05-11收到初稿,2016-10-14收到修改稿。
聯(lián)系人:史鐵鈞。
:袁偉(1989—),男,碩士研究生。
國家自然科學(xué)基金項目(51273054)。
Received date: 2016-05-11.
Foundation item: supported by the National Natural Science Foundation of China (51273054).