呂天石,甘勤濤
(軍械工程學(xué)院基礎(chǔ)部,河北 石家莊 050003)
一類廣義Markov跳變隨機(jī)反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性研究
呂天石,甘勤濤
(軍械工程學(xué)院基礎(chǔ)部,河北 石家莊 050003)
廣義神經(jīng)網(wǎng)絡(luò); 反應(yīng)擴(kuò)散; Markov跳變; 隨機(jī)干擾; 混合時(shí)滯; Lyapunov泛函
基于神經(jīng)網(wǎng)絡(luò)的基本變量,神經(jīng)網(wǎng)絡(luò)可分為局域神經(jīng)網(wǎng)絡(luò)和靜態(tài)神經(jīng)網(wǎng)絡(luò)。ZHANG等[1]研究表明:只有當(dāng)神經(jīng)網(wǎng)絡(luò)的負(fù)反饋矩陣和連接權(quán)矩陣是可交換的且連接權(quán)矩陣是非奇異矩陣時(shí),局域神經(jīng)網(wǎng)絡(luò)與靜態(tài)神經(jīng)網(wǎng)絡(luò)才是等同的。因此,局域神經(jīng)網(wǎng)絡(luò)的動(dòng)力學(xué)分析結(jié)果并不能完全適用于靜態(tài)神經(jīng)網(wǎng)絡(luò),這在很大程度上限制了神經(jīng)網(wǎng)絡(luò)的理論研究和應(yīng)用。此外,在神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)過程中,由于信號(hào)傳輸?shù)乃俣纫约胺糯笃鞯那袚Q速度皆有限,會(huì)不可避免地產(chǎn)生時(shí)滯,同時(shí)模擬神經(jīng)網(wǎng)絡(luò)的電子電路在不均勻的磁場環(huán)境下工作時(shí)也會(huì)產(chǎn)生電子的擴(kuò)散效應(yīng)。因此,有必要將時(shí)滯和反應(yīng)擴(kuò)散引入到神經(jīng)網(wǎng)絡(luò)中。
設(shè){rt,t≥0}為定義在完備概率空間(Ω,F,P)(帶有滿足通常條件的自然流{Ft}t≥0,即右連續(xù)性和F0包含所有P零測集)上取值于有限狀態(tài)空間S={1,2,…,N}右連續(xù)的Markov過程,其轉(zhuǎn)移概率為
(1)
考慮具有混合時(shí)滯的廣義Markov跳變隨機(jī)反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò),即
ζ,x)dt+W1(rt)f(W0y(t,x))dt+
W2(rt)f(W0y(t-τ,x))dt+W3(rt)×
σ(rt,t,y(t,x),y(t-τ,x))dω(t)。
(2)
通過分析式(2)可以看出:當(dāng)W1(rt)=W2(rt)=W3(rt)=I時(shí)(I表示適當(dāng)階數(shù)的單位矩陣),為靜態(tài)神經(jīng)網(wǎng)絡(luò);當(dāng)W0=I時(shí),為局域神經(jīng)網(wǎng)絡(luò)。因此,式(2)可稱為具有混合時(shí)滯的廣義Markov跳變隨機(jī)反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò),以下簡稱神經(jīng)網(wǎng)絡(luò)(2)。
(3)
初始條件
(4)
為方便證明,記rt=i時(shí),A(rt)=Ai,W1(rt)=W1i,W2(rt)=W2i,W3(rt)=W3i。證明神經(jīng)網(wǎng)絡(luò)(2)的全局均方魯棒漸近穩(wěn)定性需要用到的假設(shè)、引理和定義如下:
假設(shè)1: 存在正定對(duì)角矩陣H,使得激勵(lì)函數(shù)f(u)滿足Lipschitz條件,即
fT(u)f(u)≤uTH2u。
假設(shè)2:存在正常數(shù)ρ1和ρ2,使得不等式
trace[σT(t)σ(t)]≤ρ1yT(t,x)y(t,x)+
ρ2yT(t-τ,x)y(t-τ,x)
成立,其中trace[·]表示矩陣的跡。
引理2[10]:對(duì)給定的向量x∈Rn,y∈Rn,存在ε>0,使得不等式
xTy+yTx≤εxTx+ε-1yTy
成立。
定義1[11]:如果存在正常數(shù)κ,使得不等式
(5)
成立,則神經(jīng)網(wǎng)絡(luò)(2)是全局均方魯棒漸近穩(wěn)定的。式中:X 證明:對(duì)神經(jīng)網(wǎng)絡(luò)(2)構(gòu)造正定的Lyapunov泛函 V[t,y(t,x),rt=i]=Vi[t,y(t,x)]= V1i[t,y(t,x)]+V2i[t,y(t,x)]+V3i[t,y(t,x)]+ V4i[t,y(t,x)]+V5i[t,y(t,x)], (6) 定義運(yùn)算 (7) 式(6)、(7)中: V1i[t,y(t,x)]=∫ΩyT(t,x)Piy(t,x)dx; f(W0y(s,x))dsdθdx; W1(rt)f(W0y(t,x))dt+W2(rt)f(W0y(t- PiAiy(t-ζ,x)dx+∫ΩfT(W0y(t,x))W1iTPiy(t,x)dx+ ∫ΩyT(t,x)PiW1if(W0y(t,x))dx+∫ΩfT(W0y(t-τ,x))× W2iTPiy(t,x)dx+∫ΩyT(t,x)PiW2if(W0y(t-τ,x))dx+ Piσ(rt,t,y(t,x),y(t-τ,x)); (8) ∫ΩyT(t-ζ,x)Qy(t-ζ,x)dx; (9) ∫ΩyT(t-τ,x)Ry(t-τ,x)dx; (10) (11) f(W0y(s,x))μdsdx; (12) (13) 由邊界條件(3)、格林公式及引理1,可知: -2∫ΩyT(t,x)PiDπy(t,x)dx。 (14) 根據(jù)引理2和假設(shè)1可知:存在正常數(shù)ε1和ε2,正定對(duì)角矩陣H1和H2,使得不等式 ∫ΩfT(W0y(t,x))W1iTPiy(t,x)dx+ ∫ΩyT(t,x)PiW1if(W0y(t,x))dx≤ ∫Ωε1fT(W0y(t,x))f(W0y(t,x))dx+ (15) ∫ΩfT(W0y(t-τ,x))W2iTPiy(t,x)dx+ ∫ΩyT(t,x)PiW2if(W0y(t-τ,x))dx≤ ∫Ωε2fT(W0y(t-τ,x))f(W0y(t-τ,x))dx+ ∫Ω[ε2yT(t-τ,x)W0TH22W0y(t-τ,x)+ (16) (17) 成立。 根據(jù)假設(shè)2可知:存在正常數(shù)ρ1和ρ2,使得不等式 ∫ΩσT(rt,t,y(t,x),y(t-τ,x))Piσ(rt,t,y(t,x), y(t-τ,x))dx≤∫Ωλi[ρ1yT(t,x)y(t,x)+ ρ2yT(t-τ,x)y(t-τ,x)]dx (18) 成立。 結(jié)合式(8)-(18),可得 ηT(t,x)Λη(t,x), 其中 因?yàn)棣?O,易知存在正常數(shù)κ使得 Λ+diag(κI,O,O,O) 則有 (19) 對(duì)式(19)兩邊取期望,可得 因此,結(jié)合定義1可知:神經(jīng)網(wǎng)絡(luò)(2)是全局均方魯棒漸近穩(wěn)定的,即定理1得證。 令y(t,x)=(y1(t,x),y2(t,x))T,考慮如下具有混合時(shí)滯的廣義Markov跳變隨機(jī)反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò),即 W1(rt)f(W0y(t,x))dt+W2(rt)f(W0y(t-τ,x))dt+ y(t-τ,x)]dω(t)。 (20) 其設(shè)定參數(shù)為 初始條件為 y1(t,x)=0.13{1+[t-τ(t)]/π}cos(x/π), y2(t,x)=0.21{1+[t-τ(t)]/π}cos(x/π), 其中(t,x)∈[-0.35,0]×Ω。 顯然,H1、H2、P1、P2、Q和R是正定對(duì)角矩陣。因此,結(jié)合定理1可知式(20)可稱為具有全局均方魯棒漸近穩(wěn)定的神經(jīng)網(wǎng)絡(luò),以下簡稱“神經(jīng)網(wǎng)絡(luò)(20)”。 根據(jù)神經(jīng)網(wǎng)絡(luò)(20)及其設(shè)定參數(shù)和初始條件,模式i=1、2時(shí)神經(jīng)網(wǎng)絡(luò)的時(shí)間響應(yīng)圖分別如圖1、2所示。可以看出:當(dāng)選取滿足線性矩陣不等式(5)的相應(yīng)參數(shù)和激勵(lì)函數(shù)時(shí),具有Markov跳變參數(shù)、隨機(jī)干擾和混合時(shí)滯的廣義反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò)是全局漸近穩(wěn)定的。 圖1 模式i=1時(shí)神經(jīng)網(wǎng)絡(luò)的時(shí)間響應(yīng)圖 圖2 模式i=2時(shí)神經(jīng)網(wǎng)絡(luò)的時(shí)間響應(yīng)圖 筆者研究了一類具有混合時(shí)滯的廣義Markov跳變隨機(jī)反應(yīng)擴(kuò)散神經(jīng)網(wǎng)絡(luò),利用Lyapunov穩(wěn)定性理論得到了神經(jīng)網(wǎng)絡(luò)系統(tǒng)的全局魯棒均方漸近穩(wěn)定性判據(jù),并通過數(shù)值模擬說明了所得結(jié)論的有效性。與以往結(jié)果相比,所得結(jié)果保守性較低,具有更廣泛的適用范圍,應(yīng)用價(jià)值在一定程度上有所提高,給網(wǎng)絡(luò)設(shè)計(jì)帶來方便。 [1] ZHANG X,HAN Q.Global asymptotic stability for a class of gene-ralized neural networks with interval time-varying delays [J].IEEE transactions on neural networks,2011,22(8):1180-1192. [2] VIDHYA C,BALASUBRAMANIAM P.Stability of uncertain reaction-diffusion stochastic BAM neural networks with mixed delays and Markovian jumping parameters [J].Expert systems with applications,2012,39(3):3109-3115. [3] SHI G,MA Q.Synchronization of stochastic Markovian jump neural networks with reaction-diffusion terms [J].Neurocomputing,2012,77(1):275-280. [4] SHEN H,HUANG X,ZHOU J,et al.Global exponential estimates for uncertain Markovian jump neural networks with reaction-diffusion terms [J].Nonlinear dynamics,2012,69(1/2):473-486. [5] WANG Y,LIN P,WANG L.Exponential stability of reaction-diffusion high-order Markovian jump hopfield neural networks with time-varying delays [J].Nonlinear analysis:real world applications,2012,13(3):1353-1361. [6] ZHOU C,ZHANG H,ZHANG H,et al.Global exponential stability of impulsive fuzzy cohen-grossberg neural networks with mixed delays and reaction-diffusion terms [J].Neurocomputing,2012,91(2):67-76. [7] KAO Y,GUO J,WANG C,et al.Delay-dependent robust exponential stability of Markovian jumping reaction-diffusion cohen-grossberg neural networks with mixed delays [J].Neural proces-sing letters,2013,38(3):321-346. [8] MA Q,XU S,ZOU Y.Stability and synchronization for Markovian jump neural networks with partly unknown transition probabilities [J].Neurocomputing,2011,74(17):3404-3411. [9] ZHOU J,XU S,SHEN H,et al.Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions [J].International journal of systems science,2013,44(8):1494-1503. [10] RAO R,ZHONG S,WANG X.Stochastic stability criteria with LMI conditions for Markovian jumping impulsive BAM neural networks with mode-dependent time-varying delays and nonlinear reaction-diffusion[J].Communications in nonlinear science & numerical simulation,2014,19(1):258-273. [11] LIU Y,WANG Z,LIU X.On global stability of delayed BAM stochastic neural networks with Markovian switching [J].Neural processing letters,2009,30(1):19-35. (責(zé)任編輯:尚菲菲) Research on Stability for a Class of Generalized Markovian Jumping Reaction-diffusion Neural Networks Lü Tian-shi,GAN Qin-tao (Department of Fundamental Courses,Ordnance Engineering College,Shijiazhuang 050003,China) By constructing some suitable Lyapunov functionals and calculating the stochastic derivative of these Lyapunov functionals along neural networks using differential formula,the global mean square and asymptotic robust stability for a class of generalized Markovian jumping stochastic reaction-diffusion neural networks with mixed delays is discussed under Dirichlet boundary conditions.The obtained criteria not only depend on delays but also depend on diffusion coefficients and diffusion spaces.Finally,a numerical example is provided to show the validity of the obtained results criteria. generalized neural networks; reaction-diffusion; Markovian jump; stochastic perturbation; mixed delays; Lyapunov functionals 1672-1497(2017)01-0105-06 2016-11-20 國家自然科學(xué)基金資助項(xiàng)目(61305076) 呂天石(1990-),男,碩士研究生。 O175.13 A 10.3969/j.issn.1672-1497.2017.01.0223 數(shù)值模擬
4 結(jié)論