肖 麗, 楊 玲
(華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院 消化內(nèi)科, 武漢 430022)
腸道菌群與非酒精性脂肪性肝病的關(guān)系
肖 麗, 楊 玲
(華中科技大學(xué)同濟(jì)醫(yī)學(xué)院附屬協(xié)和醫(yī)院 消化內(nèi)科, 武漢 430022)
非酒精性脂肪性肝病(NAFLD)是一種常見(jiàn)的多因素參與的肝臟疾病,其發(fā)病率在全球逐漸上升。近年來(lái)發(fā)現(xiàn)腸道菌群參與了NAFLD的發(fā)生發(fā)展,從腸道菌群的影響因素、腸道菌群及其代謝產(chǎn)物在NAFLD發(fā)生發(fā)展中的作用等方面,綜述了腸道菌群與NAFLD的關(guān)系,指出針對(duì)腸道菌群及其代謝產(chǎn)物的干預(yù)策略可能是預(yù)防和治療NAFLD的新靶點(diǎn)。
腸道菌群; 脂肪肝; 代謝; 綜述
非酒精性脂肪性肝病(NAFLD)在世界范圍內(nèi)已成為慢性肝病的常見(jiàn)病因。研究顯示腸道菌群具有調(diào)控能量平衡和脂肪沉積的功能,一旦腸道菌群失調(diào)則可通過(guò)影響其代謝產(chǎn)物及腸道通透性加劇NAFLD的發(fā)生與進(jìn)展。
1.1 非酒精性脂肪性肝病(NAFLD) NAFLD作為一種獲得性代謝應(yīng)激性肝損傷,不但在中國(guó)已經(jīng)替代乙型肝炎成為最常見(jiàn)的慢性肝病[1],而且也逐漸成為美國(guó)肝移植的最主要病因之一[2]。NAFLD的危險(xiǎn)因素包括肥胖、2型糖尿病、血脂異常、代謝綜合征、年齡、性別等[3]。目前,NAFLD的發(fā)病機(jī)制尚不十分清楚,過(guò)去的“二次打擊學(xué)說(shuō)”被認(rèn)為是NAFLD發(fā)病機(jī)制的經(jīng)典學(xué)說(shuō),但近年研究更傾向于其發(fā)病機(jī)制是“多重打擊”的結(jié)果?!岸嘀卮驌簟卑ㄟz傳環(huán)境差異、胰島素抵抗、腸道菌群紊亂、慢性氧化應(yīng)激、脂質(zhì)代謝改變、炎癥細(xì)胞因子和脂肪因子與免疫的改變等[4]。
1.2 腸道菌群 腸道菌群是一個(gè)與宿主存在共生關(guān)系的復(fù)雜生態(tài)系統(tǒng),包含1000~1500種約10~100萬(wàn)億細(xì)菌,是人體細(xì)胞數(shù)量的10倍,是人體基因組的150倍。每個(gè)人至少有160種優(yōu)勢(shì)菌群,超過(guò)99%均為細(xì)菌,其中厚壁菌門(mén)和擬桿菌門(mén)是人類(lèi)腸道菌群中的2個(gè)主要菌門(mén),占有量>90%。其他豐度較低的門(mén)類(lèi)有放線(xiàn)菌門(mén)、變形菌門(mén)、疣微菌門(mén)和產(chǎn)甲烷古菌等[5]。在不同宿主個(gè)體間,不同微生物類(lèi)群的相對(duì)含量和菌株種類(lèi)存在很大差異。但是就個(gè)體而言,菌群的構(gòu)成隨著時(shí)間和環(huán)境的變化而保持相對(duì)穩(wěn)定[6]。影響微生物菌群差異的因素包括宿主的年齡、基因、生活環(huán)境、飲食習(xí)慣和抗生素的使用等。
1.3 腸-肝軸 1998年Marshall提出了“腸-肝軸”概念。前腸是肝和腸道共同的胚胎起源,二者在解剖和生物學(xué)功能上存在內(nèi)在聯(lián)系。解剖學(xué)上,肝和腸道通過(guò)門(mén)靜脈相互關(guān)聯(lián),肝臟70%~75%的血液供應(yīng)經(jīng)門(mén)靜脈來(lái)自于腸道,腸道的一系列細(xì)菌及其代謝產(chǎn)物以及環(huán)境毒素等通過(guò)門(mén)靜脈回流至肝臟。腸道菌群失調(diào)會(huì)導(dǎo)致腸道黏膜屏障受損,通透性增加,大量細(xì)菌及其代謝產(chǎn)物、細(xì)胞因子等經(jīng)門(mén)靜脈進(jìn)入肝臟,超出肝內(nèi)單核巨噬細(xì)胞系統(tǒng)的處理能力,引發(fā)細(xì)胞因子級(jí)聯(lián)反應(yīng),導(dǎo)致免疫反應(yīng)失控,引起大量炎癥介質(zhì)釋放,進(jìn)一步加重肝損傷及病情進(jìn)展[7]。這一系列免疫炎癥反應(yīng)導(dǎo)致NAFLD的發(fā)生和進(jìn)展。
影響腸道菌群失調(diào)的因素有很多,主要包括飲食、酒精、抗生素、遺傳基因等。
2.1 飲食 腸道菌群的構(gòu)成與飲食關(guān)系密切。飲食可快速有效地改變菌群的結(jié)構(gòu)和活性,短期內(nèi)完全進(jìn)食動(dòng)物或植物膳食的個(gè)體間,菌群結(jié)構(gòu)及微生物基因表達(dá)存在顯著差異[8]。高脂飲食會(huì)減少菌群多樣性,增加厚壁菌門(mén)與擬桿菌門(mén)的比率,顯著提高腸道能量收獲效率,上調(diào)小腸脂質(zhì)代謝相關(guān)基因水平[9]。
2.2 酒精 酒精與小腸細(xì)菌過(guò)度生長(zhǎng)、腸道通透性增加、微生物產(chǎn)物移位、增加血清水平和IgA的肝沉積有關(guān)[10]。研究[11]顯示酒精處理的小鼠腸道菌群的厚壁菌門(mén)豐度減少,擬桿菌門(mén)和疣微菌門(mén)的相對(duì)豐度增加。移植來(lái)自嚴(yán)重酒精性肝病患者的腸道菌群的小鼠表現(xiàn)出更嚴(yán)重的肝臟炎癥,其肝內(nèi)T淋巴細(xì)胞亞群和自然殺傷細(xì)胞數(shù)目增加,肝壞死更嚴(yán)重,腸通透性更高,細(xì)菌更易移位[12]。對(duì)患有酒精性肝硬化受試者的糞便微生物群的16S rRNA基因進(jìn)行分析[13],與健康對(duì)照受試者比較,結(jié)果顯示擬桿菌屬豐度降低,變形桿菌屬和梭桿菌屬的豐度增加。由此可知,酒精可以改變腸道微生物組成,增加腸道通透性和菌群移位。
2.3 抗生素 廣泛使用抗生素可導(dǎo)致共生細(xì)菌內(nèi)的抗生素抗性基因的豐度增加,并可以轉(zhuǎn)移到入侵的病原體,使得細(xì)菌感染的治療復(fù)雜化[14]。在C57B/L6J小鼠模型中,早期使用抗生素可以通過(guò)改變腸道菌群的構(gòu)成來(lái)影響宿主的能量代謝和脂肪沉積[15]。作為人類(lèi)抗生素治療的結(jié)果,腸道菌群整體多樣性的喪失和某些情況下單細(xì)菌群的丟失,可能與增加胃腸道感染以及幼兒的體質(zhì)量和肥胖有關(guān)。
2.4 遺傳基因 宿主基因?qū)δc道菌群的構(gòu)成有重要影響。小鼠和人類(lèi)的微生物組具有大量的直系同源基因,小鼠的數(shù)量性狀基因座分析揭示了調(diào)節(jié)菌群組成的特定基因區(qū)域的存在[16]。宿主遺傳基因影響人類(lèi)腸道微生物組的組成,隨之影響宿主代謝[17]。Folseraas等[18]研究發(fā)現(xiàn)基因FUT2與厚壁菌門(mén)豐度的明顯增加和變形菌門(mén)的顯著減少相關(guān)聯(lián)。Knights等[19]發(fā)現(xiàn)NOD2基因變異增加腸道腸桿菌科,而NOD2基因多態(tài)性可增加NAFLD肝移植患者的病死率[20]。
2.5 其他 如年齡、環(huán)境、免疫、外傷、感染等因素均可導(dǎo)致菌群失調(diào)。
3.1 腸道菌群通過(guò)其代謝產(chǎn)物介導(dǎo)NAFLD
3.1.1 短鏈脂肪酸增加 腸道菌群如變形菌門(mén)、厚壁菌門(mén)通過(guò)發(fā)酵人體難以消化的碳水化合物而產(chǎn)生短鏈脂肪酸(short chain fatty acids,SCFAs)(包含醋酸鹽,丙酸鹽,丁酸鹽),正常菌群每天可以產(chǎn)生50~100 mmol/L。SCFAs對(duì)能量代謝、免疫和脂肪組織擴(kuò)張有重要作用。例如乙酸鹽和丙酸鹽作為肝臟能量合成的底物,分別在肝臟脂肪生成和糖異生中具有重要作用[21],尤其是乙酸鹽可作為膽固醇或脂肪酸合成的前體。SCFAs可以供應(yīng)肝臟30%的能量。丙酸對(duì)體內(nèi)的β細(xì)胞功能有有益的影響,通過(guò)抑制β細(xì)胞凋亡來(lái)增強(qiáng)葡萄糖刺激的胰島素釋放和維持β細(xì)胞數(shù)量[22]。丁酸鹽可能誘導(dǎo)調(diào)節(jié)性T淋巴細(xì)胞的分化,通過(guò)調(diào)節(jié)黏膜T淋巴細(xì)胞抑制炎癥,口服丁酸鈉可抑制小鼠肝臟炎癥,從而防止非酒精性脂肪性肝炎(NASH)的發(fā)展[23]。腸道菌群紊亂后,可發(fā)酵產(chǎn)生SCFAs的菌群增加,從而向肝臟供應(yīng)更多的能量,隨糞便排出的能量損失就會(huì)減少。例如,在ob/ob脂肪肝小鼠盲腸中SCFAs的濃度增加,糞便中的能量含量降低[24]。在超重和肥胖人群中也觀(guān)察到SCFAs的增加[25]。在控制NAFLD患者BMI和膳食脂肪攝入后,脂肪性肝炎的發(fā)生與厚壁菌門(mén)比例增加,擬桿菌門(mén)比例減少有關(guān)[26]。擬桿菌門(mén)的重要性在于其主要促進(jìn)SCFAs的產(chǎn)生,糞便擬桿菌減少20%且厚壁菌門(mén)相應(yīng)增加,與能量收獲相應(yīng)增加150 kCal有關(guān)[27]。
SCFAs受體主要包括G蛋白偶聯(lián)受體GPR41(FFA3)和GPR43(FFA2),可由腸內(nèi)分泌細(xì)胞和胰島素β細(xì)胞分泌。這些受體的激活刺激胃腸激素肽YY釋放,減慢胃排空和腸道運(yùn)輸,進(jìn)而增強(qiáng)營(yíng)養(yǎng)吸收[28]。脂肪細(xì)胞中GPR41和GPR43的激活可抑制脂肪分解并促進(jìn)脂肪細(xì)胞分化,此外GPR43也存在于腸道的嗜中性粒細(xì)胞中,增加腸道炎癥和通透性,因此可能促進(jìn)NASH進(jìn)展[29]。事實(shí)上,SCFAs除了引起肥胖之外還存在有益的作用,如免疫調(diào)節(jié),增強(qiáng)腸屏障功能,作為組蛋白脫乙酰酶1抑制劑減少脂肪生成基因的表達(dá)[30],使脂肪組織及肝組織由脂肪生成向脂肪酸氧化轉(zhuǎn)變[31]。
3.1.2 改變膽堿代謝 膽堿是一類(lèi)參與發(fā)生機(jī)體生化反應(yīng)和維持生物膜功能的重要營(yíng)養(yǎng)物。眾所周知,飲食膽堿缺乏和肝臟疾病有密切聯(lián)系。因膽堿缺乏飲食可重現(xiàn)NAFLD患者的許多臨床表型(甘油三酯增加、肝脂肪變性、炎癥、纖維化及肝硬化),故一直被用于研究NAFLD的發(fā)生機(jī)制[32]。最近的研究[33]顯示腸道菌群失調(diào)后可使膽堿轉(zhuǎn)化為毒性甲胺,減少血液中磷脂酰膽堿水平,降低膽堿的生物利用率,同時(shí)肝臟可將甲胺代謝為三甲胺N-氧化物(另一種有毒的代謝物)使宿主暴露于炎性毒性代謝物中,產(chǎn)生與膽堿缺乏飲食相類(lèi)似的肝臟表現(xiàn)。腸道菌群紊亂后三甲胺N-氧化物產(chǎn)量明顯增加,這也可能是NAFLD常常伴隨心血管疾病的一個(gè)重要機(jī)制[34-35]。對(duì)15例飲食膽堿缺乏婦女腸道菌群的宏基因組分析研究[36]顯示γ-變形菌綱細(xì)菌豐度增加和厚壁菌門(mén)丹毒絲菌綱細(xì)菌豐度減少,小鼠實(shí)驗(yàn)揭示菌群構(gòu)成的改變可能與膽堿損耗和毒性甲胺增加有關(guān)。
3.1.3 影響膽汁酸池 在肝細(xì)胞內(nèi),膽汁酸以膽固醇為原料經(jīng)一系列酶促反應(yīng)合成,與甘氨酸或?;撬峤Y(jié)合,分泌到膽汁中并釋放入小腸。腸道菌群對(duì)于膽汁酸的轉(zhuǎn)化必不可少,并通過(guò)肝腸循環(huán)影響膽汁酸池的構(gòu)成和質(zhì)量來(lái)控制宿主的代謝活性[37]。在腸道菌群的作用下,初級(jí)膽汁酸7α-羥基脫氧后生成次級(jí)膽汁酸,即脫氧膽酸和石膽酸,多種腸道細(xì)菌的膽汁酸鹽水解酶參與結(jié)合型膽汁酸的解離。膽汁酸不僅在脂肪吸收、轉(zhuǎn)運(yùn)和分配中發(fā)揮重要作用,也被認(rèn)為是一種重要的細(xì)胞信號(hào)分子激活核受體,繼而調(diào)節(jié)膽汁酸和膽固醇的代謝,甚至影響腸道微生物組[38]。腸道菌群通過(guò)膽汁酸受體法尼醇X受體(FXR)、G蛋白偶聯(lián)膽汁酸受體TGR5等調(diào)節(jié)膽汁酸代謝,并且參與有關(guān)膽汁酸合成、代謝和重吸收的基因表達(dá)。FXR負(fù)性調(diào)節(jié)脂肪在肝臟中的合成以及甘油三酯的輸出和轉(zhuǎn)運(yùn)[39]。當(dāng)初級(jí)膽汁酸與FXR結(jié)合后會(huì)抑制膽汁酸合成,并使糖代謝受損[40]。FXR激活后上調(diào)成纖維生長(zhǎng)因子FGF19表達(dá),F(xiàn)GF19通過(guò)CYP7A1信號(hào)轉(zhuǎn)導(dǎo)抑制肝膽汁酸合成[41]。令人驚訝的是,F(xiàn)ang等[42]利用選擇性腸道FXR激活劑fexaramine,強(qiáng)烈誘導(dǎo)腸道FGF15表達(dá),但不激活肝臟中FXR的靶基因。與全身性FXR激活相比,研究者[43]發(fā)現(xiàn)fexaramine可減少飲食導(dǎo)致的體質(zhì)量增加、全身炎癥、肝糖異生,同時(shí)增強(qiáng)白色脂肪組織的產(chǎn)熱和褐變,結(jié)果表明膽汁酸受體的激活能夠改善NAFLD組織學(xué)表現(xiàn),組織選擇性FXR激活可能是治療肥胖癥和代謝綜合征頗具前景的新靶點(diǎn)。TGR5刺激胰高血糖素樣肽分泌,與次級(jí)膽汁酸結(jié)合后可促進(jìn)糖代謝,改善糖類(lèi)代謝平衡。因此,腸道菌群可通過(guò)膽汁酸代謝和FXR/TGR5信號(hào)轉(zhuǎn)導(dǎo)途徑調(diào)控NAFLD的發(fā)生與發(fā)展。
3.1.4 增加內(nèi)源性乙醇量 NAFLD和酒精誘導(dǎo)的肝損傷有非常相似的組織學(xué)特征,并可能有共同的致病途徑。乙醇作為腸道菌群的代謝產(chǎn)物之一,也可能參與NAFLD的發(fā)生發(fā)展。Zhu等[44]通過(guò)檢測(cè)腸道微生物組成和乙醇水平在NASH、肥胖和健康兒童血液中的情況,發(fā)現(xiàn)NASH患者血液乙醇水平明顯升高,但健康組和肥胖組血液乙醇水平無(wú)明顯差異。進(jìn)一步分析發(fā)現(xiàn),NASH患者的腸道微生物組成中具有產(chǎn)乙醇功能的變形桿菌門(mén)腸桿菌科埃希氏桿菌屬較肥胖患者和健康對(duì)照顯著升高,提示產(chǎn)乙醇腸道菌群可能在NASH的發(fā)生中起重要作用。腸道生成的乙醇可能增加腸道通透性和脂多糖(LPS)水平,激活Toll樣受體(TLR)和炎癥小體,從而加重肝損傷[45]。當(dāng)然,乙醇被吸收之后也會(huì)直接損傷肝臟。但是Engstler 等[46]提供了一些證據(jù)反對(duì)內(nèi)源性乙醇理論,認(rèn)為不同組間門(mén)靜脈和胃腸道不同節(jié)段的食糜中乙醇水平是相近的,但與肥胖組相比,NAFLD的腔靜脈血漿中乙醇水平明顯升高,ob/ob小鼠乙醇脫氫酶活性明顯低于野生對(duì)照組,因此提出NAFLD患者血液中乙醇水平升高可能是胰島素依賴(lài)性的肝組織中乙醇脫氫酶活性受損造成的,而非由于內(nèi)源性乙醇合成增加。因此,酒精理論在不同研究者的結(jié)果中存在矛盾,需要更多的實(shí)驗(yàn)研究探討。
3.2 腸道菌群通過(guò)改變腸道通透性介導(dǎo)NAFLD 腸道菌群在維持腸道屏障的完整性中發(fā)揮重要作用。緊密連接(又稱(chēng)閉鎖小帶)通常位于上皮頂端兩相鄰細(xì)胞間,在緊密連接處的細(xì)胞質(zhì)膜幾乎融合并緊緊結(jié)合在一起,因此可以防御腸道微生物及其代謝產(chǎn)物進(jìn)入門(mén)靜脈系統(tǒng)。研究[47]發(fā)現(xiàn)腸上皮通透性受損的小鼠在高飽和脂肪酸、高果糖與高膽固醇飲食8周后比對(duì)照組小鼠形成更嚴(yán)重的脂肪性肝炎。Miele等[48]發(fā)現(xiàn)NAFLD患者活組織檢查標(biāo)本確實(shí)存在腸道屏障中斷及小腸細(xì)菌過(guò)度生長(zhǎng)增加的證據(jù),證明菌群失調(diào)會(huì)破壞腸屏障完整性以及腸上皮通透性受損在NAFLD發(fā)病機(jī)制中的潛在作用。在NASH模型中,增加的腸上皮通透性與血清內(nèi)毒素增加相關(guān)。在小鼠中低劑量LPS持續(xù)皮下注射四周可導(dǎo)致肝臟脂肪沉積、胰島素抵抗、高脂血癥、脂肪組織巨噬細(xì)胞浸潤(rùn)以及肥胖,這些表現(xiàn)類(lèi)似于高脂飲食喂養(yǎng)的小鼠[49]。但是用抗生素或益生菌處理高脂飲食喂養(yǎng)的小鼠或TLR4(可直接與LPS結(jié)合)敲除的小鼠,上述表現(xiàn)則會(huì)減輕或消失[50]。以上研究結(jié)果表明菌群失調(diào)和腸上皮屏障受損可促進(jìn)NASH的發(fā)展。
3.3 腸道菌群及其代謝產(chǎn)物介導(dǎo)NAFLD進(jìn)展的信號(hào)機(jī)制 細(xì)菌及其代謝產(chǎn)物移位后可能通過(guò)以下幾種機(jī)制促進(jìn)NAFLD的進(jìn)展。腸道通透性增加后,首先通過(guò)TLR識(shí)別移位細(xì)菌產(chǎn)物,如LPS、CpG DNA等,激活肝巨噬細(xì)胞和肝星狀細(xì)胞上的TLR2、3、4、9,誘導(dǎo)一系列細(xì)胞因子如IL-1β、IL-6、IL-12、IL-18、TGFβ1、TNFα,促進(jìn)肝脂肪變性、炎癥和纖維化[51-53]。相反,TLR5則能抵抗腸道菌群紊亂介導(dǎo)的肥胖、胰島素抵抗和肝脂肪變性[54]。此外,可能與核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白(nod-like receptor protein,NLRP)3及NLRP6炎性小體功能障礙有關(guān)。一方面腸道菌群代謝產(chǎn)物如LPS、飽和脂肪酸及DNA,可通過(guò)NOD樣受體激活NLPR3炎性小體,促進(jìn)caspase-1、IL-1β和IL-18產(chǎn)生,進(jìn)而促進(jìn)肝脂肪變性、炎癥、纖維化和胰島素抵抗[55-57];另一個(gè)方面,NLRP6炎性小體可調(diào)節(jié)結(jié)腸微生物群構(gòu)成、分布以及杯狀細(xì)胞黏蛋白顆粒的胞吐作用。NLRP6缺陷將會(huì)導(dǎo)致杯狀細(xì)胞自噬障礙,無(wú)法清除黏膜表面黏附的腸道病原體,導(dǎo)致持續(xù)感染[58-59]。
盡管有許多引人注目的發(fā)現(xiàn),但是目前關(guān)于腸道菌群失調(diào)影響NAFLD的機(jī)制尚未完全闡明。腸道中細(xì)菌的總量和分布(即細(xì)菌過(guò)度生長(zhǎng))是否增加,不同類(lèi)群的相對(duì)豐度及其代謝功能以及這些因素的綜合效應(yīng)在NAFLD發(fā)病機(jī)理中的作用尚未明晰;同時(shí)宿主的基因易感性、遺傳背景對(duì)腸道菌群的影響及在NAFLD發(fā)病及進(jìn)展中的作用,仍需進(jìn)一步探索,而相關(guān)機(jī)制的闡明將對(duì)未來(lái)通過(guò)調(diào)控腸道菌群預(yù)防和治療NAFLD提供新的思路與靶點(diǎn)。
[1] WANG FS, FAN JG, ZHANG Z, et al. The global burden of liver disease: the major impact of China[J]. Hepatology, 2014, 60(6): 2099-2108.
[2] WONG RJ, AGUILAR M, CHEUNG R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States[J]. Gastroenterology, 2015, 148(3): 547-555.
[3] STEPANOVA M, RAFIQ N, YOUNOSSI ZM. Components of metabolic syndrome are independent predictors of mortality in patients with chronic liver disease: a population-based study[J]. Gut, 2010, 59(10): 1410-1415.
[4] TILG H, MOSCHEN AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis[J]. Hepatology, 2010, 52(5): 1836-1846.
[5] QIN J, LI R, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
[6] COSTELLO EK, LAUBER CL, HAMADY M, et al. Bacterial community variation in human body habitats across space and time[J]. Science, 2009, 326(5960): 1694-1697.
[7] COMPARE D, COCCOLI P, ROCCO A, et al. Gut-liver axis: the impact of gut microbiota on non alcoholic fatty liver disease[J]. Nutr Metab Cardiovasc Dis, 2012, 22(6): 471-476.
[8] DAVID LA, MAURICE CF, CARMODY RN, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484): 559-563.
[9] de WIT N, DERRIEN M, BOSCH-VERMEULEN H, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(5): g589-g599.
[10] MORO-SIBILOT L, BLANC P, TAILLARDET M, et al. Mouse and human liver contain immunoglobulin a-secreting cells originating from Peyer′s patches and directed against intestinal antigens[J]. Gastroenterology, 2016, 151(2): 311-323.
[11] YAN AW, FOUTS DE, BRANDL J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease[J]. Hepatology, 2011, 53(1): 96-105.
[12] LLOPIS M, CASSARD AM, WRZOSEK L, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease[J]. Gut, 2016, 65(5): 830-839.
[13] CHEN Y, YANG F, LU H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis[J]. Hepatology, 2011, 54(2): 562-572.
[14] THIEMANN S, SMIT N, STROWIG T. Antibiotics and the intestinal microbiome: individual responses, resilience of the ecosystem, and the susceptibility to infections[J]. Curr Top Microbiol Immunol, 2016, 398: 123-146.
[15] COX LM, YAMANISHI S, SOHN J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences[J]. Cell, 2014, 158(4): 705-721.
[16] SRINIVAS G, MOLLER S, WANG J, et al. Genome-wide mapping of gene-microbiota interactions in susceptibility to autoimmune skin blistering[J]. Nat Commun, 2013, 4(9): 2462.
[17] GOODRICH JK, WATERS JL, POOLE AC, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4): 789-799.
[18] FOLSERAAS T, MELUM E, RAUSCH P, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci[J]. J Hepatol, 2012, 57(2): 366-375.
[19] KNIGHTS D, SILVERBERG MS, WEERSMA RK, et al. Complex host genetics influence the microbiome in inflammatory bowel disease[J]. Genome Med, 2014, 6(12): 107.
[20] SANER FH, NOWAK K, HOYER D, et al. A non-interventional study of the genetic polymorphisms of NOD2 associated with increased mortality in non-alcoholic liver transplant patients[J]. BMC Gastroenterol, 2014, 14: 4.
[21] BACKHED F, DING H, WANG T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proc Natl Acad Sci U S A, 2004, 101(44): 15718-15723.
[22] PINGITORE A, CHAMBERS ES, HILL T, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro[J]. Diabetes Obes Metab, 2017, 19(2): 257-265.
[23] FURUSAWA Y, OBATA Y, FUKUDA S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480): 446-450.[24] TURNBAUGH PJ, LEY RE, MAHOWALD MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031.
[25] SCHWIERTZ A, TARAS D, SCHAFER K, et al. Microbiota and SCFA in lean and overweight healthy subjects[J]. Obesity (Silver Spring), 2010, 18(1): 190-195.
[26] MOUZAKI M, COMELLI EM, ARENDT BM, et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease[J]. Hepatology, 2013, 58(1): 120-127.
[27] JUMPERTZ R, LE DS, TURNBAUGH PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans[J]. Am J Clin Nutr, 2011, 94(1): 58-65.
[28] MUSSO G, GAMBINO R, CASSADER M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded?[J]. Diabetes Care, 2010, 33(10): 2277-2284.
[29] ULVEN T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets[J]. Front Endocrinol (Lausanne), 2012, 3: 111.[30] den BESTEN G, van EUNEN K, GROEN AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9): 2325-2340.
[31] den BESTEN G, BLEEKER A, GERDING A, et al. Short- chain fatty acids protect against high-fat diet-induced obesity via a PPARγ- dependent switch from lipogenesis to fat oxidation[J]. Diabetes, 2015, 64(7): 2398-2408.
[32] HEBBARD L, GEORGE J. Animal models of nonalcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol, 2011, 8(1): 35-44.
[33] SCHNABL B, BRENNER DA. Interactions between the intestinal microbiome and liver diseases[J]. Gastroenterology, 2014, 146(6): 1513-1524.
[34] ZHU W, GREGORY JC, ORG E, et al. Gut Microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1): 111-124.
[35] SINN DH, KANG D, CHANG Y, et al. Non-alcoholic fatty liver disease and progression of coronary artery calcium score: a retrospective cohort study[J]. Gut, 2017, 66(2): 323-329.
[36] SPENCER MD, HAMP TJ, REID RW, et al. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency[J]. Gastroenterology, 2011, 140(3): 976-986.
[37] SWANN JR, WANT EJ, GEIER FM, et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments[J]. Proc Natl Acad Sci U S A, 2011, 15(Suppl 1): 4523-4530.
[38] SCHAAP FG, TRAUNER M, JANSEN PL. Bile acid receptors as targets for drug development[J]. Nat Rev Gastroenterol Hepatol, 2014, 11(1): 55-67.
[39] SAYIN SI, WAHLSTROM A, FELIN J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist[J]. Cell Metab, 2013, 17(2): 225-235.
[40] PRAWITT J, ABDELKARIM M, STROEVE JH, et al. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity[J]. Diabetes, 2011, 60(7): 1861-1871.
[41] INAGAKI T, CHOI M, MOSCHETTA A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4): 217-225.[42] FANG S, SUH JM, REILLY SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance[J]. Nat Med, 2015, 21(2): 159-165.[43] THOMAS C, GIOIELLO A, NORIEGA L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis[J]. Cell Metab, 2009, 10(3): 167-177.
[44] ZHU L, BAKER SS, GILL C, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH[J]. Hepatology, 2013, 57(2): 601-609.
[45] PARLESAK A, SCHAFER C, SCHUTZ T, et al. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease[J]. J Hepatol, 2000, 32(5): 742-747.
[46] ENGSTLER AJ, AUMILLER T, DEGEN C, et al. Insulin resistance alters hepatic ethanol metabolism: studies in mice and children with non-alcoholic fatty liver disease[J]. Gut, 2016, 65(9): 1564-1571.
[47] RAHMAN K, DESAI C, IYER SS, et al. Loss of junctional adhesion molecule a promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol [J]. Gastroenterology, 2016, 151(4): 733-746.e712.
[48] MIELE L, VALENZA V, la TORRE G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease[J]. Hepatology, 2009, 49(6): 1877-1887.
[49] CANI PD, AMAR J, IGLESIAS MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance[J]. Diabetes, 2007, 56(7): 1761-1772.
[50] CANI PD, BIBILONI R, KNAUF C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481.
[51] MENCIN A, KLUWE J, SCHWABE RF. Toll-like receptors as targets in chronic liver diseases[J]. Gut, 2009, 58(5): 704-720.
[52] MIURA K, KODAMA Y, INOKUCHI S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice[J]. Gastroenterology, 2010, 139(1): 323-334.e327.
[53] MIURA K, YANG L, van ROOIJEN N, et al. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice[J]. Hepatology, 2013, 57(2): 577-589.
[54] VIJAY-KUMAR M, AITKEN JD, CARVALHO FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5[J]. Science, 2010, 328(5975): 228-231.
[55] WREE A, EGUCHI A, MCGEOUGH MD, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice[J]. Hepatology, 2014, 59(3): 898-910.
[56] VANDANMAGSAR B, YOUM YH, RAVUSSIN A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance[J]. Nat Med, 2011, 17(2): 179-188.
[57] WEN H, GRIS D, LEI Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling[J]. Nat Immunol, 2011, 12(5): 408-415.
[58] WLODARSKA M, THAISS CA, NOWARSKI R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion[J]. Cell, 2014, 156(5): 1045-1059.
[59] HENAO-MEJIA J, ELINAV E, JIN C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity[J]. Nature, 2012, 482(7384): 179-185.
引證本文:XIAO L, YANG L. Gut microbiota and nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2017, 33(4): 774-779. (in Chinese) 肖麗, 楊玲. 腸道菌群與非酒精性脂肪性肝病的關(guān)系[J]. 臨床肝膽病雜志, 2017, 33(4): 774-779.
(本文編輯:邢翔宇)
Gut microbiota and nonalcoholic fatty liver disease
XIAOLi,YANGLing.
(DepartmentofGastroenterology,UnionHospitalAffiliatedtoTongjiMedicalCollegeofHuazhongUniversityofScienceandTechnology,Wuhan430022,China)
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with multiple factors involved, and its incidence is gradually increasing around the world. Recent studies have found that gut microbiota is involved in the development and progression of NAFLD. This article summarizes the association between gut microbiota and NAFLD from the aspects of influencing factors for gut microbiota and the roles of gut microbiota and its metabolites in the development and progression of NAFLD and points out that the intervention of gut microbiota and its metabolites may be a new target for the prevention and treatment of NAFLD.
gut microbiota; fatty liver; metabolism; review
10.3969/j.issn.1001-5256.2017.04.040
2016-11-09;
2016-12-19。
國(guó)家自然科學(xué)基金資助(81370550,81570530)
肖麗(1989-),女,主要從事非酒精性脂肪肝病的基礎(chǔ)與臨床研究。
楊玲,電子信箱:hepayang@163.com。
R575.5
A
1001-5256(2017)04-0774-06