• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看

      ?

      沉積物中X射線衍射物相定量分析中的兩種方法對比研究

      2017-03-15 10:37:04林偉偉宋友桂
      地球環(huán)境學(xué)報(bào) 2017年1期
      關(guān)鍵詞:物相X射線定量

      林偉偉,宋友桂 ,

      1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安710061

      2.全球變化研究協(xié)同創(chuàng)新中心,北京 100875

      沉積物中X射線衍射物相定量分析中的兩種方法對比研究

      林偉偉1,宋友桂1,2

      1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安710061

      2.全球變化研究協(xié)同創(chuàng)新中心,北京 100875

      沉積物中X射線衍射(XRD)物相定量方法的選擇和如何提高定量分析的精度一直是地學(xué)XRD定量研究的難點(diǎn)問題。本文針對沉積物中常見礦物組合特征,設(shè)計(jì)了一系列條件實(shí)驗(yàn),比較了MacDiff的面積積分法(PAI法)和Highscore的強(qiáng)度參比法(RIR法)定量分析方法的優(yōu)缺點(diǎn)。結(jié)果表明兩種方法計(jì)算結(jié)果基本一致,但也各有優(yōu)缺點(diǎn)。其中RIR法對衍射峰矮而寬的礦物定量更準(zhǔn)確,PAI法則更適用于衍射峰尖銳的礦物以及含四種以上礦物、衍射峰重疊的樣品,MacDiff的PAI方法分析過程不需要其他參數(shù),誤差較少,重現(xiàn)性好,而且全譜擬合還能部分消除擇優(yōu)取向的影響,可為沉積物XRD礦物相定量分析提供可靠數(shù)據(jù)。

      X射線衍射;定量分析;MacDiff面積積分法; Highscore強(qiáng)度參比法

      X射線衍射(XRD)物相定量研究中如何提高精確度一直是地學(xué)XRD礦物相定量分析研究的難題。X射線衍射物相定量分析的理論成熟之后,一直不斷衍生出新的定量分析方法(Moore and Reynolds,1997;Chipera and Bish,2002,2013;Petschick,2002;Eberl,2003;曾蒙秀和宋友桂,2013)。常規(guī)方法有內(nèi)標(biāo)法(Popovi? and Gr?eta-Plenkovi?,1979)、增量法(儲(chǔ)剛,1998)、絕熱法(Chung,1974b) 、外標(biāo)法(Chu,1994)、無標(biāo)樣法(劉仕子,1994)、基體沖洗法(K值法,RIR法)(Chung,1974a)和Rietveld方法(馬禮敦,1996)等。這些方法各有優(yōu)缺點(diǎn),前3種方法都需要在待測樣品中加入標(biāo)樣(標(biāo)準(zhǔn)物相)并繪制標(biāo)準(zhǔn)工作曲線,當(dāng)樣品物相種類較多時(shí),標(biāo)樣反而增加衍射譜線的重疊機(jī)會(huì),進(jìn)一步給定量分析帶來困難。外標(biāo)法雖然不需要在樣品中加入標(biāo)準(zhǔn)物相,但需要用純的待測相物質(zhì)制作工作曲線,而純的待測相物質(zhì)比較難提取或獲得,這在實(shí)際應(yīng)用中也是極為不便。在地學(xué)研究中,大部分地質(zhì)樣品成分復(fù)雜,很難找到合適的標(biāo)樣或者標(biāo)樣價(jià)格非常昂貴,加標(biāo)樣的定量分析方法應(yīng)用很有限 (房俊卓和徐崇福,2010)。在實(shí)際應(yīng)用中迫切需要一種簡便、高效的普適性多物相無標(biāo)樣定量分析方法。而基體沖洗法、無標(biāo)樣法和Rietveld方法等分析方法不需要配制一系列標(biāo)樣和繪制工作曲線,但需要煩瑣的數(shù)學(xué)計(jì)算,而且Rietveld方法對樣品物相組成、結(jié)晶程度等要求較嚴(yán),其實(shí)際應(yīng)用也受到了一定限制(Madsen et al,2013;Chipera and Bish,2013)。

      近些年,針對X射線衍射的定量分析,不同的儀器廠家和科研工作者也開發(fā)了一系列的軟件或分析方法,諸如荷蘭帕納科公司、德國布魯克、日本理學(xué)、美國伊諾斯、日本島津、國內(nèi)丹東方園等儀器自帶軟件以及面向大眾開發(fā)的Jade,MacDiff,Rockjock等軟件。儀器自帶的軟件側(cè)重于定性分析即物相的鑒定,而開發(fā)的軟件側(cè)重于定量分析。Jade由美國材料數(shù)據(jù)公司(Materials Data Ltd.)開發(fā),是應(yīng)用最廣泛的XRD分析工具軟件,既可物相定性定量分析,也可以進(jìn)行圖譜擬合、晶體結(jié)構(gòu)、晶相、晶胞精修、全譜擬合、殘余應(yīng)力、圖譜模擬等,廣泛應(yīng)用于化學(xué)、材料學(xué)、生物學(xué)、醫(yī)學(xué)、地學(xué)等領(lǐng)域。 Rockjock是一個(gè)Excel軟件(Eberl,2003),比較簡單,主要應(yīng)用于地學(xué)礦物分析,功能有限。MacDiff是基于蘋果系統(tǒng)開發(fā)的軟件(Petschick,2002),在粘土礦物定量分析方面應(yīng)用較多(Arnalds et al,2007;Liu et al,2007;Liu et al,2010;Wu et al,2012;Tudryn et al,2013),并取得很好的效果,但對全巖礦物的報(bào)道較少,其精度和可靠性仍不清楚(Ehrmann,1998)。

      本文設(shè)計(jì)了系列對比實(shí)驗(yàn),比較了MacDiff面積積分法(Peak area integration,PAI法)和最常用的HighScore強(qiáng)度參比法(Reference intensity ratio,RIR法)在礦物學(xué)定量分析的優(yōu)缺點(diǎn),以期找到一種計(jì)算簡單,精確度高的普適定量方法,從而為地學(xué)研究提供便利。

      1 研究方法簡介

      兩種方法基本原理見下文。

      1.1 RIR法

      參比強(qiáng)度RIR是通過添加內(nèi)標(biāo)測量或計(jì)算得到的一個(gè)與儀器無關(guān)的常數(shù)。當(dāng)標(biāo)準(zhǔn)物相是剛玉時(shí):

      RIR值可以在PDF卡片庫中進(jìn)行搜索查詢。基體清洗法的工作方程為:

      xc為加入樣品中內(nèi)標(biāo)物質(zhì)剛玉的重量分?jǐn)?shù)(已知),Ic為剛玉的強(qiáng)度,Ii為待測物相的強(qiáng)度。因此只需要測出i相及內(nèi)標(biāo)物質(zhì)的最強(qiáng)衍射峰強(qiáng)度即可算出i相在混合樣品中的質(zhì)量分?jǐn)?shù)xi,而i相在原始樣品中的質(zhì)量分?jǐn)?shù)Xi,則為:

      1.2 PAI法

      X射線在晶體上發(fā)生的衍射效應(yīng)可以看成是平行或基本平行于樣品板平面的晶面對入射的X射線產(chǎn)生對稱性的選擇性反射的物理現(xiàn)象(林西生,1990)。粉晶衍射譜圖是無數(shù)微小晶粒各衍射面產(chǎn)生衍射疊加的結(jié)果。一個(gè)晶粒不止一組晶面,但是只有平行于試樣表面的晶面(hkl),才對衍射起作用。樣品制備完成時(shí),基本上可以理想化認(rèn)為晶面數(shù)等同于晶粒數(shù)。而對于混合物中的i相的某一衍射線強(qiáng)度:

      其中Ci是與角因子、溫度因子、多重性因子、結(jié)構(gòu)因子等有關(guān)的常數(shù);xi為i相在混合物中的重量百分?jǐn)?shù);為i相的質(zhì)量吸收系數(shù);為基體(混合物中的除i相的其余部分)的質(zhì)量吸收系數(shù);為整個(gè)混合物的質(zhì)量吸收系數(shù);ρi為i相的密度。由此公式可知多晶粉末中i相某一衍射晶面(hkl)強(qiáng)度:

      其中vi,hkl為i相晶面(hkl)在平行于樣品表面且滿足布拉格方程的晶粒在混合物中的體積百分?jǐn)?shù)。I相所有衍射晶面的強(qiáng)度:

      vi為i相在混合物中的體積百分?jǐn)?shù)。由此可知,忽略角因子、多重性因子、結(jié)構(gòu)性因子、溫度因子的影響,某一相所有衍射線強(qiáng)度之和與衍射晶粒體積成正比。

      2 實(shí)驗(yàn)設(shè)計(jì)與方法

      2.1 實(shí)驗(yàn)材料

      為了考慮研究方法的實(shí)用性,論文選擇第四紀(jì)沉積物常見的石英(Qtz)、長石(Fsp)、方解石(Cal)、云母(Mca)和自然界不易見的剛玉(Crn)作為對比礦物,X衍射標(biāo)準(zhǔn)樣品來自美國Chemplex industries公司。先用X衍射儀分別掃描其X射線定性衍射譜并與粉末衍射數(shù)據(jù)庫PDF2004的圖譜進(jìn)行比較,確定與標(biāo)樣最匹配的PDF卡片。最終確定Qtz、Fsp、Cal、Mca、Crn最匹配的卡片號(hào)分別為01-083-2465,01-078-0434,01-086-2334,00-042-1399, 01-074-1081。用精度為0.01 mg的電子天平進(jìn)行樣品稱量,將礦物標(biāo)樣按4種不同組合、4種不同比例混合配制成16個(gè)已知配比的實(shí)驗(yàn)樣品。樣品配比見表1。將稱量好的物相粉末在研缽中輕輕研磨5分鐘充分混合均勻,放入樣品槽中壓片制樣。

      表1 16個(gè)實(shí)驗(yàn)樣品的成分配比Tab.1 The proportion of the 16 experimental samples

      2.2 實(shí)驗(yàn)方法

      測試工作在黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室環(huán)境礦物室完成,測試儀器為荷蘭帕納科公司生產(chǎn)的X’Pert Pro MPD 多晶X射線衍射儀。測試條件:Cu-Kα輻射;工作電壓和電流分別為40 kV、40 mA;發(fā)散狹縫與散射狹縫均為1°,接收狹縫0.2 mm;采用連續(xù)掃描方式,掃描范圍:5—70°(2θ),掃描時(shí)間19.685 s;掃描步長0.0167°(2θ)。為了最大減少儀器精度和樣品制備引起的誤差。每個(gè)樣品重復(fù)測定3次,每次都重新壓片。

      測試數(shù)據(jù)分別使用帕納科儀器自帶的X’Pert HighScore軟件以及面向大眾開發(fā)的MacDiff軟件對其進(jìn)行定性和定量分析。具體分析過程:

      (1)HighScore軟件——RIR法

      在HighScore軟件中打開上述四種不同組合的混合礦物XRD圖譜,依次進(jìn)行以下操作:尋找基線、剝離Kα2、平滑、尋峰。尋峰結(jié)果與PDF2004卡片數(shù)據(jù)庫進(jìn)行礦物比對,選擇得分高并含有RIR值的礦物,得出定性和半定量分析結(jié)果。

      (2)MacDiff軟件——PAI法

      在MacDiff軟件中打開XRD圖譜,依次進(jìn)行Kα2剝離、平滑、尋找基線、扣除背底、平滑基線、峰校正、尋峰、鑒定礦物,得到定性結(jié)果。根據(jù)定性結(jié)果編寫峰分析程序,使圖譜中每一衍射峰都與物相衍射晶面一一對應(yīng)。按此程序?qū)γ總€(gè)衍射峰的峰形參數(shù)進(jìn)行精修,得到衍射峰擬合面積。背景采用四次多項(xiàng)式近似,數(shù)據(jù)用最小二乘法處理。最后將單一物相的峰面積數(shù)據(jù)進(jìn)行加和,得到正比于該物相體積分?jǐn)?shù)的總衍射峰面積。根據(jù)公式(6),乘以各物相密度得到正比質(zhì)量分?jǐn)?shù)的峰面積,最后進(jìn)行100%歸一化,得到PAI法半定量分析結(jié)果。

      3 結(jié)果與討論

      圖1羅列了4種不同礦物組合的2號(hào)樣品的定性結(jié)果。由圖1可以看出,不同的礦物衍射峰形不同。像石英、方解石這類常見的造巖礦物,其化學(xué)組成簡單,晶系對稱性高(龐小麗等,2009;薛治國等,2013),其X射線衍射峰少而且尖銳,不與其他物相的峰重疊。相反,化學(xué)組成復(fù)雜且晶系對稱性低的礦物,如長石類礦物,其多層解理致使成分多變,微觀結(jié)構(gòu)共生和產(chǎn)生擇優(yōu)取向(Chipera and Bish,2013),其衍射峰多,矮而寬,常與其他物相衍射峰重疊,尤其是高角度區(qū)。等量的石英和長石均勻混合,測量發(fā)現(xiàn)石英衍射峰峰強(qiáng)明顯要比長石高很多。這間接驗(yàn)證了只通過一個(gè)或幾個(gè)衍射峰計(jì)算物相含量會(huì)有明顯的誤差,特別是當(dāng)有擇優(yōu)取向存在時(shí)(于學(xué)峰和劉釗,2010)。本實(shí)驗(yàn)曾嘗試選取前三強(qiáng)峰或前五強(qiáng)峰面積來計(jì)算相對含量,結(jié)果偏差非常大,尤其是長石類礦物。這就是為什么當(dāng)僅用特征峰或幾個(gè)強(qiáng)峰進(jìn)行定量時(shí),往往需要引用強(qiáng)度因子(龔鍵等,2013)、參比強(qiáng)度(楊波等,2014)或匹配強(qiáng)度(儲(chǔ)剛等,2004)等。相反PAI法對所有衍射峰進(jìn)行(分裂)擬合,就會(huì)大大減少因擇優(yōu)取向、峰重疊而導(dǎo)致的定量誤差。

      通過PAI法和RIR法實(shí)驗(yàn)值和配比值的回歸分析,發(fā)現(xiàn)含量較高的物相(石英、長石)兩種方法的計(jì)算結(jié)果與配比值比較接近。其中結(jié)晶質(zhì)礦物石英通過兩種方法得到的數(shù)據(jù)擬合為同一條曲線,與配比值相比,當(dāng)含量≤60%時(shí),值偏高(圖2a)。圖2b顯示RIR法得到的長石半定量結(jié)果與配比值非常接近,PAI法的結(jié)果偏低,這種偏差隨著含量的增加而增大。可能原因是長石衍射峰形不明顯,峰重疊性較高導(dǎo)致分峰不準(zhǔn)確。從圖2c、d可以看出用PAI法對含量較低的方解石和云母定量結(jié)果與配比值比較接近,RIR法定量結(jié)果值偏低。其中圖2d可以看出RIR法對低含量(≤10%)的云母不敏感,定量結(jié)果偏低程度很大,相對偏差達(dá)62%。根據(jù)公式(2),可知云母RIR值偏大(13.8)是造成定量結(jié)果偏低的原因。值得一提的是云母雖然不是粘土礦物,但是可以代表粘土級別的礦物,其RIR值并不是按定義去測量的(Hillier,2000)??傮w來說RIR法的定量結(jié)果還是比較粗的。而PAI法對云母的定量結(jié)果稍稍偏高,原因是云母層理特別發(fā)育,在實(shí)際情況中存在非層面衍射(徐鈿和王冠鑫,2003),PAI法將其理想化了,誤差就不可避免了。從圖1還可以看出云母的衍射線稀少,且相距甚遠(yuǎn)無疊加現(xiàn)象,說明制樣過程中確實(shí)存在擇優(yōu)取向。剛玉通常被認(rèn)為是標(biāo)準(zhǔn)物相(Hubbard et al,1976),圖2e的定量結(jié)果說明RIR法和PAI法的定量結(jié)果是基本一致的,但都比真實(shí)值偏低。

      實(shí)際配比過程中,組分種類越多的樣品其相應(yīng)的含量就越低,圖2可以看出五種礦物含量越低,與真實(shí)值就越接近。這反映了當(dāng)樣品含有較多礦物種類時(shí),尤其是含有四種以上礦物時(shí),PAI法更能顯示出優(yōu)勢。

      圖3比較了PAI法和RIR法對五種物相的定量絕對誤差。PAI法(圖3a)的絕對誤差在10%以內(nèi),而少量石英的RIR法測量結(jié)果絕對誤差在10% — 15%(圖3b)。石英兩種方法的定量結(jié)果絕對誤差在各個(gè)區(qū)間都有,其中在≤3%區(qū)間內(nèi)最多。長石誤差基本屬于平均分布,RIR法則主要集中在3%以內(nèi)。相反,方解石的PAI法定量結(jié)果絕對誤差都≤3%。推出PAI法適合結(jié)晶性較好,衍射峰高而尖的物相,RIR法則適合結(jié)晶性一般,衍射峰矮而寬的物相。這是因?yàn)镽IR法主要側(cè)重于強(qiáng)峰,而PAI法對于結(jié)晶度差、晶粒細(xì)、有缺陷的礦物,因其衍射圖譜寬化而無法用峰面積準(zhǔn)確的定量。同時(shí)從圖3還可以看出PAI法對低含量的云母和剛玉的定量結(jié)果也比RIR法好,除了2種組合的云母絕對誤差在3% — 5%,其余均小于3%。結(jié)合圖2,說明PAI法對低含量的物相定量結(jié)果可靠,而物相的較低含量正是造成的RIR法結(jié)果偏低的原因之一(曲高生, 1990)。

      圖1 四種不同礦物種類混合樣品的典型X射線衍射譜(圖注括號(hào)內(nèi)為相應(yīng)礦物含量)Fig.1 The typical X-ray diffraction patterns of 4 kinds of different mineral mixed samples (Corresponding mineral contents are shown in legend brackets)

      圖2 PAI法(藍(lán)線)和RIR法(紅線)得到的石英(a)、長石(b)、方解石(c)、云母(d)、剛玉(e)實(shí)驗(yàn)值與配比值(黑線)的相關(guān)關(guān)系Fig.2 Relationship of matched value and calculated value of Qtz (a),Fsp (b),Cal (c),Mca(d),Crn (e) by PAI and RIR quantitative methods,respectively

      圖3 PAI法(a)和RIR法(b)和實(shí)驗(yàn)值與配比值絕對誤差頻數(shù)分析Fig.3 The absolute error frequency distribution between matched values and computed results by PAI (a) and RIR (b) quantitative methods,respectively

      圖2和圖3 共同說明PAI法與RIR法兩種定量方法應(yīng)用于礦物定量結(jié)果基本一致,同時(shí)兩種方法也各有優(yōu)缺點(diǎn)。RIR法快速、方便但并不適用于所有礦物,對于結(jié)構(gòu)復(fù)雜的物相困難較大(賴振宇等,2014)。誤差主要來源于兩個(gè)方面:(1)RIR值的選擇。RIR值受限于PDF卡片庫,選擇不同的RIR值,就得到不同的結(jié)果(房俊卓和徐崇福,2010)。當(dāng)一種物相的RIR值與其他物相相差很大時(shí),由RIR值計(jì)算導(dǎo)致的誤差比由峰重疊導(dǎo)致的誤差要明顯的多。(2)衍射峰的強(qiáng)度。RIR定義用的是峰高強(qiáng)度。峰高強(qiáng)度=1/2 ×峰高×峰寬。對于低含量物相,峰形不明顯,峰強(qiáng)小造成峰高強(qiáng)度偏低。PAI法直接對整個(gè)衍射譜內(nèi)所有衍射峰進(jìn)行擬合,既不需要強(qiáng)度因子,也不需要晶體結(jié)構(gòu)信息。但PAI法因須扣除背景,無法獲取非晶態(tài)物質(zhì)的定量結(jié)果(胡秀榮等,2005;李響和蔡元峰,2014),而且編寫分析程序時(shí)比較繁瑣,用時(shí)長。PAI法誤差來源包括三個(gè)方面:(1)劈裂峰的不準(zhǔn)確。因?yàn)榈V物相較多,衍射峰互相重疊,礦物類質(zhì)同象的影響使衍射峰的起點(diǎn)和終點(diǎn)發(fā)生漂移,造成積分強(qiáng)度較大的誤差(曲高生,1990)。(2)單純的對整個(gè)衍射譜峰進(jìn)行面積積分,忽略晶體結(jié)構(gòu)的影響,理想化了晶面衍射,結(jié)果是值偏高。(3)根據(jù)布拉格方程,θ取值范圍為0 — 45°。本實(shí)驗(yàn)局限于PDF 定性結(jié)果,θ范圍僅取5.5 — 35°。當(dāng)然樣品預(yù)處理過程也會(huì)對實(shí)驗(yàn)誤差造成很大的影響(陳濤等,2013;李艷麗等,2014)。

      采用積分面積有利于提高X射線衍射物相定量分析的準(zhǔn)確度(李真等,2006;房俊卓等,2008)。運(yùn)用PAI 法進(jìn)行沉積物礦物定量,可以更好地展現(xiàn)積分強(qiáng)度的優(yōu)越性。實(shí)驗(yàn)證明用峰的位置、高度、寬度、形態(tài)系數(shù)和不對稱性5要素描述衍射峰形態(tài)比僅用峰的位置、高度、寬度3要素描述衍射峰形態(tài)更準(zhǔn)確、全面、完整(Shi et al,2002)。本文采用的MacDiff軟件不但可以提供六種不同的“鐘罩形”函數(shù)來完成峰形擬合,多有重疊峰,尤其是在高角度區(qū),而且可以根據(jù)衍射不相干原理——重疊峰的積分強(qiáng)度等于各物相積分強(qiáng)度的代數(shù)和(苗春省,1988)——將礦物X射線衍射譜重疊峰分離開來,部分消除物相質(zhì)量吸收、擇優(yōu)取向、儀器穩(wěn)定性誤差和多重性因子的影響(儲(chǔ)剛等,2004;Chipera and Bish,2013)。這兩者正是MacDiff與一般常規(guī)峰分析軟件的特別之處。

      4 結(jié)論

      實(shí)驗(yàn)結(jié)果說明PAI法和RIR法在物相定量分析上是基本一致的。RIR法作為目前最常用的物相定量法,其優(yōu)點(diǎn)是簡單,快速,能有效的對結(jié)晶性不好的礦物進(jìn)行分析,缺點(diǎn)是RIR值的選取十分受限于卡片庫,而且含量較低物相RIR法定量結(jié)果偏低。而PAI法忽略了晶體微觀結(jié)構(gòu),理想化了晶粒中晶面衍射的情況,單純用峰面積計(jì)算礦物含量。雖然該方法分析過程稍微繁瑣,但是對于結(jié)晶性較好的物相和含礦物種類較多的樣品定量結(jié)果準(zhǔn)確(絕對誤差多數(shù)情況下≤3%)、重現(xiàn)性好,可部分消除擇優(yōu)取向的影響,是理想的實(shí)驗(yàn)方法,可為沉積物礦物定量分析提供可靠數(shù)據(jù)。

      陳 濤,宋友桂,曾蒙秀,等.2013.影響XRD衍射譜形態(tài)的實(shí)驗(yàn)條件分析[J].地球環(huán)境學(xué)報(bào),4(2):1249 – 1254.[Chen T,Song Y G,Zeng M X,et al.2013.Analysis on the experimental conditions affecting the shape of the XRD spectrum [J].Journal of Earth Environment,4(2):1249 – 1254.]

      儲(chǔ) 剛.1998.含非晶相樣品的X射線衍射增量法定量相分析[J].物理學(xué)報(bào),47(7):1143 – 1148.[Chu G.1998.A doping method for quantitative X-ray diffraction phase analysis of samples containing amorphous material [J].Acta Physica Sinica,47(7):1143 – 1148.]

      儲(chǔ) 剛,翟秀靜,符 巖,等.2004.X射線衍射多譜峰匹配強(qiáng)度比定量相分析方法[J].分析測試學(xué)報(bào),23(1):48 – 51.[Chu G,Zhai X J,Fu Y,et al.2004.The multipeak match intensity ratio method for X-ray diffraction quantitative phase analysis [J].Journal of Instrumental Analysis,23(1):48 – 51.]

      房俊卓,徐崇福.2010.三種X射線物相定量分析方法對比研究[J].煤炭轉(zhuǎn)化,33(2):88 – 91.[Fang J Z,Xu C F.2010.Study on three kinds of XRD quantitative analysis methods [J].Coal Conversion,33(2):88 – 91.]

      房俊卓,張 霞,徐崇福.2008.實(shí)驗(yàn)條件對X射線衍射物相定量分析結(jié)果的影響[J].巖礦測試,27(1):60 – 62.[Fang J Z,Zhang X,Xu C F.2008.Effect of experimental conditions on X-ray diffractometric quantitative phase analysis [J].Rock and Mineral Analysis,27(1):60 – 62.]

      龔 鍵,李福春,馬 芳,等.2013.土壤中常見黏土礦物定量方法的改進(jìn)研究[J].土壤通報(bào),44(4):884 – 888.[Gong J,Li F C,Ma F,et al.2013.A study for the improvement of quantitative determination of main clay minerals in soil [J].Chinese Journal of Soil Science,44(4):884 – 888.]

      胡秀榮,呂光烈,顧建明,等.2005.天然膨潤土中蒙脫石豐度的定量方法研究[J].礦物學(xué)報(bào),25(2):59 – 63.[Hu X R,Lü G L,Gu J M,et al.2015.Three methods for quantification of montmorillontte abundances in natural bentonttes [J].Acta Metallurgica Sinica,25(2):59 – 63.]

      賴振宇,鄒秋林,盧忠遠(yuǎn),等.2014.Rietveld 全譜擬合方法對磷酸鎂水泥水化產(chǎn)物的定量分析研究[J].計(jì)量學(xué)報(bào),35(4):398 – 402.[Lai Z Y,Zou Q L,Lu Z Y,et al.2014. Quantitative analysis of hydration products in magnesium phosohate cement with Rietveld whole pattern fi tting [J].Acta Metallurgica Sinica,35(4):398 – 402.]

      李 響,蔡元峰.2014.沉積物中鐵氧化物的定量方法及其在白堊紀(jì)大洋紅層中的應(yīng)用[J].高校地質(zhì)學(xué)報(bào),20(3):433 – 444.[Li X,Cai Y F.2014.The quantitative analysis methods for iron oxides in sediment and their application in cretaceous oceanic red beds [J].Geological Journal of China Universities,20(3):433 – 444.]

      李艷麗,劉志飛,趙玉龍,等.2014.預(yù)處理過程對沉積物中粘土礦物半定量分析的影響[J].第四紀(jì)研究,34(3):635 – 644.[Li Y L,Liu Z F,Zhao Y L,et al.2014.On the influences of pretreatment on semi-quantitative determination of clay minerals in sediment [J].Quaternary Sciences,34(3):635 – 644.]

      李 真,尹 琳,熊 飛,等.2006.關(guān)于《凹凸棒粘土中坡縷石的內(nèi)標(biāo)法X 衍射定量分析研究》一文的修正[J].高校地質(zhì)學(xué)報(bào),12(3):410 – 412.[Li Z,Yin L,Xiong F,et al.2006.Comment on “quantitative analysis of X-ray diffraction for palygorskite within attapulgite clay” [J].Geological Journal of China Universities,12(3):410 – 412.]

      林西生.1990.X射線衍射分析技術(shù)及其地質(zhì)應(yīng)用[M].北京:石油工業(yè)出版社:11 – 23.[Lin X S.1990.X-ray diffraction analysis technique and application in geology [M].Beijing:Petroleum Industry Press:11 – 23.]

      劉仕子.1994.一種實(shí)用的X射線無標(biāo)定量相分析方法[J].巖石礦物學(xué)雜志,13(3):268 – 277.[Liu S Z.1994.A practical method of X-ray quantitative phase analysis without standards [J].Acta Petrologica et Mineralogica,13(3):268 – 277.]

      馬禮敦.1996.X射線粉末衍射的新起點(diǎn)—— Rietveld全譜擬合[J].物理學(xué)進(jìn)展,16(2):251 – 271.[Ma L D.1996.The new starting point of X-ray powder diffraction —Rietveld full pattern fi tting [J].Progress in Physics,16(2):251 – 271.]

      苗春省.1988.X射線定量分析方法及應(yīng)用[M].沈陽:遼寧科技出版社:31 – 34.[Miao C S.1988.X-ray quantitative analysis method and application [M].Shenyang:Liaoning Science and Technology Press:31 – 34.]

      龐小麗,劉曉晨,薛 雍,等.2009.粉晶X射線衍射法在巖石學(xué)和礦物學(xué)研究中的應(yīng)用[J].巖礦測試,28(5):452 – 456.[Pang X L,Liu X C,Xue Y,et al.2009.Application of powder X-ray diffraction in petrology and mineralogy [J].Rock and Mineral Analysis,28(5):452 – 456.]

      曲高生.1990.西沙群島琛航島碳酸鹽沉積物 X 射線定量分析方法研究[J].礦物學(xué)報(bào),10(4):74 – 83.[Qu G S.1990.Quantitative X-ray diffraction analysis of carbonate sediments from Chenhang Island,Xisha Islands,China:a methodological study [J].Acta Metallurgica Sinica,10(4):74 – 83.]

      徐 鈿,王冠鑫.2003.云母族礦物八面體化學(xué)成分與層面X射線衍射特征[J].分析測試學(xué)報(bào),22(3):54 – 56.[Xu D,Wang G X.2003.Relation between octahedral composition and X-ray diffraction characterization projected onto lay for mica [J].Journal of Instrumental Analysis,22(3):54 – 56.]

      薛治國,劉子琦,陳 滸,等.2013.喀斯特洞穴晶體沉積速率的氣候響應(yīng)[J].地球環(huán)境學(xué)報(bào),4(1):1191 – 1196.[Xue Z G,Liu Z Q,Chen H,et al.2013.Climatic response from modern crystal sediments in karstic cave [J].Journal of Earth Environment,4(1):1191 – 1196.]

      楊 波,劉興起,王永波.2014.湖泊沉積物碳酸鹽含量的XRD半定量分析[J].湖泊科學(xué),26(4):637 – 640.[Yang B,Liu X Q,Wang Y B.2014.Carbonate contents of lake sediments determined by XRD method [J].Journal of Lake Sciences,26(4):637 – 640.]

      于學(xué)峰,劉 釗.2010.紅原泥炭顆粒物表面形態(tài)與礦物組成研究[J].地球環(huán)境學(xué)報(bào),1(2):122 – 125.[ Yu X F,Liu Z.2010.Surface texture and mineralogical characters of the peat in Hongyuan swamp [J].Journal of Earth Environment,1(2):122 – 125.]

      曾蒙秀,宋友桂.2013.麥夸特算法在X射線衍射物相定量分析中的應(yīng)用[J].地球科學(xué):中國地質(zhì)大學(xué)學(xué)報(bào),38(2):431 – 440.[ Zeng M X,Song Y G.2013.Application of the Levenberg-marquardt algorithm to X-ray diffraction quantitative phase analysis [J].Earth Science:Journal of China University of Geosciences,38(2):431 – 440.]

      Arnalds ó,óskarsson H,Bartoli F,et al.2007.Soils of volcanic regions in Europe [M].Berlin Heidelberg:Springer.Doi:10.1007/978-3-540-48711-1.

      Chipera S J,Bish D L.2002.FULLPAT:a full pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns [J].Journal of AppliedCrystallography,35(6):744 – 749.

      Chipera S J,Bish D L.2013.Fitting full X-Ray diffraction patterns for quantitative analysis:A method for readily quantifying crystalline and disordered phases [J].Advances in Materials Physics amp; Chemistry,3(1):47 – 53.

      Chu G.1994.An external standard method of quantitative phase analysis of the sample containing an amorphous phase by X-ray diffraction [J].Acta Metallurgica Sinica,7(3):179 – 182.

      Chung F H.1974a.Quantitative interpretation of X-ray diffraction patterns of mixtures.Ⅰ.Matrix-flushing method for quantitative multicomponent analysis [J].Journal of Applied Crystallography,7(6):519 – 525.

      Chung F H.1974b.Quantitative interpretation of X-ray diffraction patterns of mixtures.Ⅱ.Adiabatic principle of X-ray diffraction analysis of mixtures [J].Journal of Applied Crystallography,7(6):526 – 531.

      Eberl D D.2003.User’s guide to RockJock—A program for determining quantitative mineralogy from powder X-ray diffraction data:Open-File Report 03-78 [R].US Geological Survey:47.

      Ehrmann W.1998.Mineralogy of sediments from CRP 1 as revealed by X-ray diffraction [J].Terra Antartica,5(3):627 – 632.

      Hillier S.2000.Accurate quantitative analysis of clay and other minerals in sandstones by XRD:comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation [J].Clay Minerals,35(1):291 – 302.

      Hubbard C R,Evans E H,Smith D K.1976.The reference intensity ratio,I/Ic,for computer simulated powder patterns [J].Journal of Applied Crystallography,9(2):169 – 174.

      Liu Z F,Colin C,Huang W,et al.2007.Clay minerals in surface sediments of the Pearl River Drainage Basin and their contribution to the South China Sea [J].Chinese Science Bulletin,52(8):1101 – 1111.

      Liu Z F,Colin C,Li X J,et al.2010.Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins:source and transport [J].Marine Geology,277(1 /2 /3 / 4):48 – 60.

      Madsen I C,Scarlett N V Y,Riley D P,et al.2013.Modern diffraction methods:chapter 10 quantitative phase analysis using the Rietveld method [M].Weinheim:Wiley-VCH Verlag GmbH amp; Co.:285 – 320.

      Moore D M,Reynolds R C.1997.X-ray diffraction and the identi fi cation and analysis of clay minerals [M].Oxford:Oxford University Press.

      Petschick R.2002.MacDiff 4.2.6 (Free X-ray powder diffractometry analysis tool) [M/OL].[2015-10-10].http:// www.geol.uni-erlangen.de/html/software/soft.html.

      Popovi? S,Gr?etaR-Plenkovi? B.1979.The doping method in quantitative X-ray diffraction phase analysis [J].Journal of Applied Crystallography,12(2):205 – 208.

      Shi N C,Bai W J,Ma Z S,et al.2002.A study of X-ray diffraction of diamond inclusions from Luobusha,Tibet [J].Acta Geologica Sinica,76(4):497 – 500.

      Tudryn A,Tucholka P,?zg?r N,et al.2013.A 2300-year record of environmental change from SW Anatolia,Lake Burdur,Turkey [J].Journal of Paleolimnology,49(4):647 – 662.

      Wu J W,Liu Z F,Zhou C.2012.Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the western Pacific warm pool [J].Chinese Science Bulletin,57(28 / 29):3748 – 3760.

      A comparative study on X-ray diffraction mineral quantitative analysis of two methods in sediments

      LIN Weiwei1,SONG Yougui1,2
      1.State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,Chinese Academy of Sciences,Xi’an,710061,China
      2.Joint Center for Global Change Studies,Beijing 100875,China

      Background,aim,and scopeHow to select suitable X-ray diffraction (XRD) phase analysis methods and improve the accuracy have been an important problem in quantitative analysis of sediments.Many new methods for quantitative analysis have been derived since the theory of XRD phase quantitative analysis was mature.The requirement of these methods is too high either for the standard or for sample,which make its application restricted.In recent years,in view of XRD quantitative analysis,different instrument manufacturers and researchers have also developed a series of analysis software.MacDiff has been currently widely applied in clay mineral rather than the whole rock mineral,and its precision and reliability are still unclear.In this paper,we compare the advantagesand disadvantages of MacDiff with Peak Area Integration (PAI) and HighScore with Reference Intensity Ratio (RIR),which is the most commonly used in the quantitative analysis of mineralogy,hoping to fi nd a kind of simple calculation,high precision and universal quantitative method,so as to provide convenience for geological research.Materials and methodsConsidering the practice of research method,we choose common quaternary sediments of quartz (Qtz),feldspar (Fsp),calcite (Cal),mica (Mca) and uncommon mineral corundum (Crn) as materials.According to four different combinations and four different mixing ratios,16 known content experimental samples are prepared,conducted XRD testing,analyzed using the PAI and RIR quantitative analysis method,respectively.Based on the theory of powder diffraction spectrum is the diffraction stack results of countless small grain diffraction planes and diffraction intensity is proportional to the diffraction grain volume,PAI method is made by integrating all diffraction peak areas with MacDiff,and then through Normalization method to calculate all mineral contents.The key of the RIR method is the Reference Intensity RIR,which is a constant and independent of the instrument,is measured or calculated the strongest diffraction peak intensity by adding the internal standard.The mineral semiquantitative results can be got immediately if the matched RIR value is researched in HighScore PDF database.ResultsThe Relationship of matched value and calculated value of PAI and RIR quantitative methods (Fig.2) shows that with high crystallinity and high content,the calculated value of quartz in two methods are very close to the matched value.For poor crystallinity,high content of feldspar,the semi-quantitative results of RIR method closer to matched value,while PAI result is on the low side and the deviation increases with the known content increasing.For the low content of minerals,such as calcite and mica,PAI quantitative result is better than RIR.Low content of corundum is usually considered a standard phase,both RIR and PAI methods quantitative results are basically consist,lower than the real value.Fig.2 also shows that PAI method can show more advantages on the samples containing more than four kinds of minerals.By comparing the RIR and PAI method of fi ve phase quantitative absolute error (Fig.3),PAI method quantitative results of quartz,calcite,mica obtained with less error,and feldspar,in contrast,RIR method error is less.The absolute errors of corundum got with two methods are within 3%.DiscussionBecause of the difference of mineral crystallinity,such as Qtz and Fsp,provided that only selecting top three or fi ve peak areas to calculate the relative content,the results deviate largely,especially when preferred orientation exists.So PAI method fitting all diffraction peaks,will greatly reduce quantitative errors leading by preferred orientation,overlapping peaks.The results are in agreement with those provided by PAI and RIR methods,and each method has its own advantage and shortage.More speci fi cally,the PAI method is more practical in minerals with the sharp diffraction peaks and samples containing more than four minerals whose diffraction peaks are overlapped.But for mica,the PAI quantitative results are slightly on the high side cause of mica fl ourish bedding leading to the existence of non-plane diffraction in the actual situation.On the contrary,the RIR method is suitable for the minerals with some short and wide diffraction peaks,such as feldspar,which the diffraction peak shape is not obvious,higher peak overlaps maybe lead to inaccurate splitting peaks.Unfortunately,the RIR method is not sensitive signi fi cantly to low content (10%) or less.According to the principle of RIR method,larger RIR value (eg.RIR(mica)=13.8) causes lower quantitative results.So the errors of RIR method are mainly derived from the RIR value and the diffraction peak intensity,while the PAI method errors source from three aspects:inaccurate peak splitting,idealized crystal plane diffraction and ? range.ConclusionsExperimental results show that the PAI and RIR method on the phase quantitative analysis is the basically consist.By far,RIR method is the most commonly used phase quantitative method.Its advantage is simple,rapid,especially for bad crystalline minerals,while the disadvantage is that the selection of RIR value is restricted by PDF database,and the quantitative result of low content phase trend to less.Although the analysis process of PAI method is a little complicated,but for better crystalline materials or samples contain more mineral species,the method owns accurate quantitative results (absolute error in most cases ≤3%),good reproducibility,and can partly eliminate the effect of preferred orientation.Recommendations and perspectivesThe PAI analysis method does not need other parameters with small error and good reproducibility,and the full pattern fi tting can partially eliminate thein fl uence of preferential orientation,therefore,PAI method can provide reliable data for mineral quantitative analysis in sediments.

      Key Deployment Project of Chinese Academy of Sciences (KZZD-EW-04-02); National Natural Science Foundation of China (41290253,41572162); Fund of Xi’an Center of Geological Survey,China Geological Survey (Water[2016](4))

      SONG Yougui,E-mail:syg@ieecas.cn

      X-ray diffraction; quantitative analysis; MacDiff area integration; Highscore reference intensity ratio method

      2016-12-03;錄用日期2017-01-23

      Received Date:2016-12-03;Accepted Date2017-01-23

      中國科學(xué)院重點(diǎn)部署項(xiàng)目(KZZD-EW-04-02);國家自然科學(xué)基金項(xiàng)目(41290253,41572162);中國地質(zhì)調(diào)查局西安地質(zhì)調(diào)查中心項(xiàng)目(水[2016](4))

      宋友桂,E-mail:syg@ieecas.cn

      林偉偉,宋友桂.2017.沉積物中X 射線衍射物相定量分析中的兩種方法對比研究[J].地球環(huán)境學(xué)報(bào),8(1):78 – 87.

      : Lin W W,Song Y G.2017.A comparative study on X-ray diffraction mineral quantitative analysis of two methods in sediments [J].Journal of Earth Environment,8(1):78 – 87.

      10.7515/JEE201701010

      猜你喜歡
      物相X射線定量
      “X射線”的那些事兒
      實(shí)驗(yàn)室X射線管安全改造
      顯微定量法鑒別林下山參和園參
      新疆西昆侖鉛鋅礦中鉛鋅物相分析方法研究
      虛擬古生物學(xué):當(dāng)化石遇到X射線成像
      科學(xué)(2020年1期)2020-01-06 12:21:34
      當(dāng)歸和歐當(dāng)歸的定性與定量鑒別
      中成藥(2018年12期)2018-12-29 12:25:44
      10 種中藥制劑中柴胡的定量測定
      中成藥(2017年6期)2017-06-13 07:30:35
      取向硅鋼脫碳退火氧化層的物相檢測方法研究
      上海金屬(2015年6期)2015-11-29 01:08:49
      慢性HBV感染不同狀態(tài)下HBsAg定量的臨床意義
      脫硫吸附劑物相快速定量分析技術(shù)及其應(yīng)用
      连江县| 沈丘县| 双城市| 来安县| 石台县| 奈曼旗| 天柱县| 昌图县| 吴旗县| 临沂市| 屏东市| 华宁县| 灵璧县| 伊宁县| 呼和浩特市| 卓资县| 清新县| 邢台市| 宣城市| 鄂尔多斯市| 通城县| 宣化县| 吉首市| 江城| 舞阳县| 云龙县| 阿拉善右旗| 兰州市| 若尔盖县| 白山市| 莱阳市| 读书| 崇仁县| 红安县| 宝鸡市| 扎赉特旗| 丰原市| 衡东县| 万年县| 仙居县| 旅游|