何 滔, 郭明洲
中國人民解放軍總醫(yī)院消化內(nèi)科,北京 100853
述評
表觀遺傳結(jié)合免疫治療—腫瘤治療的新策略
何 滔, 郭明洲
中國人民解放軍總醫(yī)院消化內(nèi)科,北京 100853
表觀遺傳異常頻繁發(fā)生于各種腫瘤,表觀遺傳改變可能成為腫瘤的診斷、預(yù)后和化療敏感性的標(biāo)志物。DNA甲基化、組蛋白修飾和非編碼RNA能夠調(diào)控許多基因的表達(dá),且這些表觀遺傳學(xué)改變在一定條件下逆轉(zhuǎn),為腫瘤的治療提供新的機(jī)遇。近年來,隨著對免疫耐受機(jī)制的深入研究,針對免疫檢查點(diǎn)的抗體應(yīng)運(yùn)而生,以CTLA-4、PD-1、PD-L1抗體為代表的“免疫檢查點(diǎn)阻斷治療”取得了突出的進(jìn)展。腫瘤細(xì)胞通過表觀遺傳調(diào)控,直接或間接下調(diào)腫瘤細(xì)胞與宿主免疫系統(tǒng)相互作用的關(guān)鍵分子的表達(dá),影響免疫系統(tǒng)識(shí)別或損害免疫系統(tǒng)的活性。因此,表觀遺傳治療結(jié)合免疫檢查點(diǎn)阻斷治療有望獲得進(jìn)一步的突破。
表觀遺傳學(xué);調(diào)節(jié)性免疫治療;免疫檢查點(diǎn)阻斷;腫瘤
腫瘤是嚴(yán)重威脅人類健康的疾病,在中國,隨著飲食結(jié)構(gòu)和生活習(xí)慣的改變,消化道腫瘤的發(fā)病情況呈快速增長趨勢[1]。對于晚期腫瘤,目前主要依賴放化療治療,常常由于耐藥和復(fù)發(fā)導(dǎo)致治療失敗。近年來免疫治療和表觀遺傳治療受到人們的重視,目前已成為研究熱點(diǎn)。
腫瘤的免疫治療分為過繼性細(xì)胞免疫治療(adoptivecellular immunotherapy)、腫瘤疫苗(tumor vaccines)和調(diào)節(jié)性免疫治療(immunomodulatory therapy)[2]。
1.1 過繼性細(xì)胞免疫治療 過繼性細(xì)胞免疫治療,又稱被動(dòng)免疫治療,是指將免疫細(xì)胞或細(xì)胞因子輸入至體內(nèi),而不是通過激活宿主免疫系統(tǒng)而產(chǎn)生的內(nèi)源性免疫反應(yīng)所產(chǎn)生的治療效果[3]。由于T細(xì)胞的高度特異性和潛在的殺傷能力,絕大多數(shù)的過繼性免疫治療主要局限于T細(xì)胞治療。過繼性細(xì)胞免疫治療的優(yōu)點(diǎn)是T細(xì)胞容易在體外激活和擴(kuò)增,克服了在體內(nèi)由于自身耐受而抑制T細(xì)胞激活。但其缺點(diǎn)是在體外缺乏免疫記憶,不能長期擴(kuò)增。從過繼性細(xì)胞免疫治療首次應(yīng)用于治療轉(zhuǎn)移性黑色素瘤[4]到現(xiàn)在,治療黑色素瘤和血液系統(tǒng)腫瘤方面取得了巨大的進(jìn)步[5]。但在治療上皮源性腫瘤時(shí),由于缺乏合適的腫瘤相關(guān)性抗原,嚴(yán)重影響了過繼性細(xì)胞免疫治療的效果。雖然在晚期結(jié)腸癌中過繼性細(xì)胞免疫治療取得了一定的進(jìn)展,但由于安全性的限制,還需更多的臨床研究[6]。
1.2 腫瘤疫苗 腫瘤疫苗分為預(yù)防性疫苗和治療性疫苗兩大類[7]。預(yù)防性疫苗已被成功應(yīng)用于病毒相關(guān)的腫瘤預(yù)防,如乙型肝炎病毒疫苗用于預(yù)防肝癌和人乳頭狀瘤病毒疫苗用于預(yù)防宮頸癌。其成功的原因是不需破壞外源性抗原的耐受性。治療性疫苗是向患者提供刺激其免疫系統(tǒng)的腫瘤抗原、多肽或完整的腫瘤細(xì)胞,通過增強(qiáng)機(jī)體自身免疫力達(dá)到治療目的。而體內(nèi)已經(jīng)存在這些抗原的患者,已經(jīng)存在不同程度的抗原耐受性[8]。人們試圖應(yīng)用不同策略,通過選擇和修飾這些抗原來破壞其耐受性,如抗原呈遞細(xì)胞和免疫佐劑。但這一技術(shù)遇到了挑戰(zhàn),目前仍難獲得高效的腫瘤疫苗[9]。
1.3 調(diào)節(jié)性免疫治療 調(diào)節(jié)性免疫治療是指利用患者的免疫系統(tǒng)所設(shè)計(jì)的針對性的治療,達(dá)到控制、穩(wěn)定和可能根治腫瘤的不同方案[10]。隨著對免疫耐受機(jī)制的理解,已經(jīng)鑒定出一些在腫瘤微環(huán)境中具有局部免疫抑制效應(yīng)的細(xì)胞,包括調(diào)節(jié)性T細(xì)胞和骨髓來源的抑制性細(xì)胞(myeloid-derived suppressor cells, MDSCs)等[2]。一種新的稱為“免疫檢查點(diǎn)阻斷(immune checkpoint blockade)治療”的治療策略近年取得了突破[11]。免疫檢查點(diǎn)是指能夠介導(dǎo)共抑制信號通路的細(xì)胞表面分子,作為免疫反應(yīng)調(diào)節(jié)的內(nèi)源性因子調(diào)控自身免疫。在腫瘤細(xì)胞周圍的微環(huán)境和局部引流的淋巴結(jié)中,這些通路的作用非常重要,能夠抑制T細(xì)胞的免疫活性,而導(dǎo)致腫瘤細(xì)胞的免疫逃逸。目前,用于阻斷免疫檢查點(diǎn)治療腫瘤的抗體,都是將T細(xì)胞激活時(shí)的共抑制受體作為檢查點(diǎn)分子而制備的針對性抗體[12]。由于具有免疫負(fù)調(diào)控功能的分子細(xì)胞毒性淋巴細(xì)胞相關(guān)抗原4(cytotoxic T lymphocyte associated protein 4, CTLA-4)的發(fā)現(xiàn),使腫瘤的免疫治療發(fā)生了根本性的改變,其原理是基于去除阻斷抗腫瘤T細(xì)胞免疫反應(yīng)的共抑制信號,而不是激活免疫系統(tǒng)去攻擊腫瘤細(xì)胞[13]。目前研究發(fā)現(xiàn),在小鼠模型中阻斷CTLA-4可以促進(jìn)抗腫瘤的免疫反應(yīng)??笴TLA-4單克隆抗體(ipilimumab)已經(jīng)用于腫瘤患者的治療且已經(jīng)獲得美國食品和藥物管理局(Food and Drug administration, FDA)的批準(zhǔn)?;谕瑯釉?,T細(xì)胞受體PD-1和其配體PD-L1的單克隆抗體也被批準(zhǔn)用于臨床,在不同腫瘤中的反應(yīng)率為20%~50%。
由于PD-1檢查點(diǎn)在維持自身免疫耐受方面具有重要作用,以該通路為靶標(biāo)的治療可能導(dǎo)致免疫耐受的平衡紊亂,進(jìn)而導(dǎo)致異常免疫反應(yīng)。在臨床上表現(xiàn)為自身免疫病樣或炎癥樣不良反應(yīng),引起黏膜、肺、內(nèi)分泌器官、腎和眼等損傷[14]。隨著人們對這些免疫耐受性損傷認(rèn)識(shí)提高及對其機(jī)制的深入研究,未來可能聯(lián)合調(diào)控PD-1和其下游靶標(biāo),有望獲得新的治療策略,既改進(jìn)感染性疾病和腫瘤的免疫治療效果,又能誘導(dǎo)對免疫性疾病和抑制器官的免疫耐受性。
1.4 腫瘤中的遺傳學(xué)改變對免疫檢查點(diǎn)阻斷治療的反應(yīng) 全基因組測序表明每一個(gè)腫瘤都存在成千上萬個(gè)基因體細(xì)胞的突變,而這些腫瘤特異性的突變都可能產(chǎn)生新的蛋白質(zhì),這些新的蛋白質(zhì)將成為新的抗原,稱作“新抗原”[15]。這些“新抗原”形成了一類在免疫檢查點(diǎn)阻斷治療中T細(xì)胞的靶標(biāo),并存在于腫瘤生長的過程中,但不能介導(dǎo)有效的抗腫瘤反應(yīng)。在免疫檢查點(diǎn)阻斷治療后,針對這些“新抗原”的T細(xì)胞被激活,從而介導(dǎo)腫瘤特異性的免疫反應(yīng)[16-17]。Snyder等[18]在應(yīng)用抗CTLA-4抗體(ipilimumab)治療黑色素瘤的臨床試驗(yàn)中發(fā)現(xiàn),基因突變率高的腫瘤患者臨床療效明顯優(yōu)于突變率低的患者。最近的一項(xiàng)研究[19]應(yīng)用PD-1抗體(pembrolizumab)治療進(jìn)展期結(jié)腸癌,結(jié)果表明,DNA錯(cuò)配修復(fù)系統(tǒng)異常的結(jié)腸癌患者其免疫治療的反應(yīng)率和無進(jìn)展生存期顯著優(yōu)于DNA損傷修復(fù)系統(tǒng)正常的患者。提示DNA損傷修復(fù)系統(tǒng)基因是PD-1抗體治療的敏感性標(biāo)志物。
表觀遺傳學(xué)是一門研究基因表達(dá)的學(xué)科,它是指基因表達(dá)的改變不依賴于基因序列的改變,而是依賴于DNA甲基化、組蛋白的化學(xué)修飾和非編碼RNA(ncRNA)等表觀遺傳改變[20]。表觀遺傳性改變在一定條件下可以反轉(zhuǎn)的特性為腫瘤的治療提供了新機(jī)遇。腫瘤發(fā)生過程最常見的表觀遺傳學(xué)改變?yōu)橐职┗騿?dòng)子區(qū)CpG島的甲基化,甲基化可發(fā)生在所有的腫瘤相關(guān)信號通路中。其他形式的表觀遺傳學(xué)改變,如:組蛋白的乙?;?、甲基化、磷酸化、泛素化、ADP核糖基化、非編碼RNA等均可影響基因的轉(zhuǎn)錄活性,表觀遺傳組已經(jīng)成為腫瘤個(gè)體化治療的新靶標(biāo)[21]。目前已經(jīng)發(fā)現(xiàn)很多表觀遺傳改變可作為放化療敏感性的標(biāo)志物。DNA損傷修復(fù)基因MGMT(O6-methylguanine DNA methyltransferase)的甲基化是膠質(zhì)瘤對烷化劑(alkylating agents)治療敏感性的標(biāo)志物[22]。CHFR(checkpoints with forkhead and ring finger domains)基因甲基化是食管癌對紫杉醇化療敏感性的標(biāo)志物[23]。在多西他賽(docetaxel)治療的胃癌患者中,CHFR甲基化患者的總生存期長于CHFR非甲基化患者,MLH1非甲基化的胃癌患者對奧沙利鉑(oxaliplatin)治療敏感性更好,其總生存時(shí)間明顯長于MLH1甲基化患者[24]。
阿扎胞苷(Azacitidine,AZA)是首個(gè)被FDA批準(zhǔn)的表觀遺傳學(xué)藥物,首先在骨髓增生異常綜合征(Myelodysplastic syndrome)[25]和白血病[26]中取得了明顯療效,已在實(shí)體瘤中進(jìn)行臨床試驗(yàn)[27]。曲古柳菌素A(Trichostatin A, TSA)是首個(gè)發(fā)現(xiàn)的HDAC抑制劑(histone deacetylase inhibitor,HDACi)[28],目前正在進(jìn)行臨床試驗(yàn)的HDACi不少于20種,其中辛二酰苯胺異羥肟酸(suberoylanilide hydroxamic acid, SAHA)和FK228已被FDA批準(zhǔn)用于治療皮膚T細(xì)胞淋巴瘤[29]。許多針對表觀遺傳調(diào)控關(guān)鍵分子的靶向藥物正在進(jìn)行臨床試驗(yàn),聯(lián)合不同的表觀遺傳藥物或化療藥物可達(dá)到更好的效果。
腫瘤的免疫治療依賴于宿主免疫系統(tǒng),能夠識(shí)別腫瘤細(xì)胞,并將其作為非自身的成分而有效清除。這種抗腫瘤效應(yīng)常由于在腫瘤的轉(zhuǎn)化過程中,一系列的遺傳和表觀遺傳的改變而導(dǎo)致細(xì)胞表面抗原表達(dá)的改變所致。免疫逃逸是免疫治療的最大障礙[30]。在腫瘤細(xì)胞用于獲得免疫逃逸的許多分子工具中,誘發(fā)表觀遺傳改變是一個(gè)關(guān)鍵因素。腫瘤細(xì)胞通過表觀遺傳調(diào)控,直接或間接下調(diào)腫瘤細(xì)胞與宿主免疫系統(tǒng)相互作用的關(guān)鍵分子的表達(dá),而影響免疫系統(tǒng)識(shí)別或損傷免疫系統(tǒng)的活性。如:腫瘤細(xì)胞在演進(jìn)過程中選擇性地降低腫瘤相關(guān)抗原(tumor-associated antigen, TAA)、人白細(xì)胞共同抗原(human leukocyte antigens, HLA)和共刺激分子(costimulatory molecules)而逃避宿主免疫系統(tǒng)的識(shí)別[31]。在鼠和人的腫瘤細(xì)胞中應(yīng)用5-AZA和FK228(HDACi)可以上調(diào)多種抗原加工遞呈(antigen processing machinery, APM)抗原分子,如癌睪丸抗原(cancer testis antigens, CTA)、相溶性復(fù)合物Ⅰ類分子(MHC-Ⅰ)、MHC Ⅱ等[32-34]。表觀遺傳在腫瘤免疫逃逸中的重要作用為表觀遺傳結(jié)合免疫治療奠定了理論基礎(chǔ)。最近的一項(xiàng)對非小細(xì)胞肺癌治療的研究[33]表明,在小劑量5-AZA和恩替諾特(HDACi)治療后,應(yīng)用PD-1和PD-L1抗體治療5個(gè)患者的生存時(shí)間均超過了24周而沒有進(jìn)展。許多表觀遺傳免疫治療的一期和二期臨床試驗(yàn)正在進(jìn)行中[30]。
隨著人們對免疫檢查點(diǎn)及其下游通路的深入研究,有望獲得更多、更特異的阻斷免疫檢查點(diǎn)的效應(yīng)分子,從而獲得更加有效的腫瘤免疫治療方法。新的針對腫瘤表觀遺傳組的靶向藥物為腫瘤的個(gè)體化治療奠定了基礎(chǔ)。表觀遺傳結(jié)合免疫治療,或表觀遺傳結(jié)合放化療、免疫治療等綜合治療將為腫瘤的治療提供新的策略。
[1]Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014 [J]. CA Cancer J Clin, 2014, 64(2): 104-117.
[2]Makkouk A, Weiner GJ. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge [J]. Cancer Res, 2015, 75(1): 5-10.
[3]Galluzzi L, Vacchelli E, Eggermont A, et al. Trial Watch: Adoptive cell transfer immunotherapy [J]. Oncoimmunology, 2012, 1(3): 306-315.
[4]Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report [J]. N Engl J Med, 1988, 319(25): 1676-1680.
[5]Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer [J]. Science, 348(6230): 62-68.
[6]Zhen YH, Liu XH, Yang Y, et al. Phase Ⅰ/Ⅱ study of adjuvant immunotherapy with sentinel lymph node T lymphocytes in patients with colorectal cancer [J]. Cancer Immunol Immunother, 2015, 64(9): 1083-1093.
[7]Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets [J]. Immunity, 2010, 33(4): 464-478.
[8]Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age [J]. Nature, 2011, 480(7378): 480-489.
[9]Finn OJ. Cancer vaccines: between the idea and the reality [J]. Nat Rev Immunol, 2003, 3(8): 630-641.
[10]Naidoo J, Page DB, Wolchok JD. Immune modulation for cancer therapy [J]. Br J Cancer, 2014, 111(12): 2214-2219.
[11]Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway [J]. N Engl J Med, 2016, 375(18): 1767-1778.
[12]Allison JP, Hurwitz AA, Leach DR. Manipulation of costimulatory signals to enhance antitumor T-cell responses [J]. Curr Opin Immunol, 1995, 7(5): 682-686.
[13]Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy.Nature reviews [J]. Cancer, 2012, 12(4): 252-264.
[14]Naidoo J, Page DB, Li BT, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies [J]. Ann Oncol, 2016, 27(7): 1362.
[15]Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer [J]. Nature, 2013, 500(7463): 415-421.
[16]Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer [J]. Science, 2015, 348(6230): 124-128.
[17]Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens [J]. Nature, 2014, 515(7528): 577-581.
[18]Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma [J]. N Engl J Med, 2014, 371(23): 2189-2199.
[19]Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency [J]. N Engl J Med, 2015, 372(26): 2509-2520.
[20]Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy [J]. Nature, 2004, 429(6990): 457-463.
[21]閆文姬, 郭明洲. 表觀遺傳組學(xué)—腫瘤精準(zhǔn)治療的新靶標(biāo) [J]. 胃腸病學(xué)和肝病學(xué)雜志, 2015, 24(5): 491-493. Yan WJ, Guo MZ. Epigenomics: a new target for tumor precision treatment [J]. Chin J Gastroenterol Hepatol, 2015, 24(5): 491-493.
[22]Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents [J]. N Engl J Med, 2000, 343(19): 1350-1354.
[23]Yun T, Liu Y, Gao D, et al. Methylation of CHFR sensitizes esophageal squamous cell cancer to docetaxel and paclitaxel [J]. Genes Cancer, 2015, 6(1-2): 38-48.
[24]Li Y, Yang Y, Lu Y, et al. Predictive value of CHFR and MLH1 methylation in human gastric cancer [J]. Gastric Cancer, 2015, 18(2): 280-287.
[25]Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment [J]. Blood, 2002, 100(8): 2957-2964.
[26]Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia [J]. Blood, 2006, 108(10), 3271-3279.
[27]Momparler RL. Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine) [J]. Semin Oncol, 2005, 32(5): 443-451.
[28]Yoshida M. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A [J]. Tanpakushitsu Kakusan Koso, 2007, 52(13 Suppl): 1788-1789.
[29]Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer [J]. Nat Rev Cancer, 2006, 6(1): 38.
[30]Maio M, Covre A, Fratta E, et al. Molecular pathways: at the crossroads of cancer epigenetics and immunotherapy [J]. Clin Cancer Res, 2015, 21(18): 4040-4047.
[31]Sigalotti L, Fratta E, Coral S, Maio M. Epigenetic drugs as immunomodulators for combination therapies in solid tumors [J]. Pharmacol Ther, 2014, 142(3): 339-350.
[32]Murakami T, Sato A, Chun NA, et al. Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma [J]. J Invest Dermatol, 2008, 128(6): 1506-1516.
[33]Li H, Chiappinelli KB, Guzzetta AA, et al. Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers [J]. Oncotarget, 2014, 5(3): 587-598.
[34]Coral S, Parisi G, Nicolay HJ, et al. Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide [J]. Cancer Immunol Immunother, 2013, 62(3): 605-614.
(責(zé)任編輯:馬 軍)
Epigenetic therapy combined with immunotherapy: a novel strategy for cancer therapy
HE Tao, GUO Mingzhou
Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
Aberrant epigenetic changes are happened frequently in various human cancers. Epigenetic changes may serve as potential diagnostic, prognostic and therapeutic markers. DNA methylation, histone modification and noncoding RNA may regulate gene expression. It provides a new opportunity for cancer therapy that epigenetic change is reversible under certain condition. Understanding the mechanism of immune tolerance in cancer, the blockade of immune checkpoints in cancer immunotherapy is developed, including CTLA-4, PD-1 and PD-L1 antibodies.Immune checkpoint blockade has led to durable antitumor effects in patients with metastatic melanoma, non-small cell lung cancer and other tumor types.Epigenetic alterations are well-acknowledged to be used by tumor cells to impair their immunogenicity and immune recognition. The expression of key molecules in tumor cells and the host immune system regulated directly or indirectly by epigenetic regulation can affect the identification of immune system or damage the activity of immune system. Thus epigenetic therapy combined with the blockade of immune checkpoints therapy may make a breakthrough in cancer therapy.
Epigenetics; Immunomodulatory therapy; Immune checkpoint blockade; Tumor
10.3969/j.issn.1006-5709.2017.04.001
郭明洲,教授,研究員,博士研究生導(dǎo)師。E-mail:mzguo@hotmail.com
R735
A
1006-5709(2017)04-0361-04
2016-06-20