董 磊,龔 磊,林 莉,馮 雪,李青云
(1.長(zhǎng)江水利委員會(huì)長(zhǎng)江科學(xué)院流域水環(huán)境研究所,湖北 武漢 430010; 2.長(zhǎng)江水利委員會(huì)長(zhǎng)江科學(xué)院流域水資源與生態(tài)環(huán)境科學(xué)湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430010;3.長(zhǎng)江水利委員會(huì)長(zhǎng)江科學(xué)院黨群辦公室,湖北 武漢 430010)
?
董 磊1,2,龔 磊3,林 莉1,2,馮 雪1,2,李青云1,2
(1.長(zhǎng)江水利委員會(huì)長(zhǎng)江科學(xué)院流域水環(huán)境研究所,湖北 武漢 430010; 2.長(zhǎng)江水利委員會(huì)長(zhǎng)江科學(xué)院流域水資源與生態(tài)環(huán)境科學(xué)湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430010;3.長(zhǎng)江水利委員會(huì)長(zhǎng)江科學(xué)院黨群辦公室,湖北 武漢 430010)
凹凸棒土理想結(jié)構(gòu)式是[Mg5][Si8O20](OH)2(OH2)4·4H2O,屬于含水富鎂鋁硅酸鹽纖維狀黏土礦物[13],直徑一般為20~50 nm,長(zhǎng)幾百納米至幾微米,是天然的納米材料。凹凸棒土內(nèi)部具有發(fā)育的微孔孔道,其成分、形態(tài)、結(jié)構(gòu)、物理化學(xué)性質(zhì)都比較特殊。凹凸棒土的吸附性與比表面積成正相關(guān),將其進(jìn)行酸改性或熱活化均可增大比表面積。酸改性可使凹凸棒土的八面體層不斷溶解,進(jìn)而提高礦物的微孔隙及微孔比表面積,增強(qiáng)凹凸棒土的吸附性能[14]。熱改性可使凹凸棒土內(nèi)部的有機(jī)質(zhì)及其部分礦物質(zhì)分解,孔道變得疏松,孔隙容積和比表面積增加,其吸附性隨之增強(qiáng)[15]。
基于對(duì)凹凸棒土的獨(dú)特結(jié)構(gòu)和吸附性能的認(rèn)識(shí),許多學(xué)者將凹凸棒土作為吸附劑進(jìn)行了深入的研究[16-19]。王金明等[16-17]分別用酸、微波加熱等方法對(duì)凹凸棒土進(jìn)行改性,用于吸附核素Sr2+、苯酚。Sanchez等[18-19]對(duì)凹凸棒土進(jìn)行改性,并對(duì)改性后的吸附性能進(jìn)行研究。總體而言,凹凸棒土具有結(jié)構(gòu)獨(dú)特和吸附性能良好的優(yōu)點(diǎn),已經(jīng)取得的成果表明凹凸棒土是一種優(yōu)良的水處理吸附劑,特別是經(jīng)過(guò)改性后的凹凸棒土吸附性能更佳。
1.1 試驗(yàn)材料
實(shí)驗(yàn)所用凹凸棒土由江蘇玖川納米材料科技發(fā)展有限公司提供。硝酸鉀、亞硝酸鈉、氫氧化鈉、硫酸鋅、碘化鉀、碘化汞、酒石酸鉀鈉、硼氫化鈉、無(wú)水乙醇、氨基磺酸、4-氨基苯磺酸胺、N-(1-萘基)-乙二胺二鹽酸鹽、六水合氯化鐵、六偏磷酸鈉等均為分析純,實(shí)驗(yàn)用水為脫氧去離子水。
1.2 試驗(yàn)儀器
萬(wàn)分之一電子天平(美國(guó)DENVER,TP-21);低速臺(tái)式離心機(jī)(上海安亭科學(xué),TDL-40B);紫外可見(jiàn)分光光度計(jì)(日本島津,UV2600);電熱鼓風(fēng)干燥箱(上海博迅實(shí)業(yè),BGZ-240);多參數(shù)分析儀(上海雷磁,DZB-718);水浴恒溫振蕩器(江蘇金壇普天,SHY-2A);冷凍干燥機(jī)(美國(guó) GOLD SIM,FD5-3B)。
1.3 改性凹凸棒土、納米鐵和復(fù)合材料的制備方法
1.3.1 凹凸棒土的提純
凹凸棒土研磨過(guò)200目篩后,將凹凸棒土配成懸浮液,在懸浮液中加入六偏磷酸鈉作為分散劑[20-21],磁力攪拌,50℃下超聲波處理后靜置,取上層乳白色懸浮液離心處理,將離心后的沉淀物在105℃條件下干燥6 h后研磨過(guò)200目篩,得到提純后凹凸棒土。
1.3.2 凹凸棒土的酸改性
相關(guān)研究采用不同濃度的鹽酸對(duì)凹凸棒土進(jìn)行酸處理[22-23]。本試驗(yàn)優(yōu)化后采用濃度為1 mol/L的鹽酸對(duì)提純后凹凸棒土酸改性,凹凸棒土與鹽酸的固液比為1∶10。磁力攪拌,50℃超聲波處理,離心過(guò)濾,離心后的沉淀物采用去離子水洗滌,洗滌至中性,然后將所得沉淀物在105℃條件下干燥并過(guò)200目篩,得到粒徑不大于200目的酸改性凹凸棒土。
1.3.3 凹凸棒土的熱改性
相關(guān)研究表明對(duì)凹凸棒土進(jìn)行熱活化改性時(shí)不宜超過(guò)500℃,且活化時(shí)間3 h較為合適[24-25]。因此,本試驗(yàn)對(duì)提純后的凹凸棒土進(jìn)行熱改性時(shí),焙燒溫度設(shè)置為100~500℃,焙燒時(shí)間3 h,冷卻后,過(guò)200目篩,得到粒徑不大于200目的熱改性凹凸棒土。
1.3.4 復(fù)合材料和納米鐵的制備
復(fù)合材料和納米鐵均采用液相還原法制備,參考相關(guān)文獻(xiàn)[26-27],稱(chēng)取2 g純化改性凹凸棒土,用50 mL的去離子水和乙醇混合溶液(體積比4∶1)溶解,按質(zhì)量比為1∶10、1∶5、1∶3、1∶2、1∶1加入六水合氯化鐵,攪拌2 h;并向其中滴加100 mL一定濃度的KBH4溶液,滴加速度控制在0.2 mL/s左右,反應(yīng)完畢后繼續(xù)攪拌1 h,保證KBH4與Fe3+充分反應(yīng),反應(yīng)見(jiàn)式(1),整個(gè)試驗(yàn)過(guò)程均在氬氣保護(hù)下進(jìn)行。
12H++6H2
(1)
反應(yīng)結(jié)束后,離心過(guò)濾,所得沉淀物用乙醇洗滌3~4次,再真空過(guò)濾干燥。納米鐵在相同條件下制備,但不加純化改性的凹凸棒土。復(fù)合材料和納米鐵均儲(chǔ)存于密封棕色玻璃瓶(通氬氣除氧)。
1.4 試驗(yàn)方法
試驗(yàn)中用錫紙包覆反應(yīng)離心管,避免光照,以模擬地下水的黑暗環(huán)境;向反應(yīng)溶液中通氬氣,去除反應(yīng)溶液中的DO以模擬地下水DO環(huán)境。
1.4.1 改性凹凸棒土選擇試驗(yàn)
1.4.2 復(fù)合材料制備試驗(yàn)
2.1 復(fù)合材料的制備及性能
2.1.1 凹凸棒土改性條件的確定
圖1 3種改性條件下凹凸棒土對(duì)去除率
圖2 不同焙燒溫度下凹凸棒土對(duì)的吸附性能
圖3 4種改性條件下凹凸棒土對(duì)去除率
綜上,本研究選用的凹凸棒土采用先提純,后熱活化的方式進(jìn)行改性,熱活化條件:焙燒溫度270℃,焙燒時(shí)間3 h。
2.1.2 復(fù)合材料制備方案的確定
圖4 不同質(zhì)量比下復(fù)合材料對(duì)去除率
圖5 不同材料下“三氮”變化情況
圖6 反應(yīng)過(guò)程中溶液pH值變化
圖7 DO對(duì)去除率及其還原產(chǎn)物生成率的影響
圖8 光照對(duì)去除率及其還原產(chǎn)物生成率的影響
(2)
(3)
(4)
2 Fe0+2H2O+O2→2Fe(OH)2
(5)
4Fe(OH)2+O2+2H2O→4Fe(OH)3
(6)
圖9 溫度對(duì)去除率及其還原產(chǎn)物生成率的影響
Fe0+2H2O→Fe2++H2+2OH-
(7)
(8)
(9)
a. 確立凹凸棒土改性條件、凹凸棒土與六水合氯化鐵最佳質(zhì)量比等關(guān)鍵試驗(yàn)參數(shù),優(yōu)化了復(fù)合材料制備方案;復(fù)合材料較單獨(dú)納米鐵穩(wěn)定性好,不易凝聚成團(tuán),不容易被氧化。
[ 1 ] RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes [J]. Water Research, 2008, 42 (16): 4215-4232.
[ 2 ] KAPOOR A, VIRARAGHAVAN T. Nitrate removal from drinking water-review [J]. Journal of Environmental Engineering, 1997, 123(4): 371-380.
[ 3 ] CHO D W, SONG H, SCHWARTZ F W, et al. The role of magnetite nanoparticles in the reduction of nitrate in groundwater by zero-valent iron [J]. Chemosphere, 2015, 125(5): 41-49.
[ 4 ] LIN Xiurong, CAO Lixiang, XIONG Jian, et al. Interactions of denitrifying bacteria, actinomycetes, and fungi on nitrate removal in mix-culturing systems [J]. Water Air and Soil Pollution, 2012, 223(6): 2995-3007.
[ 5 ] SCHMIDT C A, CLARK M W. Efficacy of a denitrification wall to treat continuously high nitrate loads [J]. Ecological Engineering, 2012, 42(3): 203-211.
[ 6 ] WESTERHOFF P, JAMES J. Nitrate removal in zero-valent iron packed columns [J]. Water Research, 2003, 37(8): 1818-1830.
[ 7 ] BUROW K R, NOLAN B T, RUPERT M G, et al. Nitrate in groundwater of the United States, 1991-2003 [J]. Environmental Science & Technology, 2010, 44(13): 4988-4997.
[ 8 ] ZHANG Huan, JIN Zhaohui, HAN Lu, et al. Synthesis of nanoscale zero valent iron supported on exfoliated graphite for removal of nitrate [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(s1): 345-349.
[ 9 ] 李鐵龍, 孫麗莉, 金朝暉, 等. 納米鐵系雙金屬?gòu)?fù)合材料還原水中硝酸鹽氮[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版), 2009, 39(2): 362-367.(LI Tielong, SUN Lili, JIN Zhaohui, et al. Nitrate reduction in water by iron-system bimetallic nanoparticles [J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(2): 362-367.(in Chinese))
[10] GMEZA M, HONTORIA E, GONZALEZ-LOPEZ J. Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter [J]. Journal of Hazardous Materials, 2002, 90(3): 267-278.
[11] 王玉煥, 廉新穎, 李秀金, 等. 地下水環(huán)境因素對(duì)包覆型納米鐵降解NO-3-N的影響[J]. 環(huán)境科學(xué)研究, 2014, 27(11): 1367-1372.(WANG Yuhuan, LIAN Xinying, LI Xiujin, et al. Effects of groundwater environmental factors on NO-3-N reduction using coated nano iron [J]. Research of Environmental Sciences, 2014, 27(11): 1367-1372.(in Chinese))
[12] FATEMINIA F S, FALAMAKI C. Zero valent nano-sized iron clinoptilolite modified with zero valent copper for reductive nitrate removal[J]. Process Safety and Environmental Protection, 2013, 91(4): 304-310.
[13] 仰榴青. 國(guó)產(chǎn)凹凸棒土的研究[J]. 江蘇理工大學(xué)學(xué)報(bào), 1995, 16(1): 55-60.(YANG Liuqing. Study on chinese attapulgites [J]. Journal of Jiangsu University of Science and Technology, 1995, 16(1): 55-60.(in Chinese))
[14] 張秀麗, 王明珊, 廖立兵. 凹凸棒石吸附地下水中氨氮的實(shí)驗(yàn)研究[J].非金屬礦, 2010, 33(6): 64-67. (ZHANG Xiuli, WANG Mingshan, LIAO Libing. Experimental research on adsorption of ammonium nitrogen from groundwater by using attapulgite [J]. Non-Metallic Mines, 2010, 33(6): 64-67.(in Chinese))
[15] 陳天虎, 王健, 慶承松, 等. 熱處理對(duì)凹凸棒石結(jié)構(gòu)、形貌和表面性質(zhì)的影響[J]. 硅酸鹽學(xué)報(bào), 2006, 34(11): 1406-1410. (CHEN Tianhu, WANG Jian, QING Chengsong, et al. Effect of heat treatment on structure, morphology and surface properties of palygorskite [J]. Journal of the Chinese Ceramic Society, 2006, 34(11): 1406-1410.(in Chinese))
[16] 王金明, 易發(fā)成. 改性凹凸棒石對(duì)模擬核素Sr2+的吸附性能的研究[J]. 水處理技術(shù), 2006, 32(10): 207-214.(WANG Jinming, YI Facheng. Studies on adsorption capacity of modified attapulgite to simulated nuclide strontium [J]. Technology of Water Treatment, 2006, 32(10): 207-214.(in Chinese))
[17] 齊治國(guó), 史高峰, 白利民. 微波改性凹凸棒石黏土對(duì)廢水中苯酚的吸附研究[J]. 非金屬礦, 2007, 30(4): 56-59. (QI Zhiguo, SHI Gaofeng, BAI Limin. Study on absorption of phenol in wastewater by microwave modified attapulgite clay [J]. Non-Metallic Mines, 2007, 30(4): 56-59.(in Chinese))
[18] SANCHEZ M J, RODRIGUEZ-CRUZ M S, ANDRADES M S, et al. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobicity [J]. Applied Clay Science, 2006, 31(3-4): 216-228.
[19] VICO L I, ACEBAL S G. Some aspects about the adsorption of quinoline on fibrous silicates and patagonian saponite [J]. Applied Clay Science, 2006, 33(2): 142-148.
[20] 金葉玲, 陳靜, 錢(qián)運(yùn)華, 等. 超聲水熱法制備高純超細(xì)凹凸棒石黏土[J]. 非金屬礦, 2005, 28(3): 42-44. (JIN Yeling, CHEN Jing, QIAN Yunhua, et al. Preparing ultrafine & pure attapulgite clay by ultrasonic water-heat method[J]. Non-Metallic Mines, 2005, 28(3): 42-44.(in Chinese))
[21] 劉 蓉, 胡 盛, 楊 眉. 六偏磷酸鈉提純凹凸棒石的試驗(yàn)研究[J]. 非金屬礦, 2010, 33 (3): 39-41. (LIU Rong, HU Sheng, YANG Mei. Study on purification of attapulgite by sodium hexametahposphate [J]. Non-Metallic Mines, 2010, 33 (3): 39-41.(in Chinese))
[22] BARRIOS M S, GONZALEZ L V, RODRIGUEZ M A, et al. Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties [J]. Applied Clay Science, 1995, 10(3): 247-258.
[23] FRINI-SRASRA N, SRASRA E. Acid treatment of south Tunisian palygorskite: removal of Cd(II) from aqueous and phosphoric acid solutions [J]. Desalination, 2010, 250(1): 26-34.
[24] WANG Wenji, CHEN Hao, WANG Aiqin. Adsorption charaeteristic of Cd(II) from aqueous solution onto activated palygorskite [J]. Separation and Purification Technology, 2007, 55(2): 157-164.
[25] 鄭建東, 常彬彬, 吳霖生. 高溫改性凹凸棒石對(duì)Cr(VI)的吸附研究[J]. 化工新型材料, 2012, 40(12): 76-78.(ZHENG Jiandong, CHANG Binbin, WU Linsheng. Study on adsorption of Cr6+in solution with attapulgite clay modified at high temperature [J]. New Chemical Materials, 2012, 40(12): 76-78.(in Chinese))
[26] SHI Lina, ZHANG Xin, CHEN Zuliang. Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron [J]. Water Research, 2011, 45(2): 886-892.
[27] FU Rongbing, YANG Yingpin, XU Zhen, et al. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI) [J]. Chemosphere, 2015, 138: 726-734.
[28] HUANG C P, WANG H W, CHIU P C. Nitrate reduction by metallic iron [J]. Water Research, 1998, 32(8): 2257-2264.
[29] YANG G C, LEE H L. Chemical reduction of nitrate by nanosized iron: kinetics and pathways [J]. Water Research, 2005, 39(5): 884-894.
[30] RYU A, JEONG S W, JANG A, et al. Reduction of highly concentrated nitrate using nanoscale zero-valent iron: effects of aggregation and catalyst on reactivity [J]. Applied Catalysis B: Environmental, 2011, 105(1-2):128-135.
[31] 李培峰, 李文帥, 劉春穎, 等. 水體中亞硝酸鹽的光降解[J]. 環(huán)境化學(xué), 2011, 30(11): 1883-1888.(LI Peifeng, LI Wenshuai, LIU Chunying, et al. The photodecomposition of nitrite in water [J]. Environmental Chemistry, 2011, 30(11): 1883-1888.(in Chinese)
[32] 李鐵龍, 劉海水, 金朝暉, 等. 納米鐵去除水中硝酸鹽氮的批實(shí)驗(yàn)[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版), 2006, 36(2):264-268. (LI Tielong, LIU Haishui, JIN Zhaohui, et al. Batch experiment on reduction of nitrate in water by nanoscale zero valent iron particles [J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(2):264-268.(in Chinese)
[33] 廖娣劼, 楊琦, 尚海濤. 納米鐵去除水中硝酸鹽的動(dòng)力學(xué)研究[J]. 環(huán)境工程學(xué)報(bào), 2009, 3(6): 985-989.(LIAO Dijie, YANG Qi, SHANG Haitao, et al. Kinetics of removing nitrate by nanoscale zero-valent iron [J]. Chinese Journal of Environmental Engineering, 2009, 3(6): 985-989.(in Chinese)
[34] JIANG Zhenmao, LV Lu, ZHANG Weiming, et al. Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups [J]. Water Research, 2011, 45(6): 2191-2198.
[35] LIU H B, CHEN T H, CHANG D Y, et al. Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite [J]. Materials Chemistry and Physics, 2012, 133(1): 205-211.
Study of removal of nitrate nitrogen from groundwater using modified attapulgite-Fe nano composite material
DONG Lei1,2, GONG Lei3, LIN Li1,2, FENG Xue1,2, LI Qingyun1,2
(1.BasinWaterEnvironmentalResearchDepartment,ChangjiangRiverScientificResearchInstitute,ChangjiangWaterResourcesCommission,Wuhan430010,China; 2.KeyLabofBasinWaterResourceandEco-EnvironmentalScienceinHubeiProvince,ChangjiangRiverScientificResearchInstitute,ChangjiangWaterResourcesCommission,Wuhan430010,China; 3.PartyandMassLineOffice,ChangjiangRiverScientificResearchInstitute,ChangjiangWaterResourcesCommission,Wuhan430010,China)
In this study, we synthesized modified attapulgite-Fe nano composite material (A-NZVI) using the liquid-phase reduction method, and investigated the stability of A-NZVI and changes of three kinds of nitrogen (NO3--N, NH4+-N, and NO2--N) in the reaction process. We also analyzed the effects of groundwater environmental factors (dissolved oxygen, temperature, and light) on the removal of NO3--N with A-NZVI. In the simulation of groundwater environment, the three kinds of materials were ranked in the following descending order according to their reactivity in removing NO3--N: A-NZVI, nanoscale zero-valent iron, and modified attapulgite. The conversion rate of NH4+-N was low, with nearly no NO2--N generated, when using A-NZVI. Dissolved oxygen and temperature had significant influence on the removal of NO3--N from groundwater with A-NZVI. When in the light and dark environment, the removal rate of NO3--N and the amounts of generated NH4+-N and NO2--N had no significant difference. The findings of the study provided a theoretical basis and technical support for restoration projects for groundwater with NO3--N pollution.
groundwater; nitrate nitrogen; modified attapulgite-Fe nano composite material; environmental factor
10.3880/j.issn.1004-6933.2017.01.014
國(guó)家自然科學(xué)基金(41302204);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)項(xiàng)目(CKSF2014029/SH)
董磊(1987—),男,工程師,碩士,主要從事水環(huán)境治理。E-mail: dongleigushi@163.com
X523
A
1004-6933(2017)01-0067-08
2016-04-23 編輯:王 芳)