馮倩,曾祥偉,楊瑞,程嵩奕,趙鳳鳴,趙玉男,詹秀琴
(1南京中醫(yī)藥大學(xué)醫(yī)學(xué)與生命科學(xué)學(xué)院,南京210023;2江蘇省中醫(yī)院)
·綜述·
骨髓間充質(zhì)干細(xì)胞成骨分化相關(guān)信號(hào)通路及其與BMP-2關(guān)系的研究進(jìn)展
馮倩1,曾祥偉1,楊瑞1,程嵩奕2,趙鳳鳴1,趙玉男1,詹秀琴1
(1南京中醫(yī)藥大學(xué)醫(yī)學(xué)與生命科學(xué)學(xué)院,南京210023;2江蘇省中醫(yī)院)
骨髓間充質(zhì)干細(xì)胞(BMSCs)的成骨分化涉及多條信號(hào)通路,包括NF-κB受體活化因子配體(RANKL)/NF-κB受體活化因子(RANK)/骨保護(hù)素(OPG)信號(hào)通路、Wnt/β-catenin信號(hào)通路、絲裂原活化蛋白激酶(MAPK)信號(hào)通路、Smad信號(hào)通路、Notch信號(hào)通路等。這些信號(hào)通路在調(diào)控BMSCs成骨分化方面具有重要作用,其中一條或數(shù)條信號(hào)通路調(diào)節(jié)受阻,均可引起B(yǎng)MSCs成骨分化異常,進(jìn)而導(dǎo)致骨質(zhì)疏松癥等骨代謝疾病的發(fā)生。骨形態(tài)發(fā)生蛋白2(BMP-2)是骨生長(zhǎng)的啟動(dòng)因子,可誘導(dǎo)BMSCs向成骨細(xì)胞分化并促進(jìn)其發(fā)生鈣化及礦化。在BMSCs成骨分化過(guò)程中,BMP-2與Wnt/β-catenin信號(hào)通路、ERK/MAPK信號(hào)通路、Notch三條信號(hào)通路均有一定聯(lián)系。
骨髓間充質(zhì)干細(xì)胞;成骨分化;信號(hào)通路;骨形態(tài)發(fā)生蛋白2
骨質(zhì)疏松癥是一種以骨密度和骨質(zhì)量下降,骨微結(jié)構(gòu)破壞、骨脆性增加、易發(fā)生骨折為特點(diǎn)的全身性骨病[1]。成骨細(xì)胞骨形成與破骨細(xì)胞骨吸收作用的動(dòng)態(tài)平衡失調(diào)是骨質(zhì)疏松發(fā)生的根本原因,其中成骨細(xì)胞增殖、分化缺陷是打破該平衡的重要因素[2]。骨髓間充質(zhì)干細(xì)胞(BMSCs)是一類具有多向分化潛能的原始骨髓細(xì)胞,特定條件下可誘導(dǎo)分化為成骨細(xì)胞、軟骨細(xì)胞及脂肪細(xì)胞等間葉細(xì)胞和其他胚層細(xì)胞。BMSCs在骨生理過(guò)程中起重要作用,可誘導(dǎo)BMSCs成骨分化,對(duì)骨質(zhì)疏松癥的防治具有重要意義。骨形態(tài)發(fā)生蛋白2(BMP-2)是轉(zhuǎn)化生長(zhǎng)因子超家族(TGF)的一員,被證實(shí)可以通過(guò)影響多條信號(hào)通路促進(jìn)BMSCs成骨分化并抑制其成脂分化的雙向調(diào)節(jié)作用[3]。本文對(duì)BMSCs成骨分化相關(guān)信號(hào)通路及其與BMP-2的關(guān)系綜述如下。
已知多條信號(hào)通路參與了BMSCs成骨分化過(guò)程的調(diào)節(jié),包括NF-κB受體活化因子配體(RANKL)/NF-κB受體活化因子(RANK)/骨保護(hù)素(OPG)信號(hào)通路、Wnt/β-catenin信號(hào)通路、絲裂原活化蛋白激酶(MAPK)信號(hào)通路、Smad信號(hào)通路、Notch信號(hào)通路等。這些信號(hào)通路在調(diào)控BMSCs成骨分化方面具有重要作用,其中一條或數(shù)條信號(hào)通路調(diào)節(jié)受阻,均可引起B(yǎng)MSCs成骨分化異常,進(jìn)而導(dǎo)致骨質(zhì)疏松癥等骨代謝疾病的發(fā)生。
1.1 RANKL/RANK/OPG信號(hào)通路 RANKL/RANK/OPG信號(hào)通路是調(diào)節(jié)BMSCs分化的重要信號(hào)通路,與成骨分化有密切聯(lián)系。OPG是1997年由Simonet等[4]發(fā)現(xiàn)的一種由成骨細(xì)胞分泌的糖蛋白,屬于腫瘤壞死因子受體超家族成員。RANK主要表達(dá)于破骨前體細(xì)胞,是RANKL的惟一受體[5]。成骨細(xì)胞表達(dá)的RANKL與RANK結(jié)合,可促進(jìn)破骨細(xì)胞分化成熟,而OPG又能通過(guò)與RANKL的結(jié)合減少破骨細(xì)胞的產(chǎn)生。研究發(fā)現(xiàn),通過(guò)上調(diào)OPG表達(dá)可以激活RANKL/RANK/OPG信號(hào)通路,從而促進(jìn)人骨髓間充質(zhì)干細(xì)胞(hBMSCs)的成骨分化[6],而下調(diào)NF-κB表達(dá)可抑制hBMSCs的成骨分化能力[7]。由此可見(jiàn),OPG與NF-κB是此條信號(hào)通路上參與BMSCs成骨分化的關(guān)鍵因子。
1.2 Wnt/β-catenin信號(hào)通路 Wnt蛋白是細(xì)胞外富含半胱氨酸的糖蛋白大家族,其命名來(lái)源于果蠅Wingless基因和哺乳動(dòng)物Int1基因的縮寫[8]。Wnt信號(hào)通路是一條與細(xì)胞增殖、分化密切相關(guān)且高度保守的信號(hào)通路[9]。目前已知的細(xì)胞膜外Wnt蛋白共有19個(gè),其中Wnt1、Wnt3a、Wnt7a、Wnt7b等參與Wnt/β-catenin信號(hào)通路,又稱經(jīng)典Wnt通路;Wnt4、Wnt5a、Wnt5b、Wnt11等參與Wnt/Ca2+通路和Wnt/PCP通路,又稱非經(jīng)典Wnt通路[10]。通過(guò)上調(diào)Wnt3a、β-catenin、Wnt1等表達(dá)均可激活Wnt/β-catenin信號(hào)通路,增強(qiáng)hBMSCs的成骨分化能力[11,12]。Wnt5a通過(guò)激活非經(jīng)典信號(hào)通路,降低細(xì)胞周期蛋白D1和Wnt3a表達(dá),從而促進(jìn)BMSCs的成骨分化[13]。
1.3 MAPK信號(hào)通路 MAPK是細(xì)胞內(nèi)的一類絲氨酸/蘇氨酸蛋白激酶,目前已知的MAPK信號(hào)通路有三條,包括經(jīng)典的MAPK信號(hào)通路、ERK信號(hào)通路和非經(jīng)典的MAPK信號(hào)通路(JNK/SAPK通路和p38MAPK通路),三條MAPK信號(hào)通路往往同時(shí)發(fā)揮作用。研究發(fā)現(xiàn),雌激素可能通過(guò)同時(shí)激活JNK/MAPK和ERK/MAPK信號(hào)通路而增強(qiáng)大鼠顱面骨來(lái)源的BMSCs成骨分化能力[14]。在牛膝總皂苷(ABS)激活ERK/MAPK信號(hào)通路而促進(jìn)大鼠BMSCs成骨分化的過(guò)程中,細(xì)胞外鈣離子可以促進(jìn)BMP-2、RUNX2、osterix mRNA表達(dá)[15]。然而也有研究發(fā)現(xiàn),分泌型Klotho蛋白可通過(guò)FGFR1/ERK信號(hào)通路抑制體外hBMSCs的成骨分化[16]。以上研究表明,ERK/MAPK信號(hào)通路對(duì)BMSCs成骨分化的調(diào)節(jié)作用可能存在雙向性,BMP-2表達(dá)升高與MAPK信號(hào)通路的激活存在一定聯(lián)系。
1.4 Smad信號(hào)通路 Smad蛋白是一類與果蠅MAD蛋白、線蟲Smad蛋白同源的蛋白質(zhì)家族,BMP-2/Smad 信號(hào)通路激活可促進(jìn)BMSCs的成骨分化[17]。研究表明,人參皂苷Rg1可通過(guò)BMP-2/Smad信號(hào)通路促進(jìn)BMP-2誘導(dǎo)的hBMSCs成骨分化[18];此外,細(xì)胞外鈣離子可以協(xié)同BMP-2磷酸化Smad1/5和ERK,共同促進(jìn)BMSCs成骨分化[19]。此過(guò)程中Smad信號(hào)通路可能與ERK/MAPK信號(hào)通路建立某種聯(lián)系,而BMP-2在這兩條信號(hào)通路之間可能發(fā)揮樞紐作用。
1.5 Notch信號(hào)通路 20世紀(jì)初期,Mohr等[20]首次在果蠅中發(fā)現(xiàn)Notch基因。研究發(fā)現(xiàn),Notch信號(hào)通路激活后會(huì)抑制BMSCs成骨分化,但是在齊墩果酸作用下BMP-2表達(dá)升高,可能與其通過(guò)抑制Notch表達(dá)而上調(diào)成骨相關(guān)標(biāo)志物表達(dá)有關(guān)[21]。由此可見(jiàn),BMP-2在一定條件下與Notch信號(hào)通路具有重要聯(lián)系[22]。
BMP于1963年被發(fā)現(xiàn),是與胚胎骨骼形成有關(guān)的蛋白質(zhì),在骨形成的數(shù)個(gè)階段均起作用。目前已經(jīng)有40多種BMP被發(fā)現(xiàn),其中BMP-2是骨生長(zhǎng)的啟動(dòng)因子[23],可誘導(dǎo)BMSCs向成骨細(xì)胞分化并促進(jìn)其發(fā)生鈣化及礦化。在BMSCs成骨分化的過(guò)程中,BMP-2與Wnt/β-catenin信號(hào)通路、ERK/MAPK信號(hào)通路、Notch三條信號(hào)通路均有一定聯(lián)系。
2.1 BMP-2與Wnt/β-catenin信號(hào)通路 BMP/Smad與Wnt/β-catenin信號(hào)通路具有協(xié)同作用,上調(diào)BMP-2表達(dá)可以活化Smad和β-catenin,從而促進(jìn)BMSCs成骨分化[24]。在一項(xiàng)對(duì)腎上腺脂肪瘤的研究中證實(shí),Wnt/β-catenin信號(hào)通路激活可上調(diào)BMP-2和BMP靶基因表達(dá),并且Wnt/β-catenin信號(hào)通路相關(guān)因子可能是成骨細(xì)胞中BMP-2表達(dá)的上游激活劑[25]。
2.2 BMP-2與ERK/MAPK信號(hào)通路 研究發(fā)現(xiàn),川芎嗪可通過(guò)激活Smad1/5/8和ERK信號(hào)通路而增強(qiáng)hBMSCs成骨活性,上調(diào)BMP-2、RUNX2基因表達(dá)[26]。一項(xiàng)對(duì)強(qiáng)直性脊柱炎(AS)患者BMSCs的異常成骨分化機(jī)制的研究顯示,來(lái)自健康供體(HD)和AS患者的BMSCs在誘導(dǎo)為成骨細(xì)胞后,AS-BMSCs在成骨分化能力方面優(yōu)于HD-BMSCs[27]。在成骨分化期間,AS-BMSCs分泌較多的BMP-2和較少的頭蛋白(Noggin),伴隨著Smad1/5/8和ERK-1/2的過(guò)度活化;當(dāng)Noggin表達(dá)增加或BMP-2表達(dá)被抑制時(shí),AS-BMSCs的異常成骨分化被修復(fù),并且BMP-2與Noggin之間的分泌回歸平衡[28]。因此,BMP-2與Noggin之間的不平衡可能會(huì)引起AS-BMSCs的異常成骨分化,而ERK-1/2與BMP-2表達(dá)也存在正相關(guān)關(guān)系。
2.3 BMP-2與Notch信號(hào)通路 Notch3可能是改善骨整合的基因靶點(diǎn)。研究發(fā)現(xiàn),抑制Notch3可以增強(qiáng)酸蝕處理的Ti盤上BMSCs的成骨分化,并且上調(diào)BMP-2 表達(dá),表明BMP-2與Notch3表達(dá)存在負(fù)向調(diào)節(jié)關(guān)系[29]。在瓣膜間質(zhì)細(xì)胞中H19基因敲低會(huì)導(dǎo)致Notch1及其下游靶標(biāo)RUNX2和BMP-2表達(dá)升高,提示Notch1與BMP-2表達(dá)可能呈正相關(guān)關(guān)系[30]。
綜上所述,BMSCs成骨分化與多條信號(hào)通路有關(guān),各信號(hào)通路之間具有一定聯(lián)系且相互影響,關(guān)系錯(cuò)綜復(fù)雜。BMP-2可能是Wnt/β-catenin和ERK信號(hào)通路的下游靶基因,在激活上述兩條通路后,BMP-2表達(dá)水平上調(diào),從而促進(jìn)BMSCs成骨分化。細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)調(diào)控是個(gè)復(fù)雜、交叉的體系,而BMP-2只是其中一個(gè)相關(guān)因素。BMSCs成骨分化受多方面因素調(diào)控,當(dāng)BMP-2與Noggin分泌不平衡時(shí),容易引起異常骨化,而激活不同Notch信號(hào)通路對(duì)BMP-2表達(dá)的影響也截然不同。深入研究BMP-2在BMSCs成骨分化過(guò)程中的作用機(jī)制及其與各信號(hào)通路之間的關(guān)系,可為臨床防治相關(guān)骨質(zhì)疾病提供依據(jù)。
[1] Diepenhorst N, Rueda P, Cook AE, et al. G protein-coupled receptors as anabolic drug targets in osteoporosis[J]. Pharmacol Ther, 2017,7258(17):30265-30266.
[2] 曾祥偉,馮倩,張瑩瑩,等.葛根素對(duì)MC3T3-E1細(xì)胞增殖、分化和礦化及TRPM3 mRNA表達(dá)的影響[J].中國(guó)藥理學(xué)通報(bào),2017,33(7):977-982.
[3] 陳明,張濤,劉俊,等.骨形態(tài)發(fā)生蛋白2抑制骨髓間充質(zhì)干細(xì)胞成脂分化的優(yōu)選濃度[J].中國(guó)組織工程研究,2016,20(45):6720-6725.
[4] Simonet WS, Lacey DL, Dunstan C, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density[J]. Cell, 1997,89(2)309-319.
[5] Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function[J]. Nature, 1997,390(6656):175-179.
[6] 吳國(guó)志,歐積壯,吳昌新.巴戟天水提取物對(duì)間充質(zhì)干細(xì)胞成骨分化中OPG/RANKL表達(dá)的影響[J].海南醫(yī)學(xué),2016,27(3):345-348.
[7] Zong S, Zeng G, Fang Y, et al. The effects of β-zearalanol on the proliferation of bone-marrow-derived mesenchymal stem cells and their differentiation into osteoblasts[J]. J Bone Miner Metab, 2016,34(2):151-160.
[8] Rijsewijk F, Schuermann M, Wagenaar E,et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless[J]. Cell, 1987,50(4):649-657.
[9] Mccord M, Mukouyama YS, Gilbert MR, et al. Targeting WNT signaling for multifaceted glioblastoma therapy[J]. Front Cell Neurosci, 2017,13(11):318.
[10] 張堯,李曉莉,張巖.維生素D對(duì)骨髓基質(zhì)干細(xì)胞成骨分化的分子調(diào)控研究進(jìn)展[J].中國(guó)藥理學(xué)通報(bào),2016,32(10):1337-1340.
[11] Zhao C, Li Y, Wang X, et al. The effect of uniaxial mechanical stretch on Wnt/β-Catenin pathway in bone mesenchymal stem cells[J]. J Craniofac Surg, 2017,28(1):113-117.
[12] Zhou YJ, Wang P, Chen HY, et al. Effect of pulsed electromagnetic fields on osteogenic differentiation and Wnt/β-catenin signaling pathway in rat bone marrow mesenchymal stem cells[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2015,46(3):347-353.
[13] 彭旭,張曉梅,魏詩(shī)航,等.骨髓間充質(zhì)干細(xì)胞向軟骨及骨分化:Wnt5a/PCP信號(hào)通路作用的研究與進(jìn)展[J].中國(guó)組織工程研究,2016,20(51):7717-7723.
[14] Zhao Y, Yi FZ, Zhao YH, et al. The Distinct effects of estrogen and hydrostatic pressure on mesenchymal stem cells differentiation: involvement of estrogen receptor signaling[J]. Ann Biomed Eng, 2016,44(10):1-13.
[15] He G, Guo W, Lou Z, et al. Achyranthes bidentata saponins promote osteogenic differentiation of bone marrow stromal cells through the ERK MAPK signaling pathway[J]. Cell Biochem Biophys, 2014,70(1):467-473.
[16] Zhang W, Xue D, Hu D, et al. Secreted klotho protein attenuates osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro via inactivation of the FGFR1/ERK signaling pathway[J]. Growth Factors, 2015,33(5-6):356-365.
[17] Wang CL, Xiao F, Wang CD, et al. Gremlin2 suppression increases the BMP-2-induced osteogenesis of human bone-marrow-derived mesenchymal stem cells via the BMP-2/Smad/Runx2 signaling pathway[J]. J Cell Biochem, 2016,118(2):286-297.
[18] Gu Y, Zhou J, Qin W, et al. Ginsenoside Rg1 promotes osteogenic differentiation of rBMSCs and healing of rat tibial fractures through regulation of GR-dependent BMP-2/SMAD signaling[J]. Sci Rep, 2016,6(4):25282.
[19] Aquino-Martínez R, Artigas N, Gámez B, et al. Extracellular calcium promotes bone formation from bone marrow mesenchymal stem cells by amplifying the effects of BMP-2 on SMAD signalling[J]. PloS One, 2017,12(5):e0178158.
[20] Mohr OL. Character changes caused by mutation of an entireregion of a chromosome in Drosophila[J]. Genetics, 1919,4(3):275-282.
[21] Kang H, Chen H, Huang P, et al. Glucocorticoids impair bone formation of bone marrow stromal stem cells by reciprocally regulating microRNA-34a-5p[J]. Osteoporos Int, 2016,27(4):1493-1505.
[22] Shu B, Zhao Y, Wang Y, et al. Oleanolic acid enhances mesenchymal stromal cell osteogenic potential by inhibition of notch signaling[J]. Sci Rep, 2017,7(1):7002.
[23] Nguyen V, Meyers CA, Yan N, et al. BMP-2-induced bone formation and neural inflammation[J]. J Orthop, 2017,14(2):252-256.
[24] Bae SJ, Kim HJ, Won HY, et al. Acceleration of osteoblast differentiation by a novel osteogenic compound, DMP-PYT, through activation of both the BMP and Wnt pathways[J]. Sci Rep, 2017,7(1):8455.
[25] Mitsui Y, Yasumoto H, Hiraki M, et al. Coordination of bone morphogenetic protein 2 (BMP2) and aberrant canonical Wnt/β-catenin signaling for heterotopic bone formation in adrenal myelolipoma: a case report[J]. Can Urol Assoc J, 2014,8(1-2):104-107.
[26] Wang JY, Chen WM, Wen CS, et al. Du-Huo-Ji-Sheng-Tang and its active component Ligusticum chuanxiong promote osteogenic differentiation and decrease the aging process of human mesenchymal stem cells[J]. J Ethnopharmacol, 2017,198:64-72.
[27] Zuo WH, Zeng P, Chen X, et al. Promotive effects of bone morphogenetic protein 2 on angiogenesis in hepatocarcinoma via multiple signal pathways[J]. Sci Rep, 2016,6:37499.
[28] Xie Z, Wang P, Li Y, et al. Imbalance between bone morphogenetic protein 2 and noggin induces abnormal osteogenic differentiation of mesenchymal stem cells in ankylosing Spondylitis[J]. Arthritis Rheumatol, 2016,68(2):430.
[29] Mouillesseaux KP, Wiley DS, Saunders LM, et al. Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6[J]. Nat Commun, 2016,11(7):13247.
[30] Hadji F, Boulanger MC, Guay SP, et al. Altered DNA Methylation of long noncoding RNA H19 in calcific aortic valve disease promotes mineralization by silencing NOTCH1[J]. Circulation, 2016,134(23):1848.
江蘇省自然科學(xué)基金面上項(xiàng)目(BK20131417)。
詹秀琴(E-mail: 1543641179@qq.com )
10.3969/j.issn.1002-266X.2017.48.034
R329.2
A
1002-266X(2017)48-0097-03
2017-09-24)