• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      黃土高原不同土地利用類型有機(jī)碳和黑碳的儲(chǔ)量及意義

      2017-03-15 10:37:02涂夏明周家茂曹軍驥韓永明沈振興
      地球環(huán)境學(xué)報(bào) 2017年1期
      關(guān)鍵詞:玉米地黃土高原土壤有機(jī)

      涂夏明,周家茂,曹軍驥,韓永明,沈振興

      1.中國科學(xué)院地球環(huán)境研究所,西安 710061

      2.上海伊爾庚環(huán)境工程有限公司,上海 200433

      3.西安交通大學(xué) 環(huán)境科學(xué)與工程系,西安 710049

      4.西安交通大學(xué) 全球環(huán)境變化研究院,西安 710049

      黃土高原不同土地利用類型有機(jī)碳和黑碳的儲(chǔ)量及意義

      涂夏明1,2,周家茂1,曹軍驥1,4,韓永明1,沈振興3

      1.中國科學(xué)院地球環(huán)境研究所,西安 710061

      2.上海伊爾庚環(huán)境工程有限公司,上海 200433

      3.西安交通大學(xué) 環(huán)境科學(xué)與工程系,西安 710049

      4.西安交通大學(xué) 全球環(huán)境變化研究院,西安 710049

      以黃土高原為研究對(duì)象,研究三種不同利用方式的表層土壤樣品(0 — 20 cm),分析其有機(jī)碳(soil organic carbon,簡稱SOC)和黑碳(black carbon,簡稱BC)的含量、分布特征及其儲(chǔ)量變化及意義。研究表明,黃土高原不同利用方式土壤有機(jī)碳和黑碳含量的平均值分別為:玉米地8.01 g · kg?1和1.01 g · kg?1,林地6.80 g · kg?1和0.59 g · kg?1,未利用地5.01 g · kg?1和0.43 g · kg?1,有機(jī)碳和黑碳的含量均為玉米地最高,未利用地最低;耕地和自然土壤表土有機(jī)碳儲(chǔ)量分別為0.796 Pg和0.710 Pg,表土黑碳儲(chǔ)量分別為0.0858 Pg和0.0730 Pg,耕地相對(duì)于自然土壤有機(jī)碳和黑碳的儲(chǔ)量分別增大12.1%和17.5%;說明黃土高原耕地是一個(gè)碳匯,起著固定碳的作用;采用推薦的管理實(shí)踐活動(dòng)和合理的土地利用方式,能夠增加土壤碳儲(chǔ)量,提高土壤質(zhì)量和農(nóng)作物產(chǎn)量,抵消部分二氧化碳的排放。

      黃土高原;土地利用類型;黑碳;碳儲(chǔ)量

      土壤碳庫是陸地生物圈有機(jī)碳儲(chǔ)量最大的碳庫,其儲(chǔ)量為大氣碳庫的2倍(Post et al,1990),受到人為因素影響,土地利用通過將植被土壤轉(zhuǎn)化為耕地已經(jīng)成為一個(gè)重要的碳源(Wu et al,2003),但通過改進(jìn)管理方式,又可將其轉(zhuǎn)變?yōu)樘紖R(Yu et al,2009),因此土地利用和人為活動(dòng)導(dǎo)致土壤有機(jī)碳庫的變化將會(huì)對(duì)碳循環(huán)和全球氣候效應(yīng)產(chǎn)生重要影響。黑碳是生物質(zhì)和化石燃料不完全燃燒產(chǎn)生的一類含碳物質(zhì)(Kuhlbusch,1998;Schmidt and Noack,2000;Koelmans et al,2006),普遍分布于大氣、土壤和各種陸地沉積物中,并通過水流作用和大氣運(yùn)輸進(jìn)入海洋(Schmidt and Noack,2000;Forbes et al,2006;Koelmans et al,2006)。據(jù)估算全球每年來自于生物質(zhì)和化石燃料燃燒形成的黑碳分別為50 — 260 Tg和12 — 24 Tg(Penner et al,1993;Kuhlbusch and Crutzen,1995;Masiello and Druffel,1998),大部分黑碳儲(chǔ)存于原地土壤中,其余以煙塵形式擴(kuò)散。黑碳的高度惰性,使其能在土壤中長期停留和作為大氣-生物短期碳循環(huán)轉(zhuǎn)化為大氣生物地質(zhì)長期循環(huán)的載體(Czimczik and Masiello,2007)。

      中國作為一個(gè)有著長期耕作歷史的國家,研究土地利用對(duì)土壤碳庫的影響是很有意義的。目前國內(nèi)對(duì)于土地利用方式對(duì)土壤碳庫的影響集中在國家和區(qū)域尺度上(Wu et al,2003;Song et al,2005;Yang et al,2008;Yu et al,2009),但對(duì)黃土高原的研究比較少,黃土高原及其他地區(qū)的黑碳研究更少(胡衛(wèi)國等,2010;涂夏明等,2010),特別是不同利用方式對(duì)土壤黑碳影響的研究尚鮮見。本文的主要目的是:(1)分析不同土地利用方式對(duì)土壤有機(jī)碳和黑碳含量的影響及其變化特征,(2)估算黃土高原耕作地和未耕作地有機(jī)碳和黑碳儲(chǔ)量及意義。

      1 材料和方法

      1.1 樣品采集與方法

      黃土高原,年均氣溫6—14℃,年均降水量200—700 mm。從東南向西北,氣候依次為暖溫帶半濕潤氣候、半干旱氣候和干旱氣候。土壤樣品采集于2009年10月,共51個(gè)表層(0—20 cm,以下土壤樣品均為表土樣品)土樣,根據(jù)采樣點(diǎn)的土地利用方式,結(jié)合黃土高原土地不同利用形式(主要為玉米、小麥、林區(qū)和未利用的黃土荒地),選取玉米、林地和未利用地作為本文的研究對(duì)象,采集的樣品主要分布在陜西和山西一帶的黃土和粘黃土,主要的地貌類型是塬和梁,土質(zhì)疏松,土壤顏色主要為淺黃色和灰黃色。

      采用便攜式GPS定位采樣點(diǎn),樣品包括:17個(gè)玉米地土樣,14個(gè)林地樣品和20個(gè)未利用土地樣品,林地主要包括山西偏西北的退耕還林和呂梁山附近的林地,具體的采樣點(diǎn)見圖1。采樣時(shí)將上層枯枝落葉去除,后用不銹鋼鋼鏟采集表層土壤。樣品室內(nèi)自然風(fēng)干,剔除大于2 mm的石子、根莖等雜物。

      圖1 黃土高原采樣點(diǎn)的分布Fig.1 Distribution of samplings in Loess Plateau

      采用遵守IMPROVE-A協(xié)議(Chow et al,2007)的Model 2001熱光碳分析儀(TOR)進(jìn)行碳組分分析,方法的詳細(xì)過程見文獻(xiàn)Han et al(2007),Han et al(2007)定義BC = EC1 + EC2 + EC3 ? POC。每天都用已知的標(biāo)準(zhǔn)氣體對(duì)碳分析儀進(jìn)行校準(zhǔn)(Chow et al,1993),每10個(gè)樣品做1個(gè)復(fù)檢,兩重復(fù)樣品之間使用元素分析儀(Vario ELⅢ German)對(duì)土壤有機(jī)碳進(jìn)行測(cè)定,具體過程為:稱取研磨烘干后的樣品于50 mL的塑料離心管中,加HCl靜置24小時(shí),倒掉上清液,加去離子水離心直至溶液呈中性,將樣品烘干,用儀器測(cè)量。

      1.2 有機(jī)碳和黑碳儲(chǔ)量的估算

      (1)表層土壤有機(jī)碳密度計(jì)算模型如下:

      SOCD為土壤碳密度(kg · m?2),SOC為有機(jī)碳含量(g · kg?1),γ為土壤容重(g · cm?3),土壤容重?cái)?shù)據(jù)取自黃土平均值1.22 g · cm?3(徐香蘭等,2003),H為土層厚度(cm),δ2mm是土壤顆粒尺寸大于2 mm的百分?jǐn)?shù),因?yàn)辄S土土壤的顆粒尺寸大部分都低于2 mm,在這里忽略不計(jì)。

      表層土壤有機(jī)碳儲(chǔ)量計(jì)算如下:

      SOCD為土壤碳密度(kg · m?2),S為土壤的面積,土壤面積數(shù)據(jù)取自《黃土與環(huán)境》(劉東生,1985)。

      根據(jù)Wu et al(2003)定義未耕作地為未受到任何人為活動(dòng)的干擾,現(xiàn)在植被在生態(tài)學(xué)上與現(xiàn)在氣候條件相一致的原則,本文將未利用地定義為未耕地,將玉米地和林地定義為耕地,現(xiàn)有土壤包括玉米地、林地和未利用地三者的綜合。耕地的有機(jī)碳和黑碳含量以玉米地和林立的有機(jī)碳和黑碳的平均值表示。同理,以未利用地的有機(jī)碳和黑碳的含量作為未耕地的相應(yīng)值;黃土高原現(xiàn)有土壤的有機(jī)碳和黑碳含量以這三種不同利用方式的有機(jī)碳和黑碳的平均值表示。

      采用SPSS13.0軟件分析數(shù)據(jù),運(yùn)用方差分析檢驗(yàn)不同土地利用方式黑碳的差異性,用Pearson相關(guān)分析來描述有機(jī)碳和黑碳之間的關(guān)系。

      2 結(jié)果與討論

      2.1 BC與SOC的統(tǒng)計(jì)描述

      不同土地利用方式黑碳和有機(jī)碳含量的變化特征見表1。由統(tǒng)計(jì)分析和表1可知,黑碳和有機(jī)碳的變異系數(shù)在耕地中均呈現(xiàn)中等變異(>50%),在未耕地中同樣呈現(xiàn)中等變異(< 36%),但耕地黑碳和有機(jī)碳的變異系數(shù)顯著高于未耕地黑碳和有機(jī)碳的變異系數(shù)。表明人為活動(dòng)對(duì)土壤黑碳和有機(jī)碳的含量及分布產(chǎn)生一定影響。

      表1 不同土地利用類型土壤黑碳和有機(jī)碳含量的特征Tab.1 BC contents and percentage of black carbon in soil organic carbon in different land use types

      方差分析的結(jié)果均表明,從土壤黑碳含量來看,玉米地與林地及玉米地與未利用地之間呈顯著差異(p< 0.05),而林地與未利用地之間并無顯著差異(p> 0.05),這主要受到土地利用方式(何躍等,2007)和人為管理活動(dòng)(Bumpel et al,2006)的強(qiáng)烈影響。表2主要描述了不同土地利用類型黑碳和有機(jī)碳的相關(guān)性,由表可知,BC與SOC在未利用土地中具有很好的線性關(guān)系,在未利用土地中,方程的確定系數(shù)達(dá)到極顯著水平(p< 0.0001),BC的形成與SOC有密切關(guān)系,可能存在著特殊的結(jié)合機(jī)制;林地和玉米地中,并沒有達(dá)到顯著水平,相關(guān)系數(shù)也較小(分別為0.51和0.32),表明黑碳含量并不完全取決于土壤有機(jī)碳含量(戴婷等,2009),這主要與人類管理土地的措施有關(guān);在黃土高原地區(qū),大部分玉米收獲后秸稈直接通過燃燒的方式去除,在原地產(chǎn)生大量的燃燒殘留物(Skjemstad et al,2002),同時(shí)土壤中黑碳的降解非常緩慢,從而導(dǎo)致玉米地中黑碳的積累(Czimczik and Masiello,2007);林地黑碳和有機(jī)碳的相關(guān)系數(shù)不大,可能與所采林地中包含人工林地有關(guān),受到人為活動(dòng)影響;說明黑碳的含量不僅與土壤有機(jī)質(zhì)相關(guān),還與外部條件有關(guān)。

      表2 不同利用類型黑碳與有機(jī)碳的關(guān)系Tab.2 Relationships between BC and SOC in different land use types

      圖2主要是對(duì)黃土高原土壤有機(jī)碳和黑碳數(shù)據(jù)所做的回歸分析。由圖可知,有機(jī)碳和黑碳的回歸系數(shù)并不高(0.511),這印證了上文所說的,黑碳的含量不僅與有機(jī)質(zhì)相關(guān),還與人為活動(dòng)有關(guān)。

      圖2 黃土高原土壤中SOC和BC的回歸分析Fig.2 Regression of SOC and BC contents in Loess Plateau

      2.2 耕作地與自然土壤中SOC與BC的儲(chǔ)量變化

      不同利用類型的土壤有機(jī)碳和黑碳含量不同(見表1),黃土高原土壤有機(jī)碳和黑碳含量的總體變幅分別為1.54 — 19.46 g · kg?1和0.18 — 2.49 g · kg?1,平均值分別為:玉米地8.01 g · kg?1和1.01 g · kg?1,林地6.80 g · kg?1和0.59 g · kg?1,未利用地5.01 g · kg?1和0.43 g · kg?1,有機(jī)碳和黑碳的含量變化均是玉米地>林地>未利用地,耕地>未耕地。

      圖3描述了BC含量和BC/SOC的分布。由圖可知,未利用地BC/SOC值較小且分布集中,玉米地中的BC/SOC與林地和未利用地相比,值較大且分布較為分散,主要與玉米地受人為活動(dòng)(主要為秸稈燃燒)(Lal,2004a)影響有關(guān);而林地相對(duì)于未利用地BC/SOC值的分布較為分散,主要是所采林地樣品包含人工林地,林地需要人工經(jīng)營維護(hù)也會(huì)受到人為活動(dòng)影響;未利用地BC/SOC值分布較集中且小,這與其所處環(huán)境有關(guān)。

      圖3 不同土地利用類型黑碳含量和黑碳與有機(jī)碳值的分布圖Fig.3 Distribution of BC contents and BC/SOC ratios in different land use types

      根據(jù)本文研究,黃土高原耕地和現(xiàn)有土壤的表土有機(jī)碳含量分別為7.41 g · kg?1和6.61 g · kg?1,其有機(jī)碳密度分別為1.81 kgC · m?2和1.61 kgC · m?2,相對(duì)應(yīng)的儲(chǔ)量分別為0.796 Pg和0.710 Pg,由于人為活動(dòng)的影響使得土壤有機(jī)碳密度增加了0.2 kg C · m?2,但耕地有機(jī)碳密度1.81 kg C · m?2仍低于全國平均耕地土壤(0—20 cm)有機(jī)碳密度2.77 kg C · m?2(Yu et al,2009);所引起表土有機(jī)碳的增加量為0.086 Pg,貢獻(xiàn)全國表土耕地有機(jī)碳儲(chǔ)量(5.37 Pg)(Yu et al,2009)的1.6%,黃土高原表土耕地的有機(jī)碳儲(chǔ)量占全國表土耕地的有機(jī)碳儲(chǔ)量(5.37 Pg)(Yu et al,2009)的14.8%。

      同理,黃土高原耕地和現(xiàn)有土壤黑碳的含量0.8 g · kg?1和0.68 g · kg?1,其黑碳密度分別為0.195 kgC · m?2和0.166 kgC · m?2,相對(duì)應(yīng)的儲(chǔ)量分別為0.0858 Pg和0.0730 Pg,耕地相對(duì)于自然土壤黑碳含量增加17.5%。

      陸地生態(tài)系統(tǒng)土壤有機(jī)碳庫的變化對(duì)于區(qū)域碳平衡和大氣二氧化碳濃度起著非常重要的作用(Yu et al,2009)。黃土高原耕地有機(jī)碳庫相對(duì)于自然土壤有機(jī)碳庫的增加,說明黃土高原耕地是一個(gè)碳匯,能夠通過碳吸收的方式轉(zhuǎn)移大氣中的二氧化碳,抵消一部分人為活動(dòng)排放的二氧化碳,從而影響碳循環(huán)和全球氣候變化。對(duì)于黃土高原耕地有機(jī)碳庫增加的原因可能有以下方面:改進(jìn)農(nóng)業(yè)管理(Wu et al,2003;Song et al,2005;Yu et al,2009),傳統(tǒng)肥料的輸入(Wu et al,2003)和莊稼收獲后的秸稈還田(Yu et al,2009)。

      人為活動(dòng)所造成的黃土高原耕地黑碳儲(chǔ)量的增加,同樣可以作為短期大氣-生物地球碳循環(huán)的碳匯,降低大氣二氧化碳的濃度;通過碳吸存的方式將二氧化碳轉(zhuǎn)化為更為穩(wěn)定的黑碳,起著穩(wěn)定碳庫的作用,對(duì)全球碳循環(huán)產(chǎn)生間接影響。

      2.3 耕地碳吸存的意義

      Lal(2004b)指出由于風(fēng)和流水作用所造成的侵蝕過程能夠降低土壤有機(jī)碳含量。黃土高原由于受到長期自然和人為活動(dòng)影響,造成當(dāng)?shù)丨h(huán)境的惡化,嚴(yán)重的水土流失和集中的人為干擾,已經(jīng)使得黃土高原成為碳儲(chǔ)量最低的地方(Li et al,2004),因此,合理利用土地對(duì)于維持土壤的可持續(xù)利用和提高土壤質(zhì)量具有重要作用。

      經(jīng)過中國政府的不懈努力,大量的防護(hù)工程和生態(tài)規(guī)劃得到實(shí)施(徐香蘭等,2003),黃土高原環(huán)境得到有效改善,耕地有機(jī)碳儲(chǔ)量增大,但相比于全國耕地有機(jī)碳密度,黃土高原耕地有機(jī)碳含量仍較低,這說明黃土高原耕地仍然存在巨大的有機(jī)碳吸收潛力(Lal,2004a)。

      彭文英等(2006)指出黃土高原退耕還林地區(qū)表土(0 — 20 cm)有機(jī)碳含量均有不同程度的增加,段華平等(2009)指出秸稈還田能夠顯著增加土壤(0 — 21 cm)有機(jī)碳含量,萬運(yùn)帆等(2009)指出施用農(nóng)家肥能顯著提高土壤有機(jī)碳含量和生物量。Lal(2004b)指出土壤有機(jī)碳儲(chǔ)量每增加1 t,每公頃玉米地產(chǎn)量增加10 — 20 kg,采用推薦的經(jīng)營管理方式能夠減少10% — 40%的現(xiàn)在農(nóng)業(yè)能量需求(Sauerbeck,2001),如果耕地全部以玉米地來計(jì)算,黃土高原耕地增加的0.086 Pg有機(jī)碳,相當(dāng)于增加了8.6×105— 1.72×106t的玉米,既帶來了環(huán)境效益,又帶來了經(jīng)濟(jì)效益。土地的合理利用,采用推薦的管理實(shí)踐活動(dòng),不僅能夠增加黃土高原土壤碳吸存,提高農(nóng)作物產(chǎn)量,而且抵消部分大氣二氧化碳,減少農(nóng)業(yè)能量需求,從而到達(dá)雙贏的目的。從更大的國家或世界范圍來考慮,增加土壤有機(jī)碳儲(chǔ)量,能夠提高土壤質(zhì)量,同時(shí)也能為人類贏得時(shí)間來尋找替代化石燃料的新能源。

      3 結(jié)論

      黃土高原不同土地利用方式有機(jī)碳和黑碳含量的變化特征均為:玉米地>林地>未利用地,耕地>未耕地;受人為活動(dòng)的影響,使黃土高原耕地有機(jī)碳和黑碳儲(chǔ)量增加,土壤有機(jī)碳的增加表明黃土高原碳儲(chǔ)量和土壤質(zhì)量得到提高,維持了土壤的可持續(xù)利用,黑碳儲(chǔ)量的增加說明土地利用和人為活動(dòng)能夠?qū)⒋髿庵械亩趸嫁D(zhuǎn)化為穩(wěn)定的黑碳碳庫,降低大氣二氧化碳的濃度。因此,合理利用土地和改善農(nóng)業(yè)管理水平對(duì)碳循環(huán)和全球氣候變化起著重要作用,也可為人類尋找新能源爭取時(shí)間。

      戴 婷,李艾芬,章明奎.2009.浙北平原農(nóng)業(yè)土壤中黑碳分布特征的研究[J].土壤通報(bào),40:1321 – 1324.[Dai T,Li A F,Zhang M K.2009.Distribution characteristics of black carbon in agricultural soils of northern Zhejiang Plain [J].Chinese Journal of Soil Science,40:1321 – 1324.]

      段華平,牛永志,李鳳博,等.2009.耕作方式和秸稈還田對(duì)直播稻產(chǎn)量及稻田土壤碳固定的影響[J].江蘇農(nóng)業(yè)學(xué)報(bào),25(3):706 – 708.[Duan H P,Niu Y Z,Li F B,et al.2009.Effects of tillage styles and straw return on soil carbon sequestration and crop yields of direct seeding rice [J].Jiangsu Journal of Agricultural Sciences,25(3):706 – 708.]

      何 躍,張甘霖,楊金玲.2007.城市化過程中黑碳的土壤記錄及其環(huán)境指示意義[J].環(huán)境科學(xué),28:2369 – 2375.[He Y,Zhang G L,Yang J L,et al.2007.Soil record of black carbon during urbanization and its environmental implications [J].Environment Science,28:2369 – 2375.]

      胡衛(wèi)國,曹軍驥,韓永明.2010.青海湖流域六類土壤表土有機(jī)碳黑碳含量特征及其儲(chǔ)量[J].地球環(huán)境學(xué)報(bào),1(3):213 – 218.[Hu W G,Cao J J,Han Y Y.2010.The characteristic of organic carbon and black carbon content and its storage in six types topsoil of Qinghai Lake basin of China [J].Journal of Earth Environment,1(3):213 – 218.]

      劉東生.1985.黃土與環(huán)境[M].北京:科學(xué)出版社.[Liu T S. 1985.Loess and environment [M].Beijing:Science Press.]

      彭文英,張科利,楊勤科.2006.退耕還林對(duì)黃土高原地區(qū)土壤有機(jī)碳影響預(yù)測(cè)[J].地域研究與開發(fā),25(3):94 – 99.[Peng W Y,Zhang K L,Yang Q K.2006.Forecast of impact of the returning farms to forests on soil organic carbon of loess plateau [J].Areal Research and Development,25(3):94 – 99.]

      涂夏明,曹軍驥,韓永明,等.2010.黃土高原表土焦炭和煙炱的含量分布與意義[J].地球環(huán)境學(xué)報(bào),1(2):126 – 132.[Tu X M,Cao J J,Han Y M,et al.2010.Variations and implication of Char-BC and Soot-BC in the surface soil of Loess Plateau,China [J].Journal of Earth Environment,1(2):126 – 132.]

      萬運(yùn)帆,李玉娥,高清竹,等.2009.田間管理對(duì)華北平原冬小麥產(chǎn)量土壤碳及溫室氣體排放的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),28(12):2495 – 2500.[Wan Y F,Li Y E,Gao Q Z,et al.2009.Field managements affect yield,soil carbon,and greenhouse gases emission of winter wheat in North China Plain [J].Journal of Agro-Environment Science,28(12):2495 – 2500.]

      徐香蘭,張科利,徐憲立.2003.黃土高原地區(qū)土壤有機(jī)碳估算及其分布規(guī)律分析[J].水土保持學(xué)報(bào),17(3):13 – 15.[Xu X L,Zhang K L,Xu X L.2003.Spatial distribution and estimating of soil organic carbon on loess plateau [J].Journal of Soil and Water Conservation,17(3):13 – 15.]

      Bumpel C,Alexis M,Chabbi A,et a1.2006.Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture [J].Geoderma,130:35 – 46.

      Chow J C,Watson J G,Pritchett L C,et al.1993.The DRI thermal/optical reflectance carbon analysis system:description,evaluation and applications in U.S.air quality studies [J].Atmospheric Environment,27:1185 – 1201.

      Chow J C,Watson J G,Chen L W A,et al.2007.The IMPROVE_A temperature protocol for thermal/optical carbon analysis:maintaining consistency with a longterm database [J].Journal of Air amp; Waste Management Association,57:1014 – 1023.

      Czimczik C I,Masiello C A.2007.Controls on black carbon storage in soils [J].Global Biogeochemical Cycles,21(3):249 – 259.

      Forbes M S,Raison R J,Skjemstad J O,et al.2006.Formation,transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems [J].Science of the Total Environment,370:190 – 206

      Han Y M,Cao J J,An Z S,et al.2007.Evaluation of the thermal/ optical reflectance method for quantification of elemental carbon in sediments [J].Chemosphere,69:569 – 574.

      Koelmans A A,Jonker M T O,Gerard C,et al.2006.Black carbon:The reverse of its dark side [J].Chemosphere,63:365 – 377.

      Kuhlbusch T A J,Crutzen P J.1995.Toward a global estimate of black carbon in residues of vegetation fi res representing a sink of atmospheric CO2and a source of O2[J].Global Biogeochemical Cycle,9(4):491 – 501.

      Kuhlbusch T A J.1998.Black carbon and the carbon cycle [J].Science,280:1903 – 1904.

      Lal R.2004a.Soil carbon sequestration to mitigate climate change [J].Geoderma,123:1 – 22.

      Lal R.2004b.Soil carbon sequestration impacts on global climate change and food security [J].Science,304:1623 – 1627.

      Li K R,Wang S Q,Cao M,et al.2004.Vegetation and soil carbon storage in China [J].Science in China Series D:Earth Sciences,47:9 – 57.

      Masiello C A,Druffel E R M.1998.Black carbon in deep-sea sediments [J].Science,280:1911–1913.

      Penner J E,Eddleman H,Novakav T.1993.Toward the development of a global inventory for black carbon [J].Atmospheric Environment,27A:260 – 267.

      Post W M,Emanuel P J,Zinke P J,et al.1990.Soil carbon pools and life zones [J].Nature,348:232 – 234.

      Sauerbeck D R.2001.CO2emissions and C sequestration by agriculture perspectives and limitations [J].Nutrient Cycling in Agroecosystems,60:253 – 266.

      Schmidt M W I,Noack A G.2000.Black carbon in soils and sediments:Analysis,distribution,implication,and current challenges [J].Global Biogeochemical Cycle,14(3):777 – 793.

      Skjemstad J O,Reicosky D C,Wilts A R,et al.2002.Charcoal carbon in U.S.agricultural soils [J].Soil Science Society of America Journal,66:1255 – 1949.

      Song G H,Li L Q,Pan G X,et al.2005.Topsoil organic carbon storage of China and its loss by cultivation [J].Biogeochemistry,74:47 – 62.

      Wu H B,Guo Z T,Peng C H,et al.2003.Land use induced changes of organic carbon storage in soils of China [J].Global Change Biology,9:305 – 315.

      Yang Y H,Fang J Y,Tang Y H,et al.2008.Storage,patterns and controls of soil organic carbon in the Tibetan grasslands [J].Global Change Biology,14:1592–1599.

      Yu Y Y,Guo Z T,Wu H B,et al.2009.Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000 [J].Global Biogeochemical Cycle,23,doi:10.1029/2008GB003428.

      Implication and storage of soil organic carbon and black carbon in different land use types in the topsoil of Loess Plateau

      TU Xiaming1,2,ZHOU Jiamao1,CAO Junji1,4,HAN Yongming1,SHEN Zhenxing3
      1.Institute of Earth Environment,Chinese Academy of Sciences,Xi’an 710061,China
      2.Shanghai Jokoson Environmental Engineering Co.Ltd.,Shanghai 200433,China
      3.Department of Environmental Science and Engineering,Xi’an Jiaotong University,Xi’an 710049,China
      4.Institute of Global Environmental Change,Xi’an JiaotongUniversity,Xi’an 710049,China

      Background,aim,and scopeChanges in soil carbon storage have far-reaching effects on global climate change,which are mainly concentrated on the transition of landuse.The impact of different types of landuse on soil carbon storage has been investigated by reserchers around the world in regional and national scales.As a country with a long cultivation history,to study the effect of land use on soil carbon storage in China is veryimportant and meaningful.In order to gain a further understanding of the in fl uence made by different ways of land use on organic carbon (OC) and black carbon (BC) in the Loess Plateau,soil samples are collected in this study based on different landuse patterns in the Loess Plateau in Shaanxi,Shanxi region.Via chemical analysis in the lab,the impact and signi fi cance of organic carbon and black carbon and its change in carbon stocks can be studied and understood.Materials and MethodsThe samples are collected by the method called shove lacquisition which requires using a stainless steels hovel to collect the top soil sample in depth from 0 — 20 cm in the Loess Plateau.The litter on surface of the ground has been removed before sampling.Samples are dried under a natural ventilation indoor,and the grits with the diameter more than 2 mm are removed as well as roots and debris.We used portable GPS for sampling sites locating,including 17 samples of corn land,14 samples of forest land and 20 samples of unused land.Results(1) The results show that average SOC and BC concentration are 8.01 g · kg?1and 1.01 g · kg?1,6.80 g · kg?1and 0.59 g · kg?1,5.01 g · kg?1and 0.43 g · kg?1for corn,forest and unused land,respectively.The maximum and the minimum concentration appeared in corn and unused land.The SOC and BC storage under cultivated land in Loess Plateau are 0.815 Pg and 0.088 Pg,compare with the SOC and BC storage of 0.727 Pg and 0.0748 Pg under present-day soil in Loess Plateau.(2) Human activities have an impact on the quantity and distribution of soil organic carbon and black carbon.From the statistical analysis,there is a significant difference (p< 0.05) of the black carbon from the soil between the corn land and forest land,as well as between the corn land and unused land.However,there was no signi fi cant difference of black carbon between the forest land and unused land (p> 0.05).Those results can be explained by the strong influence made by the different land use patterns and human management activities.(3) In unused land,the determining factor of black carbon and soil organic carbon (SOC) equation was extremely signi fi cant (p< 0.0001).It indecated that black carbon is closely related to secondary organic carbon.So there may be a special binding formation mechanism.However,the correlation coef fi cient between BC and SOC of the forest land and corn land did not reach that signi fi cant level and it is 0.51 and 0.32,respectively which also much smaller than that in unused land.In the Loess Plateau area,most corn straw was removed by combustuion right after the harvest.Biomass burning lead to massive remains of combustion residue on site (Skjemstad et al,2002).Meanwhile,the chronic process of black carbon degradation causes the black carbon accumulation in the corn land.This is indicating that the quantity of black carbon is not only related to soil organic matter,but also to human activities.Discussion(1) Changes in organic carbon and black carbon quantity are indicated in following order:maize land > forest land > unused land,land > uncultivated land.(2) Affected by human activities, the quantities of both organic carbon and black carbon in the Loess Plateau are higher than that of natural soil.However,the density of the organic carbon in arable land is still lower than that of the national average.ConclusionsAffected by human activities,the storage of organic carbon and black carbon has been increased in the cultivated land of the Loess Plateau.The increased soil organic carbon and soil carbon storage in Loess Plateau are able to improve the soil quality in general and maintaining sustainable use of land.The increasing of the black carbon storage indicates both land use and human activities can convert the carbon dioxide in the atmospheric into a stable black carbon stocks,therefore to reduce the atmospheric concentration of carbon dioxide.Recommendations and perspectivesA rational use of land and improving agricultural management play a key role in environmental sustainability.It not only has a great effect on the carbon cycle and global climate change,but also buys us some time to fi nd new energy sources.

      National Science Fund for Distinguished Young Scholars (40925009); National Natural Science Foundation of China (41073102)

      TU Xiaming,E-mail:tusiming2005@163.com

      Loess Plateau; land use types; BC (black carbon); carbon storage

      2016-01-11;錄用日期:2016-04-28

      Received Date:2016-01-11;Accepted Date2016-04-28

      國家杰出青年科學(xué)基金項(xiàng)目(40925009);國家自然科學(xué)基金項(xiàng)目(41073102)

      涂夏明,E-mail:tusiming2005@163.com

      涂夏明,周家茂,曹軍驥,等.2017.黃土高原不同土地利用類型有機(jī)碳和黑碳的儲(chǔ)量及意義[J].地球環(huán)境學(xué)報(bào),8(1):65 – 71.

      : Tu X M,Zhou J M,Cao J J,et al.2017.Implication and storage of soil organic carbon and black carbon in different land use types in the topsoil of Loess Plateau [J].Journal of Earth Environment,8(1):65 – 71.]

      10.7515/JEE201701008

      猜你喜歡
      玉米地黃土高原土壤有機(jī)
      《玉米地》
      青年生活(2020年31期)2020-10-14 09:07:08
      玉米地里長火山
      西雙版納橡膠林土壤有機(jī)碳分布特征研究
      選舉 沸騰了黃土高原(下)
      公民與法治(2016年3期)2016-05-17 04:09:00
      選舉沸騰了黃土高原(上)
      公民與法治(2016年1期)2016-05-17 04:07:56
      秸稈還田的土壤有機(jī)碳周轉(zhuǎn)特征
      土壤有機(jī)碳轉(zhuǎn)化研究及其進(jìn)展
      AMDIS在土壤有機(jī)污染物鑒別中表征性統(tǒng)計(jì)量的探究
      灑向黃土高原的愛
      中國火炬(2015年7期)2015-07-31 17:39:57
      玉米地
      短篇小說(2014年12期)2014-02-27 08:32:54
      温州市| 海盐县| 吉林省| 麻栗坡县| 深州市| 英吉沙县| 藁城市| 伊宁市| 临颍县| 吕梁市| 邛崃市| 娄底市| 翼城县| 清丰县| 东乡族自治县| 饶阳县| 若尔盖县| 东台市| 白城市| 曲周县| 涟水县| 林州市| 科尔| 新乡县| 伊通| 昭平县| 土默特右旗| 盘锦市| 湖南省| 德钦县| 绥阳县| 新余市| 新竹市| 洪洞县| 阳新县| 安顺市| 汉源县| 祥云县| 曲阜市| 桑植县| 惠安县|