• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于變分模態(tài)分解和多尺度排列熵的變壓器局部放電信號特征提取

      2017-01-19 07:15:35朱永利張媛媛
      關(guān)鍵詞:變分電信號特征提取

      張 蒙,朱永利,張 寧,張媛媛

      (華北電力大學(xué) 新能源電力系統(tǒng)國家重點實驗室,河北 保定 071003)

      基于變分模態(tài)分解和多尺度排列熵的變壓器局部放電信號特征提取

      張 蒙,朱永利,張 寧,張媛媛

      (華北電力大學(xué) 新能源電力系統(tǒng)國家重點實驗室,河北 保定 071003)

      局部放電類型的識別對準確掌握變壓器絕緣狀態(tài)和合理安排檢修維護有著重要的指導(dǎo)意義。識別放電類型的關(guān)鍵在于放電特征的提取。針對目前局部放電特征識別穩(wěn)定性差,識別率低的問題,提出了一種基于變分模態(tài)分解(Variational Mode Decomposition, VMD)和多尺度排列熵(Multi-scale permutation entropy, MPE)的特征提取方法,并驗證了方法的有效性。利用VMD分解算法對實驗室條件下采集的4種局部放電信號進行分解,得到數(shù)個包含不同頻帶信息的有限帶寬的固有模態(tài)分量(band-limited intrinsic mode functions, BLIMFs),分別計算相應(yīng)的多尺度排列熵,并將其組合成原始特征量。在此基礎(chǔ)之上,利用最大相關(guān)最小冗余準則(max-relevance and min-redundancy criteria, mRMR) 對原始特征量進行優(yōu)選降維,最后使用支持向量機分類器實現(xiàn)分類。實驗結(jié)果表明:在染噪情況下,該方法提取的多尺度排列熵仍能準確刻畫不同的放電信號時頻復(fù)雜度的差異,魯棒性強,識別率高。

      變壓器;局部放電;特征提?。蛔兎帜B(tài)分解;多尺度排列熵

      0 引 言

      變壓器在生產(chǎn)、安裝以及長期運行過程中會不可避免出現(xiàn)如毛刺、虛焊等絕緣缺陷。這些絕緣缺陷會使變壓器的局部電場畸變,從而誘發(fā)放電(Partial Discharge,PD)。局部放電的存在又會導(dǎo)致變壓器絕緣的進一步劣化甚至失效[1]。通過識別PD的類型,了解設(shè)備絕緣狀態(tài),有利于制定合理的檢修計劃,保證電力系統(tǒng)安全運行。放電類型識別的關(guān)鍵之一在于放電特征的提取。目前,常用的局部放電特征有統(tǒng)計特征和波形特征。統(tǒng)計特征是指PD信號的統(tǒng)計分布特征,常用的方法有基于相位分布模式(Phase Resolved Partial Discharge,PRPD)的統(tǒng)計特征提取[2,3],分形特征提取[4,5], Weibull分布特征[6]等;波形特征包括時頻域特征[7,8]、小波特征[9,10]等。統(tǒng)計特征法,特別是基于PRPD模式的二維、三維統(tǒng)計特征譜圖在實際中應(yīng)用廣泛。但是,提取統(tǒng)計特征時間開銷大且識別成功率低。波形特征計算速度快,卻易受噪聲干擾,識別效果不穩(wěn)定。

      經(jīng)驗?zāi)B(tài)分解(Empirical Mode Decomposition,EMD)是一種基于局部特征的時頻分析法,適合于非線性,非平穩(wěn)的信號處理問題,已經(jīng)被應(yīng)用在局部放電信號去噪和特征提取領(lǐng)域。文獻[8]利用EMD把局部放電信號分解成多個固有模態(tài)分量,從固有模態(tài)分量中提取相應(yīng)奇異值作為特征量。文獻[11]使用能量門限法和敏感固有模態(tài)函數(shù)選擇法對EMD分解的固有模態(tài)分量進行篩選,找出相應(yīng)的分量作為局部放電特征信號的特征量。變分模態(tài)分解(Variational Mode Decomposition,VMD)是一種新的非遞歸的信號分解方法。區(qū)別于EMD等分解算法缺乏堅實的數(shù)學(xué)理論支撐,VMD有著堅實的理論基礎(chǔ)。該方法利用交替方向乘子法迭代搜索令每個模態(tài)的估計帶寬之和最小的變分模型最優(yōu)解,克服了EMD和LMD等遞歸分解算法出現(xiàn)的模態(tài)混疊和頻率效應(yīng)等缺點;VMD實質(zhì)上是多個自適應(yīng)維納濾波組,具有更好的噪聲魯棒性[12-14]。

      排列熵(Permutation Entropy, PE)是由Bandt提出的衡量時間序列不確定度的指標,它具有計算簡單、魯棒性強等優(yōu)點[15]。多尺度排列熵(Multi-scale Permutation Entropy, MPE)方法是由Aziz等在排列熵基礎(chǔ)上提出的一種新興的非線性方法[16]。與排列熵相比,多尺度排列熵具有更好的抗干擾能力[17]。目前以MPE作為特征量已經(jīng)廣泛應(yīng)用到機械故障診斷及生理信號識別等領(lǐng)域:文獻[18]把MPE引入到滾動軸承故障診斷領(lǐng)域,診斷效果比單一尺度的排列熵要好;文獻[19]通過實驗驗證表明,MPE可以較好的區(qū)分三種銑削狀態(tài);文獻[20]利用MPE成功區(qū)分正常腦電信號和癲癇腦電信號。目前,鮮有MPE在變壓器局部放電的研究見諸報端。

      本文結(jié)合VMD和MPE的優(yōu)點,利用VMD對PD信號進行分解,克服了EMD算法出現(xiàn)的模態(tài)混疊和虛假分量??紤]到PD信號在不同尺度下的復(fù)雜度存在差異,提取各模態(tài)的多尺度排列熵作為特征量。最后采用支持向量機分類器實現(xiàn)模式識別。

      1 變分模態(tài)分解

      VMD分解過程中,主要分為變分約束問題的建立和求解兩部分,其中變分約束問題建立的具體過程為

      對于每個模態(tài)函數(shù)uk(t),進行Hilbert變換得到相應(yīng)解析信號和單邊頻譜。

      (1)

      (1)通過加入指數(shù)項e-jωkt調(diào)整各自估計的中心頻率,把每個模態(tài)的頻譜變換到相應(yīng)的基帶上。

      (2)

      (2)計算解調(diào)信號梯度二范數(shù),對各模態(tài)帶寬進行估計。則變分約束問題可構(gòu)造如下:

      (3)

      式中:{uk}={u1,…,uk}為分解得到的k個本征函數(shù)模態(tài)分量;{ωk}={ω1,ω2,…,ωk}為各模態(tài)的中心頻率。

      變分約束問題的求解就是在變分框架內(nèi)通過搜索約束變分模型最優(yōu)解來實現(xiàn)信號的自適應(yīng)分解。為了求解約束變分問題的最優(yōu)解,將約束性變分問題變?yōu)榉羌s束性變分問題,引入二次懲罰因子α和拉格朗日算子λ(t),構(gòu)成擴展的拉格朗日表達式,如式(4):

      (4)

      式中:α為二次懲罰因子,可以在高斯噪聲存在的情況下保證信號的重構(gòu)精度;λ(t)為拉格朗日算子,用來保持約束條件的嚴格性。

      利用交替方向乘子算法(Alternate Direction Method of Multipliers, ADMM)求取上述擴展的拉格朗日函數(shù)的鞍點,即式(1)約束變分模型的最優(yōu)解,其中解得模態(tài)分量uk及中心頻率ωk分別為

      2 基于VMD-MPE的特征提取

      2.1 多尺度排列熵

      排列熵是衡量一維時間序列不確定性的方法,其計算速度快、抗干擾效果好,能夠描述序列的微小變化。對于長度為N的時間序列{x(t),t=1,2,…,N},進行相空間重構(gòu),得到

      (7)

      其中,嵌入維數(shù)為m,延遲時間為λ。對X(t)中的所有元素按照升序重新排列,即:

      x(t+(j1-1)λ)≤x(t+(j2-1)λ)≤…≤x(t+(jm-1)λ)。則對于序列X(t)可以得到符號序列S(g)

      (8)

      其中,g=1,2,…k,k≤m!。m維相空間映射的不同符號序列S(g)總共有m!種。pi定義為第i種符號序列出現(xiàn)的概率,則該時間序列X(t)的排列熵為

      (9)

      當pk=1/m!時,Hp取最大值ln(m!)。因此,可以對Hp進行如下歸一化:

      (10)

      顯然,0≤Hp≤1。排列熵可以用來度量時間序列的不確定性和復(fù)雜性。熵值小,說明該時間序列規(guī)律性強。反之,時間序列隨機性大。

      (11)

      其中,尺度因子為τ,序列粗粒化的程度由尺度因子決定。當τ=1時,粗?;蛄型嘶癁樵夹蛄?。此時,多尺度排列熵也就退化成序列的排列熵。

      2.2 參數(shù)的選取及特征提取流程

      多尺度排列熵表征信號復(fù)雜度能力好壞的關(guān)鍵在于參數(shù)延遲時間、嵌入維數(shù)和尺度因子的選擇。尺度因子過小,多尺度熵就不能在各個尺度上全面反映序列的復(fù)雜度信息;尺度因子過大,會增加計算量,造成信息冗余。本文的尺度因子選擇為12。文獻[21]提出以互信息法和偽近鄰法來優(yōu)化排列熵參數(shù)的選取,效果比關(guān)聯(lián)積分法要好。為了避免參數(shù)選擇的主觀性和隨機性,本文選擇使用互信息法和偽近鄰法來選擇排列熵的參數(shù),其中判據(jù)一閾值設(shè)為20,判據(jù)二的閾值設(shè)為2。

      圖1 基于VMD的多尺度排列熵特征向量提取流程圖Fig.1 Flow chart of VMD-MPE features extraction of partial discharge

      基于VMD-MPE的特征提取流程如圖1所示。由于本文使用的MPE的尺度因子為12,若是將所有模態(tài)的MPE直接組成特征向量,維數(shù)將高達60維,會對后續(xù)的模式識別造成“維數(shù)災(zāi)難”。為了減少特征向量中的冗余信息,提高計算效率,本文選擇按照最大相關(guān)最小冗余準則進行特征優(yōu)選。從12個尺度因子中挑選相關(guān)性最大,冗余度最小的3個尺度組成15維的特征子集。具體算法參見文獻[22]。

      3 基于VMD-MPE的局部放電模式識別

      3.1 實驗?zāi)P?/p>

      根據(jù)變壓器局部放電的形式和特點,在實驗室中構(gòu)造四種放電模型。為使采集的放電信號更有代表性,對每一種類型的放電都設(shè)計多種尺寸和參數(shù)的放電模型。

      (1) 電暈?zāi)P汀4四P陀脕砟M變壓器在空氣中的電暈放電。放電尖端分別采用長度為30 mm,50 mm和70 mm,直徑1 mm的銅絲。放電尖端下接直徑320 mm的圓形無暈電極。

      (2) 沿面模型。此模型用來模擬變壓器內(nèi)部的沿面放電。使用的圓形環(huán)氧樹脂絕緣板直徑分別為30 mm,40 mm和50 mm。

      (3) 針板模型。此模型用來模擬變壓器內(nèi)部存在尖銳導(dǎo)體而引起的局部放電。模型分別使用3,4和5根針電極,均由直徑3 mm的鋁棒制成,端部打磨成30°的錐形。針電極按照環(huán)形排列,針電極和板電極之間放置厚度為1 mm的絕緣板。

      (4) 懸浮放電。此模型用來模擬變壓器內(nèi)部接觸不良或接地不良產(chǎn)生的懸浮放電。絕緣板直徑為50 mm,厚度為1 mm。金屬墊片厚度為3 mm,直徑分別為5 mm和10 mm。

      除電暈?zāi)P屯猓溆嗳N模型都放置在盛滿變壓器油的容器中。試驗標準采用IEC 60270-2000,試驗電路為基于脈沖電流法的并聯(lián)測試電路。使用TWPD-2F局部放電綜合分析儀采集放電信號,采集頻率為40 MHz,傳感器帶寬為40~300 kHz。高壓試驗平臺型號為TWI5133-10/100 am。實驗條件如表1。每種放電模型在每種試驗電壓下采集200個實驗樣本。把一個工頻周期的放電信號作為一個樣本。每個樣本中包含80萬個采樣點。

      表1 放電模型試驗條件

      3.2 特征提取效果

      要對信號進行VMD分解,首先要確定模態(tài)數(shù)K。模態(tài)數(shù)太小,分解出的模態(tài)不能充分反映原信號的時頻信息,VMD分解的目的就沒有達到。反之,會出現(xiàn)頻率相近的模態(tài),有過分解的可能。為了選擇合適的K值,本文采取觀察中心頻率的方法。對某放電樣本進行VMD分解,不同模態(tài)數(shù)K下的中心頻率如表2所示。由表可知,當模態(tài)數(shù)超過5時,出現(xiàn)了中心頻率之差小于1 kHz的模態(tài)。所以,分解層數(shù)選擇為5層。圖2為不同放電類型的VMD分解結(jié)果。

      為了驗證VMD-MPE算法的有效性,本文隨機抽取400個放電樣本(每種類型100個),分別進行VMD-MPE和EMD-MPE特征提取,并比較二者的提取效果。為了增加對比的可信度,本文使用相關(guān)系數(shù)法剔除EMD算法當中出現(xiàn)的虛假分量。經(jīng)多次實驗,選取EMD分解模態(tài)中與原信號相關(guān)系數(shù)最大的前5個作為有效分量。

      表2 不同K值下對應(yīng)的中心頻率

      圖2 四種局部放電實驗室模型Fig.2 Four types of partial discharge model

      圖4和圖5分別是基于VMD-MPE和EMD-MPE特征提取結(jié)果。為了方便看出不同放電類型的多尺度排列熵在不同模態(tài)和尺度因子下的變化情況,對三維圖4和5的視角做了少許調(diào)整。從圖4和圖5可以看出,各個放電類型的VMD-MPE特征差異性明顯,辨識度高;而除電暈放電外,其他三種放電的EMD-MPE特征,走勢、陡度都十分相似,數(shù)值區(qū)間上也互有重疊,不容易區(qū)分。

      圖3 VMD分解結(jié)果Fig.3 The results of VMD

      Tab.3 The correlation coefficient between effective modes and original signal

      放電類型算法模態(tài)一模態(tài)二模態(tài)三模態(tài)四模態(tài)五電暈EMD0 48270 45270 26730 18120 1326VMD0 45090 46530 49510 52060 4826沿面EMD0 42720 33830 28640 17680 0980VMD0 41760 44400 45420 47160 4489針板EMD0 39400 33210 18670 12760 0221VMD0 42070 50750 53200 50370 4645懸浮EMD0 32520 14730 15180 12480 0485VMD0 46740 48520 51530 51940 4937

      從圖5可以看到,當尺度因子小于3時,隨著模態(tài)數(shù)的增加,EMD有效模態(tài)的MPE值逐漸減??;當尺度因子大于3時,各EMD模態(tài)的MPE值隨著尺度因子的增加逐漸減小。這表明EMD算法分解出的模態(tài)結(jié)構(gòu)簡單,只在部分模態(tài)的較小的尺度上包含放電信息[18]。這一點也能從表4中得到佐證:大部分EMD分解模態(tài)與原信號的相關(guān)系數(shù)要遠小于VMD分解模態(tài)。所以,對比圖4 和圖5可以看出,采用了非遞歸分解模式的VMD算法克服了EMD算法易出現(xiàn)模態(tài)混疊的缺點,分解出的模態(tài)在各個尺度都包含更多細節(jié)更豐富的放電信息。

      圖4 基于VMD-MPE的特征提取結(jié)果Fig.4 The feature extraction results based on VMD-MPE

      圖5 基于EMD-MPE的特征提取結(jié)果Fig.5 The feature extraction results based on EMD-MPE

      多尺度排列熵是從信號的不確定性和復(fù)雜度上去反映信號的本質(zhì)特征。觀察不同放電類型的多尺度排列熵值的大小可以看到,不論是VMD分解還是EMD分解,在大部分尺度上,電暈放電熵值最小,懸浮放電最大。從不同放電類型的放電過程來看,在懸浮放電過程中,懸浮微粒存在靜止,移動等多種狀態(tài),放電過程隨機性大;在沿面放電和針板放電中,最初放電通道的位置并不固定,在經(jīng)過多次放電后,放電位置多出現(xiàn)在絕緣紙板出現(xiàn)碳化的地方;相較于其他三種放電類型,電暈放電脈沖多出現(xiàn)在工頻周期的270°附近且具有明顯的極性效應(yīng),規(guī)律性強。

      3.3 不同放電類型的模式識別

      為了驗證噪聲對本方法的影響,對采集的局部放電信號分別添加5 dB和10 dB的高斯白噪聲。實驗選取400個樣本(每種放電類型隨機抽取100個),分別把VMD-MPE、EMD-MPE和30維統(tǒng)計特征作為特征向量。提取的統(tǒng)計特征如表4所示。

      表4 PD信號的統(tǒng)計特征

      輸入到支持向量機(SVM)分類器中實現(xiàn)局部放電信號的識別。支持向量機作為一種有著完備的統(tǒng)計學(xué)基礎(chǔ)的機器學(xué)習(xí)方法,避免了人工神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)結(jié)構(gòu)選擇,容易出現(xiàn)欠學(xué)習(xí)和過學(xué)習(xí)等缺陷,特別適用于小樣本、高維數(shù)的模式識別和回歸分析問題的求解[23]。本文使用支持向量機作為識別分類器。支持向量機的核函數(shù)使用高斯徑向核函數(shù)。核函數(shù)高度和寬度參數(shù)σ=3,懲罰因子C=20。實驗采取四折交叉驗證。

      由表5可知,不論信號是否染噪,VMD-MPE作為特征向量的正確識別率都要高于以EMD-MPE和統(tǒng)計特征的正確識別率。EMD分解的二進濾波器組特性,VMD的本質(zhì)是維納濾波,對信號本身混雜的噪聲具有更好的魯棒性。隨著噪聲水平的增大,EMD-MPE的識別正確率出現(xiàn)了明顯的下降。而VMD-MPE特征在信號混入噪聲前后都表現(xiàn)出良好的穩(wěn)定性和更高的識別率。與應(yīng)用廣泛的統(tǒng)計特征相比,VMD-MPE特征可以精確地刻畫出放電信號的復(fù)雜度信息,同時具有更好的噪聲魯棒性。

      表5 PD信號識別的準確率

      注:加噪信號1由原始放電信號添加5 dB高斯白噪聲合成,加噪信號2由原始信號添加10 dB高斯白噪聲合成。

      4 結(jié) 論

      (1) 本文首次提出一種基于VMD和MPE變壓器局部放電特征提取方法。該方法提取的特征能夠有效表征PD信號在不同頻帶下的不確定性和復(fù)雜性,且抗噪能力強。

      (2) 實驗結(jié)果表明:當有噪聲存在時,VMD-MPE特征依然能夠有效識別4種放電類型,平均正確率超過95%,效果要優(yōu)于EMD-MPE和統(tǒng)計特征方法。

      (3) VMD-MPE放電特征提取方法目前還存在如參數(shù)選擇依靠先驗知識,計算速度慢等缺陷,需要進一步完善。

      [1] 律方成,劉云鵬,李燕青.電力變壓器局部放電檢測與診斷方法評述[J]. 華北電力大學(xué)學(xué)報, 2003, 30 (6) : 1-5.

      [2] 常文治,葛振東,時翔,等. 振蕩電壓下電纜典型缺陷局部放電的統(tǒng)計特征及定位研究[J]. 電網(wǎng)技術(shù), 2013, 37(3): 746-752.

      [3] 王天健,吳振升,王暉,等. 基于最小二乘支持向量機的改進型GIS局部放電識別方法[J]. 電網(wǎng)技術(shù), 2011, 35(11): 178-182.

      [4] 張曉星,唐炬,孫才新,等. 基于多重分形維數(shù)的GIS局部放電模式識別[J]. 儀器儀表學(xué)報, 2007,28 (4): 597-602.

      [5] 任先文,薛雷,宋陽,等. 基于分形特征的最小二乘支持向量機局部放電模式識別[J]. 電力系統(tǒng)保護與控制, 2011, 39(14): 143-147.

      [6] 胡文堂,高勝友,余紹峰,等. 統(tǒng)計參數(shù)在變壓器局部放電模式識別中的應(yīng)用[J]. 高電壓技術(shù), 2009, 35(2): 277-281.

      [7] 楊麗君,孫才新,廖瑞金,等. 采用等效時頻分析及模糊聚類法識別混合局部放電源[J]. 高電壓技術(shù), 2010, 36(7): 1710-1717.

      [8] 何為,周東亮,楊帆,等. 基于時域有限差分方法的污穢絕緣子局部放電頻譜分析[J]. 高電壓技術(shù), 2012, 38(8): 1848-1855.

      [9] 陳偉根,杜杰,凌云,等. 基于能量-小波矩特征分析的油紙絕緣氣隙放電過程劃分[J].儀器儀表學(xué)報,2013,34(5) : 1062-1069.

      [10] 尚海昆,苑津莎,王瑜,等. 基于交叉小波變換和相關(guān)系數(shù)矩陣的局部放電特征提取[J]. 電工技術(shù)學(xué)報, 2014, 29(4): 274-281.

      [11] 李劍,王小維,金卓睿,等. 變壓器局部放電超高頻信號多尺度網(wǎng)格維數(shù)的提取與識別[J]. 電網(wǎng)技術(shù), 2010, 34(2): 159-163.

      [12] BANDT C,POMPE B. Permutation entropy: a natural complexity measure for time series[J]. Physical review letters, 2002, 88(17): 21-24.

      [13] AZIZ W,ARIF M. Multiscale Permutation Entropy of Physiological Time Series[C]//Proceeding of IEEE International Multi-topic Conference,INMIC. Karachi :IEEE,2006:1-6.

      [14] 王余奎,李洪儒,葉鵬. 基于多尺度排列熵的液壓泵故障識別[J]. 中國機械工程, 2015, 26(4): 518-523.

      [15] 鄭近德,程軍圣,楊宇. 多尺度排列熵及其在滾動軸承故障診斷中的應(yīng)用[J]. 中國機械工程, 2013, 24(19): 2641-2646.

      [16] 任靜波,孫根正,陳冰,等. 基于多尺度排列熵的銑削顫振在線監(jiān)測方法[J]. 機械工程學(xué)報, 2015, 51(9): 206-212.

      [17] 姚文坡,劉鐵兵,戴加飛,等. 腦電信號的多尺度排列熵分析[J]. 物理學(xué)報, 2014, 63(7): 427-433.

      [18] DRAGOMIRETSKIY K,ZOSSO D. Variational Mode Decomposition[J]. Signal Processing, IEEE Transactions on, 2013, 62(3): 531-544.

      [19] LAHMIRI S,BOUKADOUM M. Biomedical image denoising using variational mode decomposition[C]//Biomedical Circuits and Systems Conference.BioCAS. Lausanne.IEEE, 2014:340-343.

      [20] MOHANTY,GUPTA K K,RAJU K S. Bearing fault analysis using variational mode decomposition[C]//Industrial and Information Systems. ICIIS. Gwalior.IEEE,2014:1-6.

      [21] 饒國強,馮輔周,司愛威,等. 排列熵算法參數(shù)的優(yōu)化確定方法研究[J]. 振動與沖擊, 2014, 33(1): 188-193.

      [22] 馬騫,楊以涵,劉文穎,等. 多輸入特征融合的組合支持向量機電力系統(tǒng)暫態(tài)穩(wěn)定評估[J]. 中國電機工程學(xué)報, 2005, 25(6): 17-23.

      [23] YANG Y,CHENG J,ZHANG K. An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems[J]. Measurement, 2012, 45(3): 561-570.

      Feature Extraction of Transformer Partial Discharge Signals Based on Varitional Mode Decomposition and Multi-scale Permutation Entropy

      ZHANG Meng, ZHU Yongli, ZHANG Ning, ZHANG Yuanyuan
      (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Baoding 071003, China)

      Pattern recognition of partial discharge signals in transformer is significantly important to accurately identify transformer insulation conditions and guide the maintenance plan. Discharge feature extraction is one of the key steps in the recognition of discharge pattern. In this paper, a new method for partial discharge feature extraction based on Variational mode decomposition (VMD) and multi-scale permutation entropy (MPE) was proposed to solve the problems including poor stability and low recognition rate. Efficiency of this new method has been verified. PD signal produced by the four typical discharge models in the laboratory were firstly decomposed by VMD and several band-limited intrinsic mode functions (BLIMFs) with information of different frequency-bands were extracted. Original characteristic quantities are produced by MPE of intrinsic mode functions. Based on this, dimension reduction of feature vectors was carried out by max-relevance and min-redundancy criteria (mRMR). Support vector machine (SVM) classifiers are then utilized for pattern recognition. The difference of complexity of noisy PD signal could be described more accurately by MPE feature with strong robustness high recognition rate.

      transformer;partial discharge;feature extraction;variational mode decomposition;multi-scale permutation entropy

      2016-01-28.

      10.3969/j.ISSN.1007-2691.2016.06.06

      TM85

      A

      1007-2691(2016)06-0031-07

      張蒙(1990-),男,碩士研究生,主要研究方向為電力設(shè)備在線監(jiān)測與故障診斷;朱永利(1963-),男,教授,博士生導(dǎo)師,主要研究方向為輸變電設(shè)備在線監(jiān)測、智能分析與智能電網(wǎng)。

      猜你喜歡
      變分電信號特征提取
      基于聯(lián)合聚類分析的單通道腹部心電信號的胎心率提取
      逆擬變分不等式問題的相關(guān)研究
      求解變分不等式的一種雙投影算法
      基于Code Composer Studio3.3完成對心電信號的去噪
      科技傳播(2019年24期)2019-06-15 09:29:28
      基于Daubechies(dbN)的飛行器音頻特征提取
      電子制作(2018年19期)2018-11-14 02:37:08
      關(guān)于一個約束變分問題的注記
      基于隨機森林的航天器電信號多分類識別方法
      Bagging RCSP腦電特征提取算法
      一個擾動變分不等式的可解性
      基于MED和循環(huán)域解調(diào)的多故障特征提取
      准格尔旗| 阜平县| 双江| 昌黎县| 屏东县| 武穴市| 鲁甸县| 营口市| 文登市| 宜川县| 云霄县| 靖远县| 西宁市| 和政县| 宜良县| 康乐县| 扬中市| 伊吾县| 宁晋县| 和龙市| 大埔县| 宁强县| 盐源县| 扶沟县| 西吉县| 东乌珠穆沁旗| 乌兰浩特市| 潜山县| 铜山县| 高平市| 阿坝县| 桓台县| 义马市| 奉化市| 包头市| 建昌县| 赫章县| 乐清市| 汨罗市| 南召县| 册亨县|