袁天佑, 冀建華, 王俊忠, 孫笑梅, 閆軍營(yíng), 王志勇, ??×x
?
腐植酸與氮肥配施對(duì)冬小麥氮素吸收利用及產(chǎn)量的影響*
袁天佑1,2, 冀建華2, 王俊忠2, 孫笑梅2, 閆軍營(yíng)2, 王志勇2, 牛俊義1**
(1. 甘肅農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 蘭州 730070; 2. 河南省土壤肥料站 鄭州 450002)
研究腐植酸與氮肥配施對(duì)冬小麥產(chǎn)量、氮素吸收及經(jīng)濟(jì)效益的影響, 可為提高氮肥的增產(chǎn)效益, 減少氮肥對(duì)生態(tài)環(huán)境的污染提供理論指導(dǎo)。在河南褐土區(qū)冬小麥-夏玉米輪作制度下, 于2014年開(kāi)始在河南省南陽(yáng)市臥龍區(qū)開(kāi)展田間定位試驗(yàn), 共設(shè)置單施磷鉀肥、常規(guī)施肥、單施腐植酸、常規(guī)施肥+腐植酸、常規(guī)施肥減氮15%+腐植酸、常規(guī)施肥減氮30%+腐植酸6個(gè)處理, 分析不同氮肥與腐植酸配施下冬小麥產(chǎn)量和氮肥利用的特征。結(jié)果表明, 腐植酸與氮肥配施可以有效提高冬小麥的產(chǎn)量及其構(gòu)成要素, 促進(jìn)植株對(duì)氮素的累積, 提高氮肥利用率。其中, 常規(guī)施肥減氮15%+腐植酸處理下冬小麥產(chǎn)量、籽粒氮含量、籽粒氮累積量、地上部總氮累積量、氮肥利用效率和純收益均增加, 與常規(guī)施肥相比, 冬小麥產(chǎn)量增加4.96%, 氮肥利用效率增加23.42%, 純收益增加2.18%。常規(guī)施肥減氮30%+腐植酸條件下冬小麥產(chǎn)值和收益降低。因此, 在施用腐植酸的基礎(chǔ)上, 配施適量氮肥才能獲得較高的產(chǎn)值和收益。常規(guī)施肥減氮15%+腐植酸是本研究區(qū)域最佳的施肥模式, 對(duì)實(shí)現(xiàn)現(xiàn)代化農(nóng)業(yè)生產(chǎn)的高產(chǎn)高效、資源節(jié)約和生態(tài)環(huán)境保護(hù)具有重要意義。
腐植酸; 氮肥; 冬小麥; 產(chǎn)量; 氮素吸收; 氮肥效率
化肥是糧食的“糧食”, 我國(guó)每年化肥施用量占世界生產(chǎn)化肥總量的1/3[1-2]。但是, 目前我國(guó)農(nóng)田氮肥的當(dāng)季利用率僅為30%~35%[3-4]。化肥損失不僅對(duì)環(huán)境造成污染, 還影響作物的品質(zhì)。因此, 減少氮肥用量、提高氮肥利用效率和作物產(chǎn)量對(duì)實(shí)現(xiàn)農(nóng)業(yè)的環(huán)境友好發(fā)展具有重要意義[5-7]。腐植酸是近年來(lái)研究比較熱門的新型肥料品種, 具有良好的化學(xué)活性和生物活性[8-10]。腐殖酸含有多種活性基團(tuán), 如羧基、羥基和甲氧基等, 具有較強(qiáng)的離子交換能力和吸附能力[11]。腐植酸與氮肥結(jié)合施用能促進(jìn)作物生長(zhǎng)及對(duì)氮的吸收, 提高肥效[12-13]。孫建好等[14]相關(guān)研究表明: 腐植酸與氮、磷配施提高冬小麥()產(chǎn)量305.60 kg·hm-2, 腐植酸與磷肥配施能提高大豆()產(chǎn)量261.90 kg·hm-2, 另外, 施用腐植酸對(duì)紫花苜蓿()產(chǎn)量和品質(zhì)的提升具有促進(jìn)作用; 郝青等[15]研究表明, 腐植酸配施不僅促進(jìn)作物生長(zhǎng)發(fā)育、提升夏玉米()產(chǎn)量, 還能培肥地力、提高土壤肥效。配施一定量的腐植酸不僅可以提高肥效達(dá)到活化、改良土壤的作用, 還能刺激作物生長(zhǎng)、提高作物產(chǎn)量和品質(zhì), 在農(nóng)田生態(tài)系統(tǒng)上應(yīng)用潛力巨大[16-18]。
南陽(yáng)盆地褐土區(qū)是我國(guó)重要的糧食生產(chǎn)區(qū), 冬小麥又是最主要的種植作物。已有的腐植酸研究多集中于敘述性論述或者機(jī)理性研究, 鮮有腐植酸直接配施無(wú)機(jī)肥對(duì)冬小麥生產(chǎn)影響的報(bào)道, 尤其是在河南褐土區(qū)的研究鮮見(jiàn)報(bào)道。同時(shí), 我國(guó)人多地少的國(guó)情決定了我國(guó)的新型現(xiàn)代農(nóng)業(yè)必須走集約化環(huán)境友好的發(fā)展道路, 必須解決既能在培肥地力的基礎(chǔ)上獲得作物高產(chǎn), 又能減輕對(duì)生態(tài)環(huán)境壓力的化肥使用技術(shù)即減氮增效技術(shù)。本文旨在通過(guò)施用腐植酸減少氮肥用量的氮肥運(yùn)籌模式, 探求在保證冬小麥穩(wěn)產(chǎn)、增產(chǎn)及農(nóng)民增收的前提下, 提高氮肥利用率, 降低生態(tài)環(huán)境污染的合理施氮措施, 以期為實(shí)現(xiàn)農(nóng)業(yè)生態(tài)系統(tǒng)高產(chǎn)、高效和促進(jìn)農(nóng)業(yè)環(huán)境友好發(fā)展提供依據(jù)。
1.1 試驗(yàn)設(shè)計(jì)
試驗(yàn)于2014年(田間定位試驗(yàn)第3年)在河南省南陽(yáng)市臥龍區(qū)英莊鎮(zhèn)前英莊村進(jìn)行, 供試土壤為黃褐土, 前茬作物為玉米, 玉米收獲后秸稈全部還田, 并在冬小麥播種前進(jìn)行深耕深松, 試驗(yàn)前0~20 cm土層土壤理化性狀分別為: pH 6.57, 堿解氮69.97 mg·kg-1,速效磷23.57 mg·kg-1, 速效鉀84.25 mg·kg-1, 有機(jī)質(zhì)11.32 g·kg-1。
試驗(yàn)田設(shè)在永久性耕地上, 設(shè)6個(gè)處理, 即: 1)不施氮肥即單施磷鉀肥(T1); 2)常規(guī)施肥, 全生育期施純氮180 kg·hm-2(T2); 3)單施腐植酸3 000 kg·hm-2(T3); 4)常規(guī)施肥+腐植酸, 全生育期施純氮180 kg·hm-2, 配施腐植酸3 000 kg·hm-2(T4); 5)常規(guī)施肥減氮15%+腐植酸, 全生育期施純氮153 kg·hm-2, 配施腐植酸3 000 kg·hm-2(T5); 6)常規(guī)施肥減氮30%+腐植酸, 全生育期施純氮126 kg·hm-2, 配施腐植酸3 000 kg·hm-2(T6)。試驗(yàn)采取隨機(jī)區(qū)組排列, 3次重復(fù), 小區(qū)面積 6 m×8 m=48 m2, 同時(shí)設(shè)置保護(hù)行和觀察道。供試小麥品種為‘周麥16’。供試肥料品種氮肥為尿素(46%), 磷肥為過(guò)磷酸鈣(含P2O512%), 鉀肥為氯化鉀(含K2O 60%); 腐植酸: pH為4.74, 有機(jī)質(zhì)為809.2 g×kg-1,全氮為7.6 g×kg-1, 全磷為3.8 g×kg-1, 全鉀為2.3 g×kg-1,試驗(yàn)中所使用的腐植酸均由南陽(yáng)市沃泰肥業(yè)有限公司提供。
除T3處理(單施腐植酸)外, 其他所有處理(T1、T2、T4、T5、T6)全生育期磷肥用量為P2O590 kg·hm-2、鉀肥用量為K2O 75 kg·hm-2, 均用做基肥一次性施入。其中T2、T4、T5、T6處理的氮肥均采用基追配合的模式: 50%氮肥做基肥, 剩余50%氮肥于冬小麥拔節(jié)期追施。腐植酸為粉狀、撒施, 全部用做基肥一次性施入。所有處理的種植密度及其他水肥管理措施按照當(dāng)?shù)馗弋a(chǎn)優(yōu)質(zhì)小麥生產(chǎn)技術(shù)規(guī)程進(jìn)行, 各項(xiàng)措施由專人在同一個(gè)工作日內(nèi)完成。
1.2 采樣與測(cè)定方法
冬小麥成熟后, 1 m2實(shí)收計(jì)產(chǎn), 按照1 m雙行法調(diào)查產(chǎn)量構(gòu)成要素。取每個(gè)小區(qū)植株樣, 分為籽粒、穎殼、莖葉等, 計(jì)算各部位生物量, 并烘干粉碎, 測(cè)定各部位氮含量及其累積量, 計(jì)算氮肥利用效率。植株樣品采用硫酸-雙氧水法消煮, 全氮采用凱氏定氮法進(jìn)行測(cè)定[19]。
以下參數(shù)計(jì)算公式參考彭少兵等[20]及鄒娟等[21]的方法, 用以表征肥料的利用效率。
氮素積累量(kg·hm-2)=非收獲物干重×非收獲物氮含量+收獲物干重×收獲物氮含量 (1)
氮肥偏生產(chǎn)力(kg·kg-1)=施氮肥區(qū)產(chǎn)量/施氮肥量(2)
氮肥農(nóng)學(xué)效率(kg·kg-1)=(施氮肥區(qū)產(chǎn)量?不施氮肥區(qū)產(chǎn)量)/施氮肥量 (3)
氮肥利用效率=(施氮肥區(qū)植株地上部氮素積累量?不施氮肥區(qū)植株地上部氮素積累量)/施氮量 (4)
氮肥貢獻(xiàn)率(%)=(施氮肥區(qū)產(chǎn)量-不施氮肥區(qū)產(chǎn)量)/施氮肥區(qū)產(chǎn)量×100% (5)
試驗(yàn)數(shù)據(jù)均采用Microsoft Excel 2003和SAS軟件進(jìn)行統(tǒng)計(jì)分析。
2.1 腐植酸與氮肥配施對(duì)冬小麥產(chǎn)量及其構(gòu)成要素的影響
試驗(yàn)結(jié)果表明(表1), 不同施肥處理2014年和2015年兩年的平均有效穗數(shù)方面總體呈如下趨勢(shì): T5>T6>T2>T4>T3>T1, T5處理顯著高于其他處理, T1處理顯著低于其他處理; 穗粒數(shù)和千粒重均呈現(xiàn): T5>T6>T4>T2>T1>T3; 產(chǎn)量指標(biāo)表現(xiàn)為: T5>T6> T4>T2>T3>T1??傮w上顯示, 施氮處理顯著優(yōu)于不施氮處理, 腐植酸與氮肥配施優(yōu)于單施化肥, 其中, 以T5處理最佳, 其兩年平均有效穗數(shù)、穗粒數(shù)、千粒重和產(chǎn)量較T2處理分別高2.97%、1.30%、0.62%和4.96%。然而, T6處理兩年平均有效穗數(shù)、穗粒數(shù)、千粒重、產(chǎn)量等方面稍優(yōu)于T2和T4處理, 但均低于T5處理。
表1 不同施肥處理對(duì)冬小麥產(chǎn)量及產(chǎn)量構(gòu)成要素的影響
T1: 不施氮肥, 全生育期施P2O590 kg·hm-2、K2O 75 kg·hm-2; T2: 常規(guī)施肥, 全生育期施N 180 kg·hm-2、P2O590 kg·hm-2、K2O 75 kg·hm-2; T3:單施腐植酸3 000 kg·hm-2; T4: 常規(guī)施肥+腐植酸3 000 kg·hm-2; T5: 常規(guī)施肥減氮15%+腐植酸3 000 kg·hm-2; T6: 常規(guī)施肥減氮30%+腐植酸3 000 kg·hm-2。同列數(shù)據(jù)后不同小寫字母表示在0.05水平差異顯著。T1: application of 90 kg·hm-2P2O5and 75 kg·hm-2K2O without N application; T2: conventional fertilization, application of 180 kg·hm-2N, 90 kg·hm-2P2O5, and 75 kg·hm-2K2O; T3: application of 3 000 kg·hm-2humic acid; T4: conventional fertilization + 3 000 kg·hm-2humic acidapplication; T5: conventional fertilization with 15% nitrogen reduction + 3 000 kg·hm-2humic acid application; T6: conventional fertilization with 30% nitrogen reduction + 3 000 kg·hm-2humic acid application. Different letters in the same column mean significant differences at 5% level.
2.2 腐植酸與氮肥配施對(duì)冬小麥各部位氮含量和累積量的影響
由圖1可知, 不同施肥處理冬小麥各器官的氮含量高低趨勢(shì)為: T5>T6>T4>T2>T1>T3。T5、T6、T4和T2處理各器官氮含量顯著高于T1和T3處理。說(shuō)明施用氮肥能夠增加植株各器官氮含量, 單施腐植酸不能滿足氮素需求, 影響氮素吸收和積累。T4、T5、T6處理的籽粒氮含量較T2處理分別高3.97%、23.02%和17.46%, 其中T5與T2處理間差異達(dá)顯著水平(<0.05)。說(shuō)明在常規(guī)施肥的基礎(chǔ)上配施一定量的腐植酸較常規(guī)施肥相比, 可以促進(jìn)植株各器官對(duì)氮素的吸收。
T1: 不施氮肥, 全生育期施P2O590 kg·hm-2、K2O 75 kg·hm-2; T2: 常規(guī)施肥, 全生育期施N 180 kg·hm-2、P2O590 kg·hm-2、K2O 75 kg·hm-2; T3:單施腐植酸3 000 kg·hm-2; T4: 常規(guī)施肥+腐植酸3 000 kg·hm-2; T5: 常規(guī)施肥減氮15%+腐植酸3 000 kg·hm-2; T6: 常規(guī)施肥減氮30%+腐植酸3 000 kg·hm-2。圖中數(shù)據(jù)為2014年和2015年的平均值; 不同小寫字母表示同一測(cè)定部位不同處理間差異顯著(<0.05)。T1: application of 90 kg·hm-2P2O5and 75 kg·hm-2K2O without N application; T2: conventional fertilization, application of 180 kg·hm-2N, 90 kg·hm-2P2O5, and 75 kg·hm-2K2O; T3: application of 3 000 kg·hm-2humic acid; T4: conventional fertilization + 3 000 kg·hm-2humic acidapplication; T5: conventional fertilization with 15% nitrogen reduction + 3 000 kg·hm-2humic acid application; T6: conventional fertilization with 30% nitrogen reduction + 3 000 kg·hm-2humic acid application. Figure data are mean value of 2014 and 2015. Different lowercase letters indicate significant differences under various treatments in the same part of plant at< 0.05.
由圖2可知, 不同施肥處理冬小麥各器官總氮累積量高低趨勢(shì)為: T5>T6>T4>T2>T3>T1, 施氮處理(T2、T4、T5、T6)顯著高于不施氮處理(T3、T1)。其中, T3處理各部位的氮素累積量均高于T1處理, 但差異未達(dá)顯著水平(<0.05); T2、T4、T5和T6處理較T1處理籽粒氮累積量、總氮累積量增加幅度分別達(dá)88.49%~143.77%和80.71%~114.89%。說(shuō)明施用氮素可以大幅度提升植株各器官的氮素累積量, 在促進(jìn)植株各器官對(duì)氮素的累積上, 單施腐植酸稍優(yōu)于單施磷鉀肥。
T1: 不施氮肥, 全生育期施P2O590 kg·hm-2、K2O 75 kg·hm-2; T2: 常規(guī)施肥, 全生育期施N 180 kg·hm-2、P2O590 kg·hm-2、K2O 75 kg·hm-2; T3:單施腐植酸3 000 kg·hm-2; T4: 常規(guī)施肥+腐植酸3 000 kg·hm-2; T5: 常規(guī)施肥減氮15%+腐植酸3 000 kg·hm-2; T6: 常規(guī)施肥減氮30%+腐植酸3 000 kg·hm-2。圖中數(shù)據(jù)為2014年和2015年的平均值; 不同小寫字母表示同一測(cè)定部位不同處理間差異顯著(<0.05)。T1: application of 90 kg·hm-2P2O5and 75 kg·hm-2K2O without N application; T2: conventional fertilization, application of 180 kg·hm-2N, 90 kg·hm-2P2O5, and 75 kg·hm-2K2O; T3: application of 3 000 kg·hm-2humic acid; T4: conventional fertilization + 3 000 kg·hm-2humic acidapplication; T5: conventional fertilization with 15% nitrogen reduction + 3 000 kg·hm-2humic acid application; T6: conventional fertilization with 30% nitrogen reduction + 3 000 kg·hm-2humic acid application. Figure data are mean value of 2014 and 2015. Different lowercase letters indicate significant differences under various treatments in the same part of plant at< 0.05.
T4、T5、T6處理的籽粒氮累積量、總氮累積量均高于T2處理, 其中T5處理與T2處理間的總氮累積量差異達(dá)顯著水平(<0.05)。但T4、T5、T6處理的莖葉氮累積量較T2處理分別降低3.22%、18.81%和36.61%, 說(shuō)明在常規(guī)施肥的基礎(chǔ)上配施一定量的腐植酸在提升植株地上部總氮累積量的同時(shí), 降低了植株莖葉部分的氮累積量, 提升了植株籽粒氮累積量。在所有處理中T5處理(減氮15%)效果最佳, 不僅能促進(jìn)植株對(duì)氮素的累積, 更能進(jìn)一步促進(jìn)籽粒對(duì)氮素的累積。
2.3 腐植酸與氮肥配施對(duì)冬小麥氮肥利用效率的影響
由表2可知, 氮肥偏生產(chǎn)力高低趨勢(shì)為: T6> T5>T4>T2; 氮肥農(nóng)學(xué)效率和氮肥利用效率均呈如下趨勢(shì): T5>T6>T4>T2; 氮肥貢獻(xiàn)率為: T5>T4>T2> T6。說(shuō)明在常規(guī)施肥的基礎(chǔ)上配施一定量的腐植酸能提高氮肥的偏生產(chǎn)力、農(nóng)學(xué)效率、貢獻(xiàn)率和氮肥利用效率。在所有處理中, T5處理效果最佳, 即在減氮15%的條件下, 氮肥利用效率、氮肥貢獻(xiàn)率、氮肥農(nóng)學(xué)效率均達(dá)到最大值, 均顯著高于T2處理; 在減氮30%的條件下氮肥利用效率有所降低, 但仍高于常規(guī)施肥處理。
表2 不同施肥處理對(duì)冬小麥氮肥利用效率的影響
T1: 不施氮肥, 全生育期施P2O590 kg·hm-2、K2O 75 kg·hm-2; T2: 常規(guī)施肥, 全生育期施N 180 kg·hm-2、P2O590 kg·hm-2、K2O 75 kg·hm-2; T3:單施腐植酸3 000 kg·hm-2; T4: 常規(guī)施肥+腐植酸3 000 kg·hm-2; T5: 常規(guī)施肥減氮15%+腐植酸3 000 kg·hm-2; T6: 常規(guī)施肥減氮30%+腐植酸3 000 kg·hm-2。同列數(shù)據(jù)后不同小寫字母表示在0.05水平差異顯著。T1: application of 90 kg·hm-2P2O5and 75 kg·hm-2K2O without N application; T2: conventional fertilization, application of 180 kg·hm-2N, 90 kg·hm-2P2O5, and 75 kg·hm-2K2O; T3: application of 3 000 kg·hm-2humic acid; T4: conventional fertilization + 3 000 kg·hm-2humic acidapplication; T5: conventional fertilization with 15% nitrogen reduction + 3 000 kg·hm-2humic acid application; T6: conventional fertilization with 30% nitrogen reduction + 3 000 kg·hm-2humic acid application. Different letters in the same column mean significant differences at 0.05 level.
2.4 腐植酸與氮肥配施對(duì)冬小麥經(jīng)濟(jì)效益的影響
由表3可知, 與T1處理相比, 其他各處理產(chǎn)值、純收益等指標(biāo)均高于T1處理, 且差異達(dá)顯著水平(<0.05)。其中, 不同處理的產(chǎn)值大小趨勢(shì)為: T5> T6>T4>T2>T3>T1, 純收益為: T5>T2>T6>T4>T3> T1, 但產(chǎn)投比的高低趨勢(shì)為: T2>T5>T6>T3>T4> T1。說(shuō)明施用氮肥可以顯著提高冬小麥的產(chǎn)值、純收益和產(chǎn)投比。
在所有處理中減氮15%配施腐植酸處理的產(chǎn)值和純收益最高, 產(chǎn)值分別比T1、T2、T3、T4和T6高44.46%、4.96%、34.54%、4.80%和3.68%, 純收益分別比T1、T2、T3、T4和T6高52.57%、2.18%、36.44%、10.66%和3.89%, 且差異達(dá)顯著水平(<0.05)。但是減氮30%會(huì)導(dǎo)致冬小麥產(chǎn)值和收益降低。由于施用腐植酸增加了農(nóng)資投入和其他投入, 腐植酸配施化肥的產(chǎn)投比低于單施化肥即常規(guī)施肥處理。綜上可知, T5處理即減氮15%配施腐植酸在研究區(qū)域最具有實(shí)用價(jià)值。
表3 不同施肥處理對(duì)冬小麥經(jīng)濟(jì)效益的影響
T1: 不施氮肥, 全生育期施P2O590 kg·hm-2、K2O 75 kg·hm-2; T2: 常規(guī)施肥, 全生育期施N 180 kg·hm-2、P2O590 kg·hm-2、K2O 75 kg·hm-2; T3:單施腐植酸3 000 kg·hm-2; T4: 常規(guī)施肥+腐植酸3 000 kg·hm-2; T5: 常規(guī)施肥減氮15%+腐植酸3 000 kg·hm-2; T6: 常規(guī)施肥減氮30%+腐植酸3 000 kg·hm-2。表中數(shù)據(jù)為2014年和2015年的平均值; 農(nóng)資投入包括種子、化肥和農(nóng)藥, 其中, 尿素為1.6 元?kg-1, 過(guò)磷酸鈣0.6 元?kg-1, 氯化鉀3.0 元?kg-1, 腐植酸0.3 元?kg-1。其他投入包括機(jī)械作業(yè)和人工投入, 2015年冬小麥?zhǔn)袌?chǎng)價(jià)格為2.2 元?kg-1。同列數(shù)據(jù)后不同小寫字母表示不同處理間在0.05水平上差異顯著。T1: application of 90 kg·hm-2P2O5and 75 kg·hm-2K2O without N application; T2: conventional fertilization, application of 180 kg·hm-2N, 90 kg·hm-2P2O5, and 75 kg·hm-2K2O; T3: application of 3 000 kg·hm-2humic acid; T4: conventional fertilization + 3 000 kg·hm-2humic acidapplication; T5: conventional fertilization with 15% nitrogen reduction + 3 000 kg·hm-2humic acid application; T6: conventional fertilization with 30% nitrogen reduction + 3 000 kg·hm-2humic acid application. Table data are mean value of 2014 and 2015. Agricultural inputs include inputs of seeds, fertilizers and pesticides. The prices of urea, superphosphate, potassium chloride and humic acid are 1.6 ¥?kg-1, 0.6 ¥?kg-1, 3.0 ¥?kg-1, 0.3 ¥?kg-1, respectively. Other inputs include machinery and manual inputs in operation, straw to field. The price of wheat is 2.2 ¥?kg-1in 2015. Different lowercase letters in the same column mean significant differences at 0.05 level.
在農(nóng)業(yè)生產(chǎn)中, 合理的氮肥施用量不僅能夠增加冬小麥的產(chǎn)量、產(chǎn)量構(gòu)成要素, 還能夠提升土壤肥力, 提高氮肥利用效率, 達(dá)到節(jié)約資源、保護(hù)環(huán)境的目的。成紹鑫[22]、李善祥等[23]通過(guò)對(duì)腐植酸和尿素的混合施用研究表明, 腐植酸對(duì)尿素的緩釋增效作用十分明顯, 不但能提高作物產(chǎn)量, 還可使氮利用率提高6.9%~11.9%。趙國(guó)林等[24]研究表明, 腐植酸能促進(jìn)作物對(duì)養(yǎng)分的吸收利用, 顯著提高作物產(chǎn)量。徐鈺等[25]和孫占祥等[26]研究發(fā)現(xiàn), 施用氮肥能明顯改善夏玉米的生物學(xué)性狀, 且能夠顯著提高玉米產(chǎn)量, 但氮肥投入需要一個(gè)適宜量, 并不是越高越好。國(guó)外相關(guān)研究也表明, 適宜的氮肥用量可以顯著增加冬小麥的產(chǎn)量, 同時(shí)配施一定量的腐植酸能夠起到增加產(chǎn)量及其構(gòu)成要素的效果[27]。本試驗(yàn)結(jié)果表明, 施用氮肥可以促進(jìn)冬小麥植株的生長(zhǎng), 顯著提高冬小麥產(chǎn)量及其構(gòu)成要素, 其中以常規(guī)施肥減氮15%配施腐植酸3 000 kg·hm-2的效果最佳, 較常規(guī)施肥處理冬小麥增產(chǎn)幅度達(dá)4.96%。說(shuō)明在配施腐植酸的基礎(chǔ)上, 適量減氮是可行的, 不僅能增加小麥產(chǎn)量, 也會(huì)提升整體效益。這一結(jié)論與孫志梅等[28]的研究結(jié)果相似。
冬小麥植株各部位的氮素吸收及累積與施氮量有著密切關(guān)系, 農(nóng)作物對(duì)氮素的吸收和累積是作物產(chǎn)量和干物質(zhì)形成的基礎(chǔ), 適當(dāng)?shù)牡视昧坎粌H能夠促進(jìn)作物生長(zhǎng)發(fā)育, 還能促進(jìn)植株對(duì)氮素的吸收及累積[29-30]。王珂等[31]研究表明, 腐植酸可以促進(jìn)小麥對(duì)M2+或Fe2+的吸收, 促進(jìn)干物質(zhì)積累增加。陳振德等[32]通過(guò)在玉米上研究發(fā)現(xiàn), 腐植酸能明顯促進(jìn)玉米植株對(duì)N、P、K養(yǎng)分的吸收, 但運(yùn)轉(zhuǎn)分配到籽粒中N素的相對(duì)量較常規(guī)施肥低, 即腐植酸對(duì)N素的運(yùn)轉(zhuǎn)分配并未受到同步促進(jìn)。本研究結(jié)果表明, 施用氮肥可以顯著提高冬小麥各器官氮含量, 進(jìn)而提高冬小麥各器官氮素累積量。在常規(guī)施肥的基礎(chǔ)上配施一定量的腐植酸更能顯著提高冬小麥各器官氮含量, 進(jìn)而提高冬小麥各器官氮素累積量, 并能促進(jìn)氮素向籽粒的轉(zhuǎn)移, 降低植株莖、葉、穎殼的氮素累積量, 提升植株籽粒氮累積量。其中以常規(guī)施肥減氮15%配施腐植酸3 000 kg·hm-2的效果最佳, 其籽粒氮含量、籽粒氮累積量和氮肥利用效率都顯著高于常規(guī)施肥處理。腐植酸配施氮肥能大幅度提高氮肥利用效率。這可能與腐植酸含有多種較強(qiáng)的活性官能團(tuán)(氨基、醌基、羥基等)有關(guān)[12,33-34]。
氮肥吸收利用特征是氮肥運(yùn)籌是否合理的重要指示, 通常研究采用氮肥利用率、氮肥貢獻(xiàn)率、氮肥農(nóng)學(xué)效率和氮肥偏生產(chǎn)力等參數(shù)來(lái)表示。本研究氮肥利用結(jié)果為: 氮肥農(nóng)學(xué)效率12.60~17.51 kg·kg-1、氮肥利用率34.72%~58.14%、氮肥偏生產(chǎn)力46.07~ 64.24 kg·kg-1和氮肥貢獻(xiàn)率34.35%~44.46%, 較其他研究相對(duì)偏高[4,35-38]。說(shuō)明施用腐植酸能顯著提高氮肥的利用效率。另外由于本試驗(yàn)區(qū)的施氮量在腐植酸的配施下相對(duì)較低, 為126~180 kg·hm-2, 腐植酸促進(jìn)了氮素的吸收利用, 再加上本試驗(yàn)條件下不施氮肥區(qū)的冬小麥產(chǎn)量和養(yǎng)分積累量相對(duì)較低, 用差減法計(jì)算出的農(nóng)學(xué)效率和肥料利用率勢(shì)必較高。這說(shuō)明腐植酸與氮肥配施具有兼顧冬小麥高產(chǎn)、高效、節(jié)肥而不導(dǎo)致土壤養(yǎng)分降低的重要措施。
評(píng)價(jià)某項(xiàng)技術(shù)的社會(huì)實(shí)際應(yīng)用價(jià)值, 不但要有增產(chǎn)效果, 最重要的還是經(jīng)濟(jì)效益。本研究中, 所有施氮處理均獲得了較高的冬小麥產(chǎn)值和純收益。然而, 常規(guī)施肥減氮15%+腐植酸3 000 kg·hm-2處理的產(chǎn)值和純收益最高, 但是減氮30%的條件下會(huì)導(dǎo)致冬小麥產(chǎn)值和收益降低。這充分說(shuō)明, 在施用腐植酸的基礎(chǔ)上配施適宜的氮肥用量才能獲得較高的產(chǎn)值和收益。
綜上所述: 在冬小麥實(shí)際生產(chǎn)中, 腐植酸與氮肥配施可以促進(jìn)冬小麥的生長(zhǎng)發(fā)育, 有效改善冬小麥構(gòu)成要素、提高冬小麥的產(chǎn)量、促進(jìn)植株對(duì)氮素的累積和提高氮肥的利用率。其中, 以常規(guī)施肥減氮15%+腐植酸3 000 kg·hm-2處理效果最佳, 不僅起到增產(chǎn)增效的效果, 還能實(shí)現(xiàn)節(jié)約資源、保護(hù)環(huán)境的目的。因此, 在現(xiàn)代化農(nóng)業(yè)生產(chǎn)中配施一定量的腐植酸, 對(duì)構(gòu)造環(huán)境友好型、資源節(jié)約型社會(huì)有著十分重要的意義。
References
[1] 張煥軍, 郁紅艷, 項(xiàng)劍, 等. 氮磷用量對(duì)豫北地區(qū)小麥產(chǎn)量的交互效應(yīng)研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2010, 18(6): 1163–1169 Zhang H J, Yu H Y, Xiang J, et al. Interactive influence of nitrogen and phosphorus application rate on wheat yield in North Henan, China[J]. Chinese Journal of Eco-Agriculture, 2010, 18(6): 1163–1169
[2] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041–3046
[3] 巨曉棠, 張福鎖. 關(guān)于氮肥利用率的思考[J]. 生態(tài)環(huán)境, 2003, 12(2): 192–197 Ju X T, Zhang F S. Thinking about nitrogen recovery rate[J]. Ecology and Environment, 2003, 12(2): 192–197
[4] 門明新, 李新旺, 許皞. 長(zhǎng)期施肥對(duì)華北平原潮土作物產(chǎn)量及穩(wěn)定性的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2008, 41(8): 2339–2346 Men M X, Li X W, Xu H. Effects of long-term fertilization on crop yields and stability[J]. Scientia Agricultura Sinica, 2008, 41(8): 2339–2346
[5] 朱兆良. 農(nóng)田中氮肥的損失與對(duì)策[J]. 土壤與環(huán)境, 2000, 9(1): 1–6 Zhu Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction[J]. Soil and Environmental Sciences, 2000, 9(1): 1–6
[6] Cui Z L, Yue S C, Wang G L, et al. In-season root-zone N management for mitigating greenhouse gas emission and reactive N losses in intensive wheat production[J]. Environmental Science & Technology, 2013, 47(11): 6015–6022
[7] 楊青林, 桑利民, 孫吉茹, 等. 我國(guó)肥料利用現(xiàn)狀及提高化肥利用率的方法[J]. 山西農(nóng)業(yè)科學(xué), 2011, 39(7): 690–692 Yang Q L, Sang L M, Sun J R, et al. Current situation of fertilizer use in China and the method to improve chemical fertilizer utilization efficiency[J]. Journal of Shanxi Agricultural Sciences, 2011, 39(7): 690–692
[8] 周爽, 其力莫格, 譚鈞, 等. 腐植酸提高土壤氮磷鉀養(yǎng)分利用效率的機(jī)制[J]. 腐植酸, 2015(2): 1–8 Zhou S, Qilimoge, Tan J, et al. Strategies in efficient utilization of soil NPK nutrients with humic acid amendments[J]. Humic Acid, 2015(2): 1–8
[9] Brown K H, Bach E M, Drijber R A, et al. A long-term nitrogen fertilizer gradient has little effect on soil organic matter in a high-intensity maize production system[J]. Global Change Biology, 2014, 20(4): 1339–1350
[10] 梁宗存, 成邵鑫, 武麗萍. 煤中腐植酸與尿素相互作用機(jī)理的研究[J]. 燃料化學(xué)學(xué)報(bào), 1999, 27(2): 176–181Liang Z C, Cheng S X, Wu L P. Study on mechanism of interaction between coal humic acid and urea[J]. Journal of Fuel Chemistry and Technology, 1999, 27(2): 176–181
[11] 孫克剛, 張夢(mèng), 李玉順. 腐植酸尿素對(duì)冬小麥增產(chǎn)效果及氮肥利用率的影響[J]. 腐植酸, 2016(3): 18–21 Sun K G, Zhang M, Li Y S. Effects of urea humate on winter-wheat yield increase and utilization rate of nitrogen fertilizer[J]. Humic Acid, 2016(3): 18–21
[12] 許俊香, 鄒國(guó)元, 孫欽平, 等. 腐植酸尿素對(duì)土壤氨揮發(fā)和玉米生長(zhǎng)的影響[J]. 土壤通報(bào), 2013, 44(4): 934–939 Xu J X, Zou G Y, Sun Q P, et al. Effects of mixing humic acid and urea on ammonia volatilization and maize growth[J]. Chinese Journal of Soil Science, 2013, 44(4): 934–939
[13] 劉增兵, 趙秉強(qiáng), 林治安. 腐植酸尿素氨揮發(fā)特性及影響因素研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(1): 208–213 Liu Z B, Zhao B Q, Lin Z A. Ammonia volatilization characteristics and related affecting factors of humic acid urea[J]. Plant Nutrition and Fertilizer Science, 2010, 16(1): 208–213
[14] 孫建好, 郭天文, 楊思存, 等. 腐殖酸類肥料對(duì)小麥/大豆帶田產(chǎn)量的影響[J]. 甘肅農(nóng)業(yè)科技, 2001(1): 35–36 Sun J H, Guo T W, Yang S C, et al. Effect of humic acids fertilizer on yield of wheat soybean strip fields[J]. Gansu Agricultural Science and Technology, 2001(1): 35–36
[15] 郝青, 梁亞勤, 劉二保. 腐植酸復(fù)混肥對(duì)玉米產(chǎn)量及土壤肥力的影響[J]. 山西農(nóng)業(yè)科學(xué), 2012, 40(8): 853–856 Hao Q, Liang Y Q, Liu E B. Effect of humic acid compound fertilizer on maize yield and soil fertility[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(8): 853–856
[16] 馬斌, 劉景輝, 張興隆. 褐煤腐殖酸對(duì)旱作燕麥土壤微生物量碳、氮、磷含量及土壤酶活性的影響[J]. 作物雜志, 2015(5): 134–140 Ma B, Liu J H, Zhang X L. Effects of applying brown coal humic acid on soil enzyme activity and microbial biomass C, N and P content of oat in dry farming[J]. Crops, 2015(5): 134–140
[17] 付保東. 腐殖酸在土壤改良中的應(yīng)用研究進(jìn)展[J]. 防護(hù)林科技, 2016(3): 83–84Fu B D. Research progress on application of humic acid in soil improvement[J]. Protection Forest Science and Technology, 2016(3): 83–84
[18] 劉秀梅, 張夫道, 馮兆濱, 等. 風(fēng)化煤腐殖酸對(duì)氮、磷、鉀的吸附和解吸特性[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005, 11(5): 641–646 Liu X M, Zhang F D, Feng Z B, et al. N, P and K adsorption and desorption characteristics of humic acids made from the airslake-coal[J]. Plant Nutrition and Fertilizer Science, 2005, 11(5): 641–646
[19] 鮑士旦. 土壤農(nóng)化分析[M]. 第3版. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000: 56–57, 79–83, 106–107, 30–34, 265–271 Bao S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000: 56–57, 79–83, 106–107, 30–34, 265–271
[20] 彭少兵, 黃見(jiàn)良, 鐘旭華, 等. 提高中國(guó)稻田氮肥利用率的研究策略[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2002, 35(9): 1095–1103 Peng S B, Huang J L, Zhong X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Scientia Agricultura Sinica, 2002, 35(9): 1095–1103
[21] 鄒娟, 魯劍巍, 陳防, 等. 長(zhǎng)江流域油菜氮磷鉀肥料利用率現(xiàn)狀研究[J]. 作物學(xué)報(bào), 2011, 37(4): 729–734 Zou J, Lu J W, Chen F, et al. Status of nutrient use efficiencies of rapeseed in the Yangtze River basin[J]. Acta Agronomica Sinica, 2011, 37(4): 729–734
[22] 成紹鑫. 重新認(rèn)識(shí)腐植酸對(duì)化肥的增效作用及有關(guān)對(duì)策[J]. 腐植酸, 1998(3): 1–9 Cheng S X. A new understanding of the synergistic effect and relevant countermeasures of humic acid on chemical fertilizer[J]. Humic Acid, 1998(3): 1–9
[23] 李善祥, 晁兵, 蘇書文, 等. 腐植酸涂層尿素及其在玉米上施用的增產(chǎn)效應(yīng)研究[J]. 腐植酸, 1999(3): 12–14 Li S X, Chao B, Su S W, et al. Study on the yield increasing effect of humic acid coated urea and its application in rice[J]. Humic Acid, 1999(3): 12–14
[24] 趙國(guó)林, 閻晗, 劉志偉, 等. 腐植酸類復(fù)混肥料的應(yīng)用前景[J]. 現(xiàn)代化農(nóng)業(yè), 2000(9): 13–15 Zhao G L, Yan H, Liu Z W, et al. The application prospect of humic acid compound fertilizer[J]. Modernizing Agriculture, 2000(9): 13–15
[25] 徐鈺, 江麗華, 林海濤, 等. 不同氮肥運(yùn)籌對(duì)玉米產(chǎn)量、效益及土壤硝態(tài)氮含量的影響[J]. 土壤通報(bào), 2011, 42(5): 1196–1199 Xu Y, Jiang L H, Lin H T, et al. Effects of different nitrogen regulation on maize yield, economic benefit and the content of soil nitrate-N[J]. Chinese Journal of Soil Science, 2011, 42(5): 1196–1199
[26] 孫占祥, 鄒曉錦, 張?chǎng)? 等. 施氮量對(duì)玉米產(chǎn)量和氮素利用效率及土壤硝態(tài)氮累積的影響[J]. 玉米科學(xué), 2011, 19(5): 119–123 Sun Z X, Zou X J, Zhang X, et al. Effects of maize yield and N application on N utilization and content of soil nitrate[J]. Journal of Maize Sciences, 2011, 19(5): 119–123
[27] Johnston A E, Poulton P R. Nitrogen in agriculture: An overview and definitions of nitrogen use efficienc[C]// Proceedings of the International Fertilizer Society. Harpenden, Herts: Rothamsted Research, 2009: 651
[28] 孫志梅, 劉歡, 苗澤蘭, 等. 腐植酸肥料對(duì)玉米和小麥生長(zhǎng)發(fā)育的影響[J]. 腐植酸, 2015(2): 20–24 Sun Z M, Liu H, Miao Z L, et al. Effects of humic acid fertilizer on the growth of maize and wheat[J]. Humic Acid, 2015(2): 20–24
[29] 趙俊曄, 于振文. 高產(chǎn)條件下施氮量對(duì)冬小麥氮素吸收分配利用的影響[J]. 作物學(xué)報(bào), 2006, 32(4): 484–490 Zhao J Y, Yu Z W. Effects of nitrogen fertilizer rate on uptake, distribution and utilization of nitrogen in winter wheat under high yielding cultivated condition[J]. Acta Agronomica Sinica, 2006, 32(4): 484–490
[30] 段敏, 同延安, 魏樣, 等. 不同施肥條件下冬小麥氮素吸收、轉(zhuǎn)運(yùn)及累積的研究[J]. 麥類作物學(xué)報(bào), 2010, 30(3): 464–468 Duan M, Tong Y A, Wei Y, et al. Study on nitrogen uptake, transformation and accumulation in winter wheat under different fertilization[J]. Journal of Triticeae Crops, 2010, 30(3): 464–468
[31] 王珂, 范潔紅. 腐殖質(zhì)促進(jìn)小麥生長(zhǎng)的生理機(jī)制研究[J]. 腐植酸, 1998(3): 32–34 Wang K, Fan J H. Study on the physiological mechanism of humus promoting wheat growth[J]. Humic Acid, 1998(3): 32–34
[32] 陳振德, 何金明, 李祥云, 等. 施用腐殖酸對(duì)提高玉米氮肥利用率的研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2007, 15(1): 52–54 Chen Z D, He J M, Li X Y, et al. Studies on increasing N utilizing efficiency in maize by applying humic acid[J]. Chinese Journal of Eco-Agriculture, 2007, 15(1): 52–54
[33] Jezierski A, Czechowski F, Jerzykiewicz M, et al. Electron Paramagnetic resonance (EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2000, 56(2): 379–385
[34] Peuravuori J, ?bánková P, Pihlaja K. Aspects of structural features in lignite and lignite humic acids[J]. Fuel Processing Technology, 2006, 87(9): 829–839
[35] 宇萬(wàn)太, 姜子紹, 周樺, 等. 不同施肥制度對(duì)作物產(chǎn)量及肥料貢獻(xiàn)率的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2007, 15(6): 54–58Yu W T, Jiang Z S, Zhou H, et al. Crop yield and fertilizer contribution under different fertilization systems[J]. Chinese Journal of Eco-Agriculture, 2007, 15(6): 54–58
[36] 張福鎖, 王激清, 張衛(wèi)峰, 等. 中國(guó)主要糧食作物肥料利用率現(xiàn)狀與提高途徑[J]. 土壤學(xué)報(bào), 2008, 45(5): 915–924 Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crops in china and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915–924
[37] 馬迎輝, 王玲敏, 葉優(yōu)良, 等. 栽培管理模式對(duì)冬小麥干物質(zhì)積累、氮素吸收及產(chǎn)量的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(10): 1282–1288Ma Y H, Wang L M, Ye Y L, et al. Effects of different cultivation management modes on dry matter accumulation, nitrogen uptake and yield of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2012, 20(10): 1282–1288
[38] 薛正平, 楊星衛(wèi), 段項(xiàng)鎖, 等. 土壤養(yǎng)分與春小麥產(chǎn)量關(guān)系及最佳施肥量研究[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2004, 12(4): 110–112 Xue Z P, Yang X W, Duan X S, et al. Study on the relationship between soil nutrient and spring wheat yield and optimum fertilization[J]. Chinese Journal of Eco-Agriculture, 2004, 12(4): 110–112
Effect of combined application of humic acid and nitrogen fertilizer on nitrogen uptake, utilization and yield of winter wheat*
YUAN Tianyou1,2, JI Jianhua2, WANG Junzhong2, SUN Xiaomei2, YAN Junying2, WANG Zhiyong2, NIU Junyi1**
(1. College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; 2. Henan Soil and Fertilizer Station, Zhengzhou 450002, China)
Studies on the effects of combined humic acid and nitrogen fertilizer application on nitrogen (N) uptake, utilization and yield of winter wheat can provide theoretical basis for increasing the productivity of N fertilizers and reducing N fertilizer pollution in the winter wheat-summer maize rotation cropping system. A field experiment was conducted in 2014 at Wolong District in Nanyang City, Henan Province, an area with a predominant winter wheat and summer maize rotation cropping system and drab soils. The experiment was consisted of 6 treatments — no N fertilizer (only P and K fertilizers), conventional fertilization (P and K fertilization with N application rate of 180 kg·hm-2), single humic acid (3 000 kg·hm-2), conventional fertilization plus humic acid, conventional fertilization with 15% less N plus humic acid and conventional fertilization with 30% less N plus humic acid. The characteristics of yield and N fertilizer utilization of winter wheat under different fertilization modes were analyzed. The results showed that combined application of humic acid and N fertilizers increased winter wheat yield, and promoted N accumulation and utilization rate. Among treatments, the treatment of conventional fertilization with 15% less N plus humic acid treatment had the best effects. Winter wheat yield, grain N content, grain N accumulation, aboveground total N accumulation, N use efficiency and net income increased. Compared with conventional fertilization, yield increased by 4.96%, N use efficiency by 23.42% and net income by 2.18%. However, the 30% less N treatment reduced winter wheat productivity and revenue. Thus, on the basis of the application of humic acid, the appropriate dose of N fertilizer was recommended to ensure high productivity and income. The conventional fertilization with 15% less N plus humic acid was the best fertilization mode in the study area. The results are beneficial for improving productivity efficiency of agricultural, resources and environmental protection.
Humic acid; N fertilizer; Winter wheat; Yield; Nitrogen uptake; Nitrogen fertilizer use efficiency
10.13930/j.cnki.cjea.160700
S143.1; S512.1+1
A
1671-3990(2017)03-0365-08
2016-08-10 接受日期: 2016-11-22
* 科技部糧食豐產(chǎn)科技工程項(xiàng)目(2013BAD07b07)和河南省政府與中國(guó)科學(xué)院科技服務(wù)網(wǎng)絡(luò)計(jì)劃(KFJ-SW-STS-142)項(xiàng)目資助
* Supported by the Food Science and Technology Project of Ministry of Science and Technology of China (2013BAD07b07) and the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-SW-STS-142)
** Corresponding author, E-mail: niujy@gsau.edu.cn
**通訊作者:??×x, 主要從事作物栽培與生理生態(tài)研究。E-mail: niujy@gsau.edu.cn
袁天佑, 主要從事土壤肥料與作物栽培方面的研究。E-mail: tianyouyuan_2010@163.com
Aug. 10, 2016; accepted Nov. 22, 2016