王 彬,周壽明,宋雪珠
?
高階雙組分Camasss-Holm系統(tǒng)解的H?lder連續(xù)性
王 彬,周壽明*,宋雪珠
(重慶師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,重慶 401331)
由于高階雙組分Camassa-Holm系統(tǒng)是局部適定的,故該系統(tǒng)的解是連續(xù)依賴于初值條件的﹒本文根據(jù)局部適定性的結(jié)果,利用索伯列夫不等式和能量估計(jì)方法,首先給出高階雙組分Camassa-Holm系統(tǒng)解的一個(gè)先驗(yàn)估計(jì);然后依據(jù)先驗(yàn)估計(jì)和索伯列夫插值公式,推導(dǎo)得出高階雙組分Camassa-Holm系統(tǒng)的解是H?lder連續(xù)的﹒
高階雙組分Camassa-Holm系統(tǒng);索伯列夫空間;H?lder連續(xù)
考慮如下高階雙組分Camassa-Holm系統(tǒng)
最近Escher和Lyons[1]提出了系統(tǒng)(1),并給出了爆破準(zhǔn)則.在Besov空間
中,Chen和Zhou[2]依據(jù)運(yùn)輸方程理論和Littlewood-Paley分解理論得到了系統(tǒng)(1)的局部適定性.更進(jìn)一步,He和Yin[3]在Besov空間
本文先給出索伯列夫空間中的一些不等式,然后再給出一個(gè)先驗(yàn)估計(jì).
式(5)右邊第1個(gè)積分可寫成如下的形式
對(duì)上式應(yīng)用柯西不等式和引理1.2(ii),可得
再應(yīng)用分部積分和引理1.1(i)有
根據(jù)式(6)和式(7)則有
接下來(lái)估計(jì)式(5)第2個(gè)積分,為了簡(jiǎn)便,本文只估計(jì)第一項(xiàng)和最后一項(xiàng).首先
最后估計(jì)式(5)右邊最后1個(gè)積分,即
顯然,可以把式(14)右邊第1個(gè)積分寫成如下的形式
對(duì)上式應(yīng)用柯西不等式和引理1.2(iii),可得
應(yīng)用分部積分和柯西不等式有
根據(jù)式(15)和式(16)有
可估計(jì)式(14)右邊的第1個(gè)積分,即
根據(jù)式(13)和式(19)可得
則有
因此,證明了定理1.
顯然,式(25)右邊第1個(gè)積分可寫成如下的形式
應(yīng)用引理1.2(iii),估計(jì)上式右邊第1個(gè)積分得
聯(lián)合式(26)和式(27)可得
對(duì)式(25)右邊的第2個(gè)積分,本文只估計(jì)第一項(xiàng)和最后一項(xiàng),因此應(yīng)用引理1.1(ii)可得
類似的,應(yīng)用引理1.3可得
聯(lián)合式(29)和式(30)可得
對(duì)式(25)右邊最后1個(gè)積分,有
聯(lián)合式(25)、式(28)、式(31)和式(32)有
對(duì)式(24)也可以應(yīng)用類似的方法得到
因此有
根據(jù)定理1有
[1]ESCHER J, LYONS T, Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach [J]. Journal of Geometric Mechanics, 2015, 7(3): 281-293.
[2]HE H J, YIN Z Y. On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators[J]. Discrete & Continuous Dynamical Systems - Series A (DCDS-A), 2017, 37(3): 1509- 1537.
[3]CHEN R, ZHOU S M. Well-posedness and persistence properties for two-component higher order Camassa–Holm systems with fractional inertia operator[J]. Nonlinear Analysis Real World Applications, 2017, 33: 121-138.
[4]KATO T, PONCE G. Commutator estimates and the Euler and Navier-Stokes equations[J]. Communications on Pure & Applied Mathematics, 1988, 41(7): 891-907.
[5]HIMONAS A A, HOLMES J. H?lder continuity of the solution map for the Novikov equation[J]. Journal of Mathematical Physics, 2013, 54(6): 319-361.
[6]TAYLOR M. Commutator estimates[J]. Proceedings of the American Mathematical Society, 2003, 131(5): 1501-1507.
[7]HIMONAS A A, MANTZAVINOS D. H?lder continuity for the Fokas-Olver-Rosenau-Qiao equation[J]. Journal of Nonlinear Science, 2014, 24(6): 1105-1124.
[8]BAHOURI H, CHEMIN J Y, DANCHIN R. Fourier analysis and nonlinear partial differential equations[M]. Berlin: Springer, 2011.
(責(zé)任編校:龔倫峰)
H?lder Continuity for a Two-component High-orderCamassa-Holm System
WANG Bin, ZHOU Shouming*, SONG Xuezhu
(College of Mathematics Science, Chongqing Normal University, Chongqing 401331, China)
From the local well-posedness results of the two-component high-order Camassa-Holm system we know that its solutions depend continuously on their initial data. Based on local well-posedness, we obtain that a priori estimate by Sobolev inequality and energy method. Furthermore, applying interpolation properties of the Sobolev spaces and a priori estimate, we prove that the solution map for the two-component high-order Camassa-Holm system is H?lder continuous.
two-component high-order Camassa-Holm system; Sobolev space; H?lder continuity
TK22
A
10.3969/j.issn.1672-7304.2017.06.0010
1672–7304(2017)06–0046–04
2017-10-27
重慶師范大學(xué)科研創(chuàng)新項(xiàng)目(YKC17015)
王彬(1992- ),男,重慶人,碩士研究生,主要從事偏微分方程研究﹒E-mail: wangbin7568@163.com﹒
通訊作者簡(jiǎn)介:周壽明(1983- ),男,湖北黃岡人,副教授,博士,碩士生導(dǎo)師,主要從事偏微分方程研究﹒E-mail: zhoushouming76@163.com