汪洪,宋書會(huì),張金堯,劉云霞
(中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/耕地培育技術(shù)國(guó)家工程實(shí)驗(yàn)室/農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,北京 100081)
土壤磷形態(tài)組分分級(jí)及31P-NMR 技術(shù)應(yīng)用研究進(jìn)展
汪洪,宋書會(huì),張金堯,劉云霞
(中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/耕地培育技術(shù)國(guó)家工程實(shí)驗(yàn)室/農(nóng)業(yè)部植物營(yíng)養(yǎng)與肥料重點(diǎn)實(shí)驗(yàn)室,北京 100081)
農(nóng)田生態(tài)系統(tǒng)中土壤磷形態(tài)轉(zhuǎn)化,影響土壤磷對(duì)作物的有效供應(yīng)。土壤磷分為無(wú)機(jī)磷和有機(jī)磷兩大部分?;瘜W(xué)連續(xù)提取法 (chemical sequential fractionation,CSF) 研究土壤磷形態(tài)分級(jí),采用不同的化學(xué)提取劑,分級(jí)提取土壤中組成或分解能力接近的有機(jī)無(wú)機(jī)含磷化合物,是目前表征土壤磷素形態(tài)的重要方法。但該方法雖歷經(jīng)改進(jìn),仍難以確切反映土壤磷的實(shí)際組成,提取的不同磷形態(tài)間存在重疊,有機(jī)磷和無(wú)機(jī)磷組分分級(jí)存在一定的誤差;不同分級(jí)磷組分對(duì)作物的有效性,需謹(jǐn)慎評(píng)估。核磁共振波譜技術(shù) (nuclear magnetic resonance,NMR) 根據(jù)核磁共振波譜圖上共振峰的位置、強(qiáng)度和精細(xì)結(jié)構(gòu)來(lái)研究土壤中含磷化合物的分子結(jié)構(gòu)。液相31PNMR 可以同吋檢測(cè)出土壤中多種磷組分,如正磷酸鹽、磷酸單酯、磷酸二酯、膦酸脂、焦磷酸鹽和多聚磷酸鹽,識(shí)別土壤提取物磷形態(tài),可將有機(jī)磷與無(wú)機(jī)磷分開。本文綜述了應(yīng)用31P-NMR 技術(shù)研究土壤磷形態(tài)組分的一些進(jìn)展,總結(jié)了樣品制備過(guò)程、NMR 測(cè)試參數(shù)及在土壤磷形態(tài)轉(zhuǎn)化研究中的應(yīng)用。二維31P-NMR 技術(shù)發(fā)展為鑒定分析土壤中更多種類的含磷化合物提供了契機(jī)。
土壤磷形態(tài);化學(xué)連續(xù)提取法;土壤磷組分;31P-核磁共振波譜技術(shù)
31P nuclear magnetic resonance (31P-NMR)
磷是生命體中多種生物大分子如 DNA、RNA、ATP、磷脂的組分元素,對(duì)能量貯存、遷移和轉(zhuǎn)化過(guò)程具有重要作用[1]。自然界中磷主要存在于土壤和海洋兩大庫(kù)中,大氣中含量較少[2-3]。土壤缺磷曾是作物生產(chǎn)上限制因素之一,但多年來(lái),磷肥施用量持續(xù)增加,耕地土壤有效磷含量顯著提高[4-5]。用于生產(chǎn)磷肥的磷礦資源不可再生,預(yù)測(cè)全球磷礦資源在 50~100 年內(nèi)將面臨耗竭[6-7]。土壤中磷移動(dòng)性較差,易被吸附固定,作物當(dāng)季磷肥利用率不高。研究土壤磷分級(jí)方法,有助于科學(xué)地認(rèn)識(shí)、利用土壤磷,防止過(guò)量施用磷肥,減少磷礦資源浪費(fèi),降低土壤磷流失對(duì)環(huán)境構(gòu)成的污染風(fēng)險(xiǎn)[8-9]。
土壤全磷 (P) 含量約 10~1000 g/kg,與土層、質(zhì)地、發(fā)育、利用方式與強(qiáng)度等有關(guān)。土壤磷分為無(wú)機(jī)磷和有機(jī)磷兩大部分,含量比一般在 0.1~3 之間[3,10]。
土壤無(wú)機(jī)磷以正磷酸鹽為主,焦磷酸鹽、無(wú)機(jī)聚磷酸鹽、偏磷酸鹽等少量存在,又可分為礦物態(tài)、水溶態(tài)和吸附態(tài)三種形態(tài)[11-14]。土壤無(wú)機(jī)磷約有99% 以礦物態(tài)存在,難被植物吸收利用;石灰性土壤中礦物態(tài)磷主要是羥基磷灰石或氟磷灰石,酸性土壤中以鐵鋁氧化物及氫氧化物結(jié)合態(tài)磷為主[15-18]。土壤溶液中 H2PO4-和 HPO42-離子,占全磷 < 0.1%,在土體中主要通過(guò)擴(kuò)散作用遷移,是植物吸收利用的有效形態(tài)[11,19]。吸附態(tài)磷是指通過(guò)范德華力、化學(xué)鍵能等吸附在粘土礦物、有機(jī)物等固相表面的磷,以陰離子交換吸附和配位吸附 (專性吸附) 為主[11,17]。
根據(jù)分子結(jié)構(gòu)差異,土壤有機(jī)磷分為磷酸酯、膦酸鹽、多聚磷酸酯、微生物量磷等,還包括吸附在有機(jī)物表面和與有機(jī)物形成配合物的磷酸鹽[10,20-24]。磷酸酯類有機(jī)磷較易分解,在土壤有機(jī)磷中占很大比例,包括磷酸單酯類和磷酸二酯類:磷酸單酯通過(guò)羥基酯化,與 C 鏈相連,形成磷酸酯 (C-O-P) 形式,如磷酸糖類、單核苷酸、肌醇六磷酸 (植酸)[10];磷酸二酯以 C-O-P-O-C 形式橋接,如磷脂類、核酸、脂磷壁酸等,農(nóng)田土壤中磷酸二酯含量通常低于 10%[10,25-26]。膦酸鹽含碳磷鍵 (C-P),如 2-氨基乙基膦酸、抗生素磷霉素、農(nóng)藥草甘膦 (N-膦酰基甲基-甘氨酸) 等。膦酸鹽比磷酸酯鍵更穩(wěn)定,在寒冷、濕潤(rùn)或酸性環(huán)境下容易累積。煙酰胺腺嘌呤二核苷酸磷酸和三磷酸腺苷 (ATP) 具有磷酸單酯和膦酸鹽結(jié)構(gòu),有學(xué)者歸之為多聚磷酸酯[10,24]。微生物量磷是土壤中所有活體微生物細(xì)胞內(nèi)所含的磷,在農(nóng)田中約占土壤全磷的 0.4%~2.5%,草地土壤中,可達(dá)全磷的 7.5%[27]。微生物量磷含核酸 (75%) 、酸溶解性磷酯類 (20%) 、磷脂 (5%),是土壤有機(jī)磷中較為活躍的部分,是植物磷素營(yíng)養(yǎng)的重要來(lái)源[28-29]。Meta 分析結(jié)果表明,全球土壤微生物量 C∶N∶P 約為60∶7∶1[30]。土壤中有機(jī)磷成分復(fù)雜,受浸提、分析技術(shù)限制,仍有大量組分未被鑒別[31]。
土壤磷化學(xué)分級(jí)是指用化學(xué)連續(xù)提取法表征土壤磷素形態(tài),即用不同的化學(xué)提取劑分級(jí)提取土壤中化學(xué)組成相近或分解礦化能力較接近的無(wú)機(jī)或有機(jī)磷化合物[12,14,32-34]。
Chang 和 Jackson[35]提出了酸性土壤無(wú)機(jī)磷分級(jí)方法,后經(jīng) Peterson 和 Corey[36]改進(jìn),該分級(jí)體系將土壤無(wú)機(jī)磷分為易溶態(tài)磷 (提取劑 1 mol/L NH4Cl) 、鋁磷酸鹽 (0.5 mol/L NH4F)、鐵磷酸鹽 (0.1 mol/L NaOH) 、鈣磷酸鹽 (0.5 mol/L H2SO4) 、閉蓄態(tài)磷 (0.3 mol/L 檸檬酸鈉-0.5 g/L 連二硫酸鈉-0.1 mol/L 氫氧化鈉)。該法不能很好地區(qū)分石灰性土壤中不同形態(tài)的鈣磷酸鹽 Ca-P。蔣柏藩和顧益初[37]提出石灰性土壤無(wú)機(jī)磷分級(jí)方法,把 Chang-Jackson 方法中 Ca-P按溶解度和有效性又分為 3 級(jí),分別是磷酸二鈣型Ca2-P (提取劑 0.25 mol/L NaHCO3) 、磷酸八鈣型 Ca8-P (1 mol/L NH4OAc) 和磷石灰型 Ca10-P (0.5 mol/L H2SO4)。將鐵磷酸鹽 (Fe-P) 改為 0.1 mol/L NaOHNa2CO3提取,這一方法在我國(guó)石灰性土壤磷形態(tài)研究中廣泛應(yīng)用。這些土壤磷分級(jí)方法主要缺陷是分級(jí)較粗,未包括有機(jī)磷組分,難以了解土壤磷總體變化。
測(cè)定土壤有機(jī)磷總量主要采用差減法,利用高溫灼燒土樣,促使有機(jī)磷分解,用酸提取,提取磷量減去未灼燒土壤樣品提取磷量即為有機(jī)磷總量[38]。灼燒法操作簡(jiǎn)單,是測(cè)定有機(jī)磷總量經(jīng)典方法,缺點(diǎn)是高溫灼燒過(guò)程中礦物態(tài)磷溶解度可能發(fā)生變化,部分有機(jī)磷揮發(fā)損失。Bowman 和 Cole[39]將土壤有機(jī)磷分為活性、中等活性、中穩(wěn)性和穩(wěn)定性四種形態(tài)有機(jī)磷,分別用 0.5 mol/L NaHCO3、1.0 mol/L H2SO4和 0.5 mol/L NaOH 按順序浸提;NaOH 浸提液經(jīng)調(diào)酸后,沉淀部分為高穩(wěn)性有機(jī)磷 (胡敏酸態(tài)有機(jī)磷),不為酸所沉淀部分是中穩(wěn)性有機(jī)磷 (富啡酸態(tài)有機(jī)磷)。Ivanoff 等[40]增加了微生物量磷組分,將中等活性有機(jī)磷的提取劑改為 1 mol/L HCl?;钚杂袡C(jī)磷易礦化而為植物吸收,中等活性有機(jī)磷較易礦化,中穩(wěn)性有機(jī)磷較難礦化,難被植物吸收利用,高穩(wěn)性有機(jī)磷很難礦化,基本上不被植物所吸收[14,20]。
Hedley 等[41]提出土壤磷分級(jí)方法,被國(guó)內(nèi)外學(xué)者普遍采用[12,14,32-34]。該法將土壤磷分為 7 大類,部分類別又分為有機(jī)態(tài) (Po) 和無(wú)機(jī)態(tài) (Pi):1) 樹脂交換態(tài)磷 陰離子交換樹脂交換浸提出的磷,主要是與土壤溶液中的磷處于平衡狀態(tài)的土壤膠體吸附的無(wú)機(jī)磷,可被作物吸收;2) NaHCO3提取態(tài)磷 包括無(wú)機(jī)態(tài)和有機(jī)態(tài)兩部分,對(duì)植物有效;3) 微生物量磷主要是來(lái)自微生物體內(nèi)磷溶解浸提,包括有機(jī)和無(wú)機(jī)兩部分,在適宜條件下,微生物量磷可較快地礦化后為植物利用;4) NaOH 提取態(tài)磷 包括有機(jī)和無(wú)機(jī)兩部分;5) 土壤團(tuán)聚體內(nèi)磷 土壤經(jīng)超聲波分散,再用 0.1 mol/L NaOH 提取的磷,包括有機(jī)和無(wú)機(jī)兩部分,主要是指存在于土壤團(tuán)聚體內(nèi)表面上的磷;6) HCl 提取態(tài)磷 在石灰性土壤中主要提取的是磷灰石型磷,高度風(fēng)化的酸性土壤中能提取出部分閉蓄態(tài)磷;7) 殘?jiān)鼞B(tài)磷 指以上試劑不能提取的較穩(wěn)定的磷。
Condron 和 Goh[42]在 Hedley 分級(jí)方法基礎(chǔ)上進(jìn)行了改動(dòng),省去了微生物量磷測(cè)定,即 0.1 mol/L NaOH浸提后用 1.0 mol/L HCl 浸提,樣品不經(jīng)超聲波分散,直接用 0.5 mol/L NaOH 提取,省去土壤團(tuán)聚體內(nèi)磷這一形態(tài)。Chen 等[43]在此基礎(chǔ)上又進(jìn)行了部分修訂:1 mol/L NH4Cl 代替樹脂浸提;第二次 NaOH浸提濃度改為 0.5 mol/L;殘?jiān)鼞B(tài)磷改為用 HNO3-HClO4消煮。Tiessen 等[44]對(duì) Hedley 分級(jí)法也進(jìn)行了修正,共分為 6 個(gè)大類 9 個(gè)分級(jí),將 Hedley 分級(jí)法中含量較低的微生物量磷和團(tuán)聚體內(nèi)磷省去,在 0.1 mol/L 稀鹽酸浸提后再用濃鹽酸浸提,以充分提取殘留態(tài)中的部分有機(jī)磷。Hedley 磷素分級(jí)及其修訂的方法,為了充分提取土壤中磷,浸提液需在 25000 × g 下超高速離心,同時(shí)利用 0.45 μm 濾膜過(guò)濾,提取過(guò)程費(fèi)時(shí),測(cè)試成本較高,這些限制了方法的應(yīng)用。Guppy 等[45]對(duì) Hedley 分級(jí)方法進(jìn)行改進(jìn),省去了微生物量磷測(cè)定,在浸提劑中添加 4 mol/L NaCl溶液提高離子強(qiáng)度,增加土壤膠體絮凝性,離心力只需 900 × g 即可,無(wú)需過(guò)濾便得上清液,操作簡(jiǎn)便,測(cè)試成本較低。該法還采用孔雀綠或鉬藍(lán)比色法測(cè)定無(wú)機(jī)磷,孔雀綠比色法靈敏度更高;各形態(tài)全磷消煮后,用電感耦合等離子體發(fā)射光譜法測(cè)定,Guppy 法中各形態(tài)磷回收率達(dá)到了 95%。
化學(xué)連續(xù)提取法是通過(guò)選擇浸提劑對(duì)土壤中磷進(jìn)行區(qū)分提取,但浸提劑缺乏專一性,浸提過(guò)程中可能出現(xiàn)腐殖質(zhì)沉淀、有機(jī)磷水解以及沉淀與螯合反應(yīng),導(dǎo)致一些無(wú)機(jī)磷和有機(jī)磷組分在浸提過(guò)程中難以真正完全區(qū)分開。浸提液中磷濃度測(cè)定多用鉬藍(lán)比色法,該方法簡(jiǎn)單易行,但鉬藍(lán)比色法測(cè)得磷(molybdate-reactive phosphorus,MRP) 僅是與鉬酸鹽反應(yīng)的正磷酸鹽,聚磷酸鹽、焦磷酸鹽不與鉬酸鹽反應(yīng),難以被檢出,被歸入鉬酸鹽非反應(yīng)磷(molybdate-unreactive phosphorus,MUP),MRP 與MUP 并不能和無(wú)機(jī)磷與有機(jī)磷一一等同[46]。因此化學(xué)浸提方法提取的不同磷形態(tài)間存在重疊,有機(jī)磷和無(wú)機(jī)磷組分分級(jí)存在一定的誤差;不同分級(jí)磷組分對(duì)植物的有效性,需謹(jǐn)慎評(píng)估[10,14]。
3.131P-NMR 技術(shù)基本原理
NMR 技術(shù)基于磁性原子自旋共振現(xiàn)象,是根據(jù)譜圖上共振峰位置、強(qiáng)度和精細(xì)結(jié)構(gòu)研究樣品分子結(jié)構(gòu)[47-48]。原子核是帶正電荷具有質(zhì)量的粒子,能自旋的原子核具有循環(huán)電流,產(chǎn)生磁場(chǎng),形成磁矩(μ)。無(wú)外加磁場(chǎng)時(shí),自旋核取向是任意的。當(dāng)自旋核處于磁感應(yīng)強(qiáng)度 B0的外磁場(chǎng)中,繞磁場(chǎng)運(yùn)動(dòng),稱為拉莫爾進(jìn)動(dòng),角速度 ω0= 2πν0= γB0,式中 ν0是進(jìn)動(dòng)頻率,γ 為磁旋比。磷原子核自旋量子數(shù) I = 1/2,γ = 10.829 × 107rad/T/s,μ = 1.9581。在外磁場(chǎng)作用下自旋量子數(shù) I 值 1/2 的核有兩種取向,用自旋磁量子數(shù) m 表示,m = + 1/2 和-1/2,這兩種狀態(tài)間存在能量差;當(dāng)接受一定頻率電磁波輻射,輻射能量等于自旋核兩種不同取向的能量差時(shí),處于低能態(tài)自旋核躍遷到高能態(tài),稱為 NMR。因此 NMR 基本條件是:頻率為 ν射射頻照射自旋核,射頻能量 E射= hν射= ΔE = γhB0/2π,即 ν射= 拉莫爾進(jìn)動(dòng)頻率 ν0= γB0/2π,檢測(cè)電磁輻射被吸收的情況得到 NMR 波譜[47]。不同化合物中磷原子核的化學(xué)環(huán)境不同,核外電子繞核運(yùn)動(dòng)產(chǎn)生與外部磁場(chǎng)方向相反的感應(yīng)磁場(chǎng),對(duì)原子核產(chǎn)生一定的屏蔽作用,核實(shí)際處于磁場(chǎng)強(qiáng)度 B0(1-σ) 的狀態(tài),σ 為屏蔽常數(shù),發(fā)生 NMR 時(shí),拉莫爾進(jìn)動(dòng)頻率 ν0=γB0(1-σ)/2π[47-48]。核外電子對(duì)核的屏蔽作用不同導(dǎo)致不同磷化合物共振頻率有微小移動(dòng),稱為化學(xué)位移 δ。通過(guò)核磁共振儀測(cè)出 δ,可對(duì)不同化學(xué)環(huán)境的原子核進(jìn)行定性[47-48];磷 NMR 譜強(qiáng)度與磷原子核的濃度呈正比,通過(guò)譜圖上特征峰積分對(duì)磷化合物進(jìn)行定量分析。實(shí)際操作時(shí),磁場(chǎng)強(qiáng)度 B0難以準(zhǔn)確測(cè)定,δ 值確定常以待測(cè)物中磷原子核相對(duì)于參考物 (如 85% H3PO4) 磷原子核的吸收頻率表示,δ=[(ν樣-ν標(biāo)樣)/ν0] × 106,單位為 ppm[21-22]。31P是自然界中磷元素唯一的天然穩(wěn)定性同位素,自然豐度為 100%,理論上講,樣品中所有磷形態(tài)均可被NMR 檢測(cè),但是土壤異質(zhì)性、磷含量相對(duì)較低、磷易與順磁性鐵錳離子結(jié)合,導(dǎo)致土壤樣品31P-NMR分析較復(fù)雜[10,49]。
3.2 土壤31P-NMR 技術(shù)參數(shù)
Newman 和 Tate[50]首次將31P-NMR 技術(shù)應(yīng)用于土壤提取液中磷表征。3lP-NMR 技術(shù)包括固相和液相31P-NMR。固相31P-NMR 測(cè)定的樣品前處理只需干燥、研磨,無(wú)需浸提,但其分辨率和靈敏度較低,目前應(yīng)用不普遍。液相31P-NMR 可檢測(cè)出多種磷化合物,有效區(qū)分土壤有機(jī)磷與無(wú)機(jī)磷化合物,因此液相31P-NMR 技術(shù)應(yīng)用較廣泛,但土壤液相31PNMR 技術(shù)尚存在一些問(wèn)題,如不適于分析微量樣品 , 提取及分 析 過(guò)程可能 出現(xiàn)磷化 合 物水解[10,21-22,51]。
應(yīng)用液相31P-NMR 分析土壤磷組分的前提與關(guān)鍵是要進(jìn)行樣品制備和磷化合物提取。樣品制備包括樣品前處理 (干燥、研磨),選擇合適的浸提條件(提取劑種類、提取時(shí)間及溫度、提取劑用量),樣品待 測(cè) 液處理[10,21-22,51], NMR 測(cè)試參數(shù) 設(shè)計(jì)包括 脈 沖角度、弛豫時(shí)間、采集時(shí)間、溫度、是否氫去偶等。Cade-Menun 等[10,21]綜述了土壤樣品31P-NMR 技術(shù)原理與應(yīng)用,系統(tǒng)總結(jié)了樣品的制備過(guò)程, 包括樣品前處理方法、提取時(shí)間、提取劑比例以及核磁共振測(cè)試參數(shù) (表 1)。
樣品前處理包括樣品干燥、研磨。報(bào)道的樣品干燥方式有烘干[52-53]、自然風(fēng)干[54-56]、冷凍干燥[57-58],也有直接利用新鮮土壤樣品[59-62],多數(shù)研究者使用自然風(fēng)干 土 壤 樣 品[10,21,54-56,63]。樣品自然 風(fēng) 干 可能會(huì)帶來(lái)正磷酸鹽和磷酸單酯含量增加,磷酸二酯含量降低,冷凍儲(chǔ)存新鮮樣品則更接近原樣品。對(duì)我國(guó) 43個(gè)湖泊表層沉積物進(jìn)行研究,發(fā)現(xiàn)風(fēng)干樣品較新鮮樣品磷的提取率更高,樣品風(fēng)干增加了有機(jī)磷的水解,高溫下風(fēng)干會(huì)低估有機(jī)磷的含量;風(fēng)干樣品經(jīng)充分研磨可破壞沉積物結(jié)構(gòu),尤其是對(duì)含礦物質(zhì)多的沉積物,促進(jìn)了磷的釋放[64]。在充入 N2條件下浸提新鮮土壤樣品,可防止樣品中原有磷形態(tài)被氧化[63]。
用于 NMR 分析的土壤樣品浸提劑有:0.1 mol/L NaOH%-0.4 mol/L NaF[63,65-66]、水[67]、水 + 0.4 mol/L NaOH[68]、0.5 mol/L NaHCO3和 1.0 mol/L HCl 連續(xù)浸提 后 用0.5 mol/L NaOH 浸 提[69]、 水 + 0.5 mol/L NaHCO3、NaOH-EDTA 連續(xù)浸提[70]、HCl-NaOH- 陽(yáng)離 子 交 換 樹 脂 Chelex 多 步 提 取[62,71]、0.25 mol/L NaOH-50 mmol/L EDTA 兩步提取[72]。土壤中 Ca、Fe、Al、Mn 等與磷結(jié)合,NaOH 提取有機(jī)磷并不完全,選擇陽(yáng)離子交換樹脂、連二亞硫酸鈉、NaF、稀酸、EDTA 等與 NaOH 一起聯(lián)用,去除或螯合金屬離子,釋放出磷,提高提取效率。陽(yáng)離子交換樹脂去除陽(yáng)離子過(guò)程中可能帶走多聚磷酸鹽,連二亞硫酸鈉 - 碳酸氫鈉將土壤 Fe3+轉(zhuǎn)化為可溶 Fe2+離子,NaF 螯合 Al,EDTA 對(duì) Ca、Fe、Al、Mn 等具有螯合作用,對(duì)有機(jī)磷組分破壞小,降低多聚磷酸鹽水解,對(duì)有機(jī)磷的提取率較高[73]。土壤31P-NMR 研究中,0.25 mol/L NaOH-50 mmol/L EDTA 是常用提取劑[10, 21-22, 51]。
選用適當(dāng)?shù)慕釀┡c土樣比例,對(duì)土壤磷提取效果及檢測(cè)靈敏度非常重要。相同情況下,浸提劑與土樣比例越高,各組分磷的濃度越低,被檢測(cè)出來(lái)的可能性越小[74]。Cade-Menun 和 Preston[75]選擇浸提劑體積與土樣質(zhì)量比例 (水土比) 20∶1,這一比例被廣泛應(yīng)用[10],但其所用土樣是有機(jī)質(zhì)較高 (C 含量50%) 的森林淹水土壤,對(duì)于礦質(zhì)含量高的土樣,Cade-Menun 等[73,76-77]選擇水土比 10∶1。Doolette 等[61]報(bào)道,與水土比 20∶1 相比,水土比 10∶1 提高了總磷回收率和 NMR 信噪比,但研究結(jié)果并未顯示有機(jī)磷和正磷酸鹽回收率是否增加。Turner[78]利用熱帶土壤樣品,增加浸提水土比,浸提液 MRP 含量提高,MUP 未 增 加 。 對(duì) 于 低 磷 土 壤 , McLaren 等[79]認(rèn) 為NaOH-EDTA 浸提水土比 4∶1 的 NMR 信號(hào)靈敏度好于水土比 10∶1。
浸提振蕩時(shí)間一般選擇常溫下振蕩提取 16 h。但也有 8 h[80]和 4 h[81-83]的報(bào)道。利用 NaOH-EDTA 浸提劑對(duì)熱帶森林土樣分別浸提 1、4 和 16 h,4 h 浸提的總 P 和 MUP 量比 1 h 稍高,16 h 浸提總磷和MRP 比 4 h 高,MUP 量并未增加,表明 16 h 浸提無(wú)機(jī)磷增多,有機(jī)磷并未增加[78]。浸提時(shí)間短可能會(huì)減少提取液中磷組分的水解和降解。除提取時(shí)間外,溫度、pH 等因素也一定程度上影響提取液中磷組分及 NMR 的檢測(cè)結(jié)果。溫度升高增加有機(jī)磷礦化率及無(wú)機(jī)磷釋放;氧氣充足情況下磷酸二酯易降解。采用 0.2 mol/L 草酸銨 (pH 3.0) 按水土比 40∶1 振蕩樣品 2 h,在 2000× g 下離心 10 min,NMR 可檢測(cè)到溫帶草地和森林土壤中肌醇六磷酸[84]。
提取完成后,浸提液需要進(jìn)行濃縮以提高 NMR樣品管中磷濃度。若直接采用浸提樣品,每個(gè)樣品測(cè)試時(shí)掃描 112000 次,采集時(shí)間 0.4 s,弛豫時(shí)間2.1 s,每采集信號(hào)一次約需 2.5 s,這樣一個(gè)樣品的31P-NMR 分析時(shí)間約需要 78 h,無(wú)疑難以被接受[10]。以前研究者多采用冷凍干燥、40℃ 下氮吹、旋轉(zhuǎn)蒸發(fā)等濃縮措施[21-22],目前多采用離心和冷凍干燥濃縮浸提液為粉末樣品[10,74]。張艾明等[57]研究發(fā)現(xiàn),浸提液冷凍干燥過(guò)程中添加連二亞硫酸鹽緩沖液 (0.11 mol/L NaHCO3-0.11 mol/L Na2S2O4) 降低了31P-NMR譜圖化學(xué)位移偏移,提高了分辨率。Cade-Menun 等[85]報(bào)道 NaOH-EDTA 浸提液冷凍干燥后,含有的三聚磷酸鹽降解為正磷酸鹽和焦磷酸鹽;若浸提液 pH 中和至 7.0,三聚磷酸鹽就不會(huì)降解。事實(shí)上,土壤31P-NMR 圖譜上很少報(bào)道聚磷酸鹽,常見(jiàn)焦磷酸鹽譜峰。
表1 液相31P-NMR 土壤磷研究的核磁測(cè)試參數(shù)Table 1 Sample experiments parameters of solution phosphorus-31 nuclear magnetic resonance spectroscopy for soil analysis
續(xù)表 1 Table 1 continued
樣品制備完成后,冷凍儲(chǔ)存直至分析。31P-NMR分析前,取出冷凍濃縮樣品,重新溶解,變成液體樣品,準(zhǔn)備待測(cè)樣品體積根據(jù) NMR 核磁樣品管體積而定,5 mm 核磁管進(jìn)樣體積約 0.5~1 mL,10 mm核磁管進(jìn)樣體積 2~3 mL。磁場(chǎng)漂移導(dǎo)致信號(hào)峰變寬,實(shí)驗(yàn)對(duì)磁場(chǎng)穩(wěn)定性的要求可以通過(guò)鎖場(chǎng)實(shí)現(xiàn),鎖場(chǎng)目前常用氘信號(hào)作為參照信號(hào),通過(guò)不間斷測(cè)量參照信號(hào)并與標(biāo)準(zhǔn)頻率進(jìn)行比較,調(diào)節(jié)偏差反饋到磁體通過(guò)增加或減少輔助線圈電流來(lái)進(jìn)行矯正。核磁管樣品中加入氘水 (D2O) 是土壤31P-NMR 常用鎖場(chǎng)方法[10]。
重新溶解冷凍濃縮樣品的溶劑:D2O[71,86-88]、氘代 氫 氧 化 鈉 (NaOD)[52,63]或 NaOD+D2O[68]、 純水+D2O[89-92]、D2O+NaOH-EDTA[93-96]、D2O+1mol/L NaOH[97-99]、 D2O+10mol/L NaOH[54,67,100-101]、D2O+NaOH-EDTA+10 mol/L NaOH[55,70,80], 不同 溶 劑對(duì)31P-NMR 分辨率和檢測(cè)結(jié)果有明顯影響[10]。Cade-Menun[21-22]認(rèn)為最終樣品溶解液 pH>12,才能保證獲得分辨率良好的譜圖。核磁管中樣品液粘稠會(huì)影響譜峰分辨率,NaOH 或 NaOH-EDTA 重新溶解冷凍濃縮樣品,pH 高,會(huì)使溶液存在沉淀顆粒物,導(dǎo)致峰型變寬[10]。有研究者重新溶解冷凍濃縮樣品后,離心[56,70-71,99,102]或過(guò)濾[96],上清液加入適量 D2O 鎖定信號(hào),移至核磁管中進(jìn)行 NMR 檢測(cè)。
計(jì)算31P-NMR 圖譜不同組分的峰面積與所有磷化合物總峰面積的比例,可獲得該組分所占全磷的比例信息,在樣品測(cè)試時(shí)加入內(nèi)標(biāo),與內(nèi)標(biāo)信號(hào)比對(duì),可得到磷化合物絕對(duì)含量。亞甲基二膦酸鹽(methylene diphosphonic acid,MDP) 是常用內(nèi)標(biāo)物,MDP 可在樣品冷凍濃縮后重新溶解時(shí),加到核磁管中[97,103], 也可將MDP 加 到土 壤 樣品中 ,與樣 品進(jìn)行同樣浸提過(guò)程[91-92,104-105]。
3.3 土壤31P-NMR 研究
土壤31P-NMR 圖譜中常見(jiàn)含磷化合物 (NaOHEDTA 提取) 的化學(xué)位移在 25~-25 ppm 間 (圖 1),分別為膦酸鹽 20 附近、正磷酸鹽 5~7、磷酸單酯3~6、磷酸二酯 2.5~-1、焦磷酸鹽-4~-5、多聚磷酸 鹽主鏈末端磷-4~-5、多聚磷酸鹽-20 附近。
31P-NMR 技 術(shù) 普 遍 用 于 土 壤 磷 組 分 分 析 。Madagascan 稻田土壤 NaOH-EDTA 提取磷中,有機(jī)磷占 19%~44%,多為磷酸單酯,DNA 少量,不到一半樣品中檢測(cè)到肌醇六磷酸 (Inositol Hexakisphosphate,IHP)[53]。在智利老成土上試驗(yàn)發(fā)現(xiàn)[62],與燕麥/小麥輪作相比,羽扇豆/小麥輪作下土壤酸性磷酸酶活性增強(qiáng),磷酸單酯比例增加;而燕麥/小麥輪作下正磷酸鹽含量增多。應(yīng)用31P-NMR 技術(shù)研究我國(guó)東北地區(qū)土壤,結(jié)果發(fā)現(xiàn),棕壤和黑土中正磷酸鹽和磷酸單酯分別約占總磷一半,褐土中主要磷組分為正磷酸鹽,磷酸單酯占總磷 18%;棕壤和黑土中焦磷酸鹽含量較高。棕壤和褐土鑒定出 myo-IHP,黑土檢有scyllo-IHP[116]。污泥施用增加了磚紅壤和灰潮土土壤有機(jī)磷含量[117]。彭喜玲等[118]發(fā)現(xiàn),NaOH-EDTA 浸提土壤磷占 NaOH 熔融法測(cè)定總磷的 54%~93%,污泥施用后 14 d,土壤正磷酸鹽含量增加,磷酸單酯和焦磷酸鹽含量下降。
圖1 一個(gè)森 林 土 壤NaOH-EDTA 提取磷液相31P-NMR 圖譜[21,98]Fig. 1 Solution31P nuclear magnetic resonance spectrum of a forest floor sample extracted with NaOH-EDTA[21,98]
應(yīng)用31P-NMR 技術(shù)研究土壤腐殖質(zhì)中磷形態(tài)。腐殖酸結(jié)合態(tài)磷以磷酸單酯為主,磷酸二酯次之,有少量膦酸鹽、正磷酸鹽和焦磷酸鹽;而富里酸結(jié)合態(tài)磷中磷酸二酯和正磷酸鹽的比例較高[119]。寒冷潮濕氣候條件下,高加索山地土壤腐殖酸中膦酸鹽和磷酸二酯含量較高[120]。菲律賓水稻田土壤游離腐殖酸中磷酸二酯隨水稻種植密度增加而累積,淹水種植三季水稻后,磷酸二酯含量占總磷比例達(dá) 42%,未淹稻田中占總磷 28%[121]。土壤游離腐殖酸和鈣結(jié)合腐殖酸中活性無(wú)機(jī)磷占 10%;有機(jī)磷以磷酸單酯為主,磷酸二酯次之,膦酸鹽少量 (< 3.7%),檢測(cè)到scyllo-IHP,未檢出焦磷酸鹽或多聚磷酸鹽[122]。
利用31P-NMR 技術(shù)研究肥料施用對(duì)土壤磷組分影響。美國(guó) 6 個(gè)州 10 處土壤施用磷肥,正磷酸鹽含量顯著增加,磷酸單酯影響不明顯[112]。施用有機(jī)肥 8年以上的土壤與對(duì)照相比,IHP 含量未出現(xiàn)明顯變化[98]。施用糞肥 11 年非鈣質(zhì)沙土剖面中,表層磷酸單酯累積,40~50 cm 土層正磷酸鹽含量較表層高,土壤對(duì)磷酸單酯固持能力可能相對(duì)較強(qiáng),正磷酸鹽向 下 移 動(dòng) 性 相 對(duì) 較 高[97]。 糞 肥 中 磷 主 要 以 無(wú) 機(jī) 態(tài) 為主,雞糞中 IHP 含量高于牛糞;潮土上施用糞肥,有機(jī)磷增加;隨時(shí)間延長(zhǎng),磷酸單酯含量降低,核酸等磷酸二酯含量增加[123]。加拿大有機(jī)肥施用 20 年以上的長(zhǎng)期牧場(chǎng)土壤有機(jī)磷尤其是磷酸二酯所占比例高于傳統(tǒng)種植體系,其中磷酸二酯易礦化,可有效補(bǔ)充土壤磷供應(yīng),保證有機(jī)肥施用下土壤磷的有效供應(yīng)[124]。向鈣質(zhì)土壤中添加 P 58 mg/kg IHP,十三周內(nèi)迅速減少至初始添加量的 12%,伴隨α及β甘油磷酸鹽含量上升,表明微生物代謝作用導(dǎo)致 IHP 礦化,IHP 可作為鈣質(zhì)土壤中一種潛在有機(jī)磷源[61]。
利用31P-NMR 技術(shù)與酶添加結(jié)合,深入研究有機(jī)磷組分分解礦化特性[70,125-126]。牛糞、堆肥和干污泥中有機(jī)磷組分不同,瑞士微酸性的淋溶土上 62 年施用牛糞、堆肥和干污泥,表層土壤中 myo-IHP、scyllo-IHP、焦磷酸鹽、磷脂類和核酸的降解產(chǎn)物等含量卻無(wú)明顯差異,可能與有機(jī)磷轉(zhuǎn)化分解和淋失有關(guān);在 NaOH-EDTA 浸提液添加磷酸酶、植酸酶、核酸酶后,發(fā)現(xiàn)施用干污泥土壤中非水解磷積累[126]。
利用31P-NMR 研究耕作對(duì)土壤磷形態(tài)的影響。加拿大魁北克玉米/大豆輪作長(zhǎng)期定位試驗(yàn)結(jié)果表明,免耕小區(qū)深層土壤中磷酸單酯尤其是 scyllo-IHP和核酸含量較高,可能與這些有機(jī)磷化合物從表層向底層遷移有關(guān)[127]。黑土和潮土上,免耕和秸稈還田增加了土壤磷酸單酯和磷酸二酯含量及在 NaOHNa2EDTA 浸提磷中的比例[128]。
分析土壤磷形態(tài)多采用一維31P-NMR 技術(shù),獲得譜線有些過(guò)于擁擠、重疊,一些含磷化合物難以分辨[3,51]。在實(shí)驗(yàn)中通過(guò)改變脈沖序列,加入另一段自由演化時(shí)間,引入 2 個(gè)時(shí)間變量,采集不同演化時(shí)間長(zhǎng)度的信號(hào),經(jīng)過(guò) 2 次傅里葉變換后,得到兩個(gè)獨(dú)立的頻率變量及耦合產(chǎn)生的交叉信息,產(chǎn)生具有兩個(gè)獨(dú)立時(shí)間變量二維 NMR 譜,可降低譜線擁擠和重 疊 程 度 。 化 學(xué) 位 移 相 關(guān) 譜(correlation spectroscopy,COSY) 是常用的二維NMR譜,X-Y 兩個(gè)坐標(biāo)軸都是化學(xué)位移信息,主要觀測(cè)彼此間存在J耦合作用的原子核。Petzold 等[129]建立31P-1H COSY譜,分析研究幽門螺桿菌細(xì)胞膜系統(tǒng)中磷脂組分,采 用Semiconstant-time 模 式,設(shè) 定 2Δ= 20 ms,t1,max= 60 ms,減少了弛豫時(shí)間,提高了31P 譜的信號(hào)分辨率,鑒定出磷脂酰乙醇胺、磷脂酰甘油、sn-2 溶血磷脂酰乙醇胺、磷脂酰甘油、卵磷脂、sn-2 溶血磷脂膽堿、sn-2 溶血磷脂酰乙醇胺血漿酶原、膽固醇基葡萄糖磷酸酯衍生物等。二維近程氫磷異核單量子 相 關(guān) 譜 (Two-Dimensional 2D31P-1H HSQC,Heteronuclear Single Quantum Correlation) 提供與磷核相耦合的烷基或烷基酯基團(tuán)結(jié)構(gòu) P-O-CHn信息,為土壤磷化合物鑒定分析提供了技術(shù)基礎(chǔ)。
Vestergren 等[88]利用 2D31P-1H HSQC 技術(shù)鑒定出的北溫帶北部森林地區(qū)腐殖土有機(jī)磷化合物數(shù)量和種類明顯比一維液相31P-NMR 多。土壤浸提液冷凍干燥后,將樣品溶解于 D2O 中,添加 Na2S 溶液,室溫下放置 18~20 h,7000 g 下離心 30 min,沉淀去除 Fe 等順磁物質(zhì)干擾。經(jīng)過(guò) Na2S 處理土壤浸提液1D31P-NMR 圖譜分辨率明顯好于未經(jīng) Na2S 處理的1D31P-NMR 圖譜,可將在一維譜圖上與 scyllo-IHP和α-磷酸甘油譜線重疊的化合物分開。Vincent 等[105]利用 2D31P-1H NMR 技術(shù)分析瑞典北溫帶北部森林地區(qū)具有 7800 年歷史的腐殖土層中磷,發(fā)現(xiàn)年輕土層中α-磷酸甘油、β-磷酸甘油、核酸、焦磷酸鹽含量較高;DNA、2-氨基乙基膦酸、多聚磷酸鹽含量在1200~2700 年歷史的土層中明顯較高;IHP 含量在不同年齡土層中波動(dòng)變化。
土壤磷形態(tài)研究傳統(tǒng)方法常用化學(xué)連續(xù)浸提法,但浸提劑缺乏專一性,不同磷分級(jí)之間存在相互干擾等,難以確切反映土壤磷的真正組分,尤其對(duì)有機(jī)磷化合物種類無(wú)法區(qū)分。31P-NMR 技術(shù)可用于表征土壤中磷化合物,極大地促進(jìn)了土壤磷形態(tài)及轉(zhuǎn)化機(jī) 制 研究[3,10,92],但在土 壤 磷提取、 NMR 制樣和測(cè)定過(guò)程,如何保證化合物不被降解,保持土壤中磷組分的原狀信息,同時(shí)又有效提高 NMR 對(duì)磷化合物的分辨能力,是今后31P-NMR 技術(shù)的重要研究?jī)?nèi)容。2D31P-1H NMR 技術(shù)為鑒定分析土壤中更多種類的有機(jī)磷化合物提供了契機(jī)。
[1]Lambers H, Shane M W, Cramer M D, et al. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits[J]. Annals of Botany, 2006, 98(4): 693-713.
[2]Smil V. Phosphorus in the environment: natural flows and human interferences[J]. Annual Review of Energy and the Environment, 2000, 25(1): 53-88.
[3]Kruse J, Abraham M, Amelung W, et al. Innovative methods in soil phosphorus research: A review [J]. Journal of Plant Nutrition and Soil Science, 2015, 178: 43-88.
[4]Li H, Liu J, Li G, et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses[J]. Ambio, 2015, 44(2): 274-285.
[5]Ma J, He P, Xu X, et al. Temporal and spatial changes in soil available phosphorus in China (1990-2012)[J]. Field Crops Research, 2016, 192: 13-20.
[6]Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought [J]. Global Environmental Change, 2009, 19(2): 292-305.
[7]Obersteiner M, Pe?uelas J, Ciais P, et al. The phosphorus trilemma [J]. Nature Geoscience, 2013, 6(11): 897-898.
[8]Cordell D, Neset T S S. Phosphorus vulnerability: a qualitative framework for assessing the vulnerability of national and regional food systems to the multi-dimensional stressors of phosphorus scarcity[J]. Global Environmental Change, 2014, 24: 108-122.
[9]Rowe H, Withers P J A, Baas P, et al. Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security[J]. Nutrient Cycling in Agroecosystems, 2016, 104(3): 393-412.
[10]Cade-Menun B, Liu C W. Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: A review of sample preparation and experimental parameters [J]. Soil Science Society of America Journal, 2014, 78(1): 19-37.
[11]尹遜霄, 華珞, 張 振賢, 等. 土壤中磷素 的有效性及 其循環(huán)轉(zhuǎn)化機(jī)制研究[J]. 首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版), 2005, 26(3): 95-101. Yin X X, Hua L, Zhang Z X, et al. Study on the effectiveness of phosphorus and mechanism of its circle in soil[J]. Journal of CapitalNormal University (Natural Science Edition), 2005, 26: 95-101.
[12]丁懷香, 宇 萬(wàn) 太. 土壤無(wú)機(jī)磷分級(jí)及生物有效性研究進(jìn)展[J]. 土壤通報(bào), 2008, 39(3): 681-686. Ding H X, Yu W T. Review on soil inorganic-P fractionation and the influential factors on P bio-availability[J]. Chinese Journal of Soil Science, 2008, 39(3): 681-686.
[13]Condron L M, Turner B L, Cade-Menun B J. Chemistry and dynamics of soil organic phosphorus[J]. Agronomy, 2005, 46:87-121.
[14]Condron L M, Newman S. Revisiting the fundamentals of phosphorus fractionation of sediments and soils[J]. Journal of Soils and Sediments, 2011, 11(5): 830-840.
[15]Bertrand I, Holloway R E, Armstrong R D, et al. Chemical characteristics of phosphorus in alkaline soils from southern Australia[J]. Soil Research, 2003, 41(1): 61-76.
[16]Arai Y, Sparks D L. Phosphate reaction dynamics in soils and soil components: A multiscale approach[J]. Advances in Agronomy, 2007, 94: 135-179.
[17]McLaughlin M J, McBeath T M, Smernik R, et al. The chemical nature of P accumulation in agricultural soils-implications for fertiliser management and design: an Australian perspective[J]. Plant and Soil, 2011, 349(1-2): 69-87.
[18]Shen J, Yuan L, Zhang J, et al. Phosphorus dynamics: from soil to plant[J]. Plant Physiology, 2011, 156(3): 997-1005.
[19]Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces[J]. New Phytologist, 2007, 173(1): 11-26.
[20]趙少華, 宇萬(wàn)太, 張璐, 等. 土壤有機(jī)磷研究進(jìn)展[J]. 應(yīng) 用生態(tài)學(xué)報(bào), 2004, 15(11): 2189-2194. Zhao S H, Yu W T, Zhang L, et al. Research advance in soil organic phosphorus.[J]. Chinese Journal of Applied Ecology, 2004, 15(11):2189-2194.
[21]Cade-Menun B J. Using phosphorus-31 nuclear magnetic resonance spectroscopy to characterize organic phosphorus in environmental samples[A]. Turner B L, Frossard E, Baldwin D S. Organic phosphorus in the environment[C]. Wallingford, UK: CAB International, 2005. 21-44.
[22]Cade-Menun B J. Characterizing phosphorus in environmental and agricultural samples by31P nuclear magnetic resonance spectroscopy[J]. Talanta, 2005, 66(2): 359-371.
[23]Haygarth P M, Sharpley A N. Terminology for phosphorus transfer[J]. Journal of Environmental Quality, 2000, 29(1): 10-15.
[24]Turner B L, Newman S. Phosphorus cycling in wetland soils[J]. Journal of Environmental Quality, 2005, 34(5): 1921-1929.
[25]Turner B L, Mahieu N, Condron L M. Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA extracts[J]. Soil Science Society of America Journal, 2003, 67(2): 497-510.
[26]Turner B L, Mahieu N, Condron L M. The phosphorus composition of temperate pasture soils determined by NaOH-EDTA extraction and solution31P NMR spectroscopy[J]. Organic Geochemistry, 2003, 34(8): 1199-1210.
[27]Oberson A, Joner E J. Microbial turnover of phosphorus in soil[A]. Turner B I, Frossard E, Baldwin D S. Organic phosphorus in the environment[C]. Wallingford UK: CABI, 2005. 133-164.
[28]Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989-996.
[29]Webley D M, Jones D. Biological transformation of microbial residues in soil[J]. Soil Biochemistry, 1971, 2: 446-485.
[30]Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: is there a“Redfield ratio” for the microbial biomass?[J] Biogeochemistry, 2007, 85(3): 235-252.
[31]Turner B L, Cheesman A W, Godage H Y, et al. Determination of neo- and D-chiro-inositol hexakisphosphate in soils by solution31P NMR spectroscopy[J]. Environmental Science & Technology, 2012, 46(9): 4994-5002.
[32]向萬(wàn)勝, 黃敏, 李學(xué)垣. 土 壤磷素的化學(xué)組分及其植物 有 效 性[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2004, 10(6): 663-670. Xiang W S, Huang M, Li X Y. Progress on fractioning of soil phosphorous and availability of various phosphorous fractions to crops in soil[J]. Plant Nutrition & Fertilizing Science, 2004, 10(6):663-670.
[33]孫桂芳, 金繼運(yùn), 石元亮. 土壤磷素形態(tài)及其生物有效性研究進(jìn)展[J]. 中國(guó)土壤與肥料, 2011, (2): 1-9. Sun G F, Jin J Y, Shi Y L. Research advance on soil phosphorous forms and their availability to crops in soil[J]. Soil & Fertilizer Sciences in China, 2011, (2): 1-9.
[34]Negassa W, Leinweber P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(3): 305-325.
[35]Chang S C, Jackson M L. Fractionation of soil phosphorus[J]. Soil Science, 1957, 84(2): 133-144.
[36]Petersen G W, Corey R B. A modified Chang and Jackson procedure for routine fractionation of inorganic soil phosphates[J]. Soil Science Society of America Journal, 1966, 30(5): 563-565.
[37]蔣柏藩, 顧益初. 石灰性 土 壤 無(wú) 機(jī) 磷 分 級(jí) 體 系 的 研 究[J]. 中 國(guó) 農(nóng)業(yè)科學(xué), 1989, 22(3): 58-66. Jiang B F, Gu Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils[J]. Scientia Agricultura Sinica, 1989, 22(3): 58-66.
[38]Saunders W M H, Williams E G. Observations on the determination of total organic phosphorus in soils[J]. Journal of Soil Science, 1955, 6(2): 254-267.
[39]Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science, 1978, 125:95-101.
[40]Ivanoff D B, Reddy K R, Robinson S. Chemical fractionation of organic phosphorus in selected histosols[J]. Soil Science, 1998, 163(1): 36-45.
[41]Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976.
[42]Condron L M, Goh K M. Effects of long-term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand[J]. Journal of Soil Science, 1989, 40(2): 383-395.
[43]Chen C R, Condron L M, Davis M R, et al. Effects of afforestation on phosphorus dynamics and biological properties in a New Zealand grassland soil[J]. Plant and Soil, 2000, 220(1-2): 151-163.
[44]Tiessen H, Moir J O. Characterization of available P by sequentialextraction[A]. Carter M R. Soil sampling and methods of analysis[C]. Boca Raton: Puldisher Lewis, 1993. 75-86.
[45]Guppy C N, Menzies N W, Moody P W, et al. A simplified, sequential, phosphorus fractionation method[J]. Communications in Soil Science and Plant Analysis, 2000, 31(11-14): 1981-1991.
[46]Turner B L. Optimizing phosphorus characterization in animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Journal of Environmental Quality, 2004, 33(2):757-766.
[47]高漢賓, 張振芳. 核磁共振原理與實(shí)驗(yàn)方法[M]. 武 漢 : 武漢大學(xué)出版社, 2008. Gao H B, Zhang Z F. Principles and experimental methods of nuclear magnetic resonance[M]. Wuhan: Wuhan University Press, 2008.
[48]Keeler J. Understanding NMR spectroscopy[M]. John Wiley & Sons, 2011.
[49]Majed N, Li Y, Gu A Z. Advances in techniques for phosphorus analysis in biological sources[J]. Current Opinion in Biotechnology, 2012, 23(6): 852-859.
[50]Newman R H, Tate K R. Soil phosphorus characterisation by31P nuclear magnetic resonance[J]. Communications in Soil Science & Plant Analysis, 1980, 11(9): 835-842.
[51]Cade-Menun B J. Improved peak identification in31P-NMR spectra of environmental samples with a standardized method and peak library [J]. Geoderma, 2015, 257/258: 102-114.
[52]Bol R, Amelung W, Haumaier L. Phosphorus-31-nuclear magnetic resonance spectroscopy to trace organic dung phosphorus in a temperate grassland soil[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(1): 69-75.
[53]Turner B L. Organic phosphorus in Madagascan rice soils[J]. Geoderma, 2006, 136(1): 279-288.
[54]Smith M T E, Cade-Menun B J, Tibbett M. Soil phosphorus dynamics and phytoavailability from sewage sludge at different stages in a treatment stream[J]. Biology and Fertility of Soils, 2006, 42(3): 186-197.
[55]Cade-Menun B J, Carter M R, James D C, et al. Phosphorus forms and chemistry in the soil profile under long-term conservation tillage: A phosphorus-31 nuclear magnetic resonance study[J]. Journal of Environmental Quality, 2010, 39(5): 1647-1656.
[56]Soinne H, Uusitalo R, Sarvi M, et al. Characterization of soil phosphorus in differently managed clay soil by chemical extraction methods and31P NMR spectroscopy[J]. Communications in Soil Science and Plant Analysis, 2011, 42(16): 1995-2011.
[57]張艾明, 陳 振 華, 陳利軍, 等. 冷凍干 燥 過(guò)程中pH調(diào)節(jié), 緩 沖液添加對(duì)土壤31P核磁共振譜圖的影響[J]. 土壤通報(bào), 2013, 44(2):328-332. Zhang A M, Chen Z H, Chen L J, et al. Resolution of31P-NMR spectroscopy influenced by pH adjustment and buffer addition during lyophilization of soil extraction[J]. Chinese Journal of Soil Science, 2013, 44(2): 328-332.
[58]Turner B L, Newman S, Newman J M. Organic phosphorus sequestration in subtropical treatment wetlands[J]. Environmental Science & Technology, 2006, 40(3): 727-733.
[59]Sundareshwar P V, Richardson C J, Gleason R A, et al. Nature versus nurture: Functional assessment of restoration effects on wetland services using nuclear magnetic resonance spectroscopy[J]. Geophysical Research Letters, 2009, 36(3).
[60]Cheesman A W, Dunne E J, Turner B L, et al. Soil phosphorus forms in hydrologically isolated wetlands and surrounding pasture uplands[J]. Journal of Environmental Quality, 2010, 39(4):1517-1525.
[61]Doolette A L, Smernik R J, Dougherty W J. Rapid decomposition of phytate applied to a calcareous soil demonstrated by a solution31P NMR study[J]. European Journal of Soil Science, 2010, 61(4):563-575.
[62]Redel Y D, Escudey M, Alvear M, et al. Effects of tillage and crop rotation on chemical phosphorus forms and some related biological activities in a Chilean Ultisol[J]. Soil Use and Management, 2011, 27(2): 221-228.
[63]Lehmann J, Lan Z, Hyland C, et al. Long-term dynamics of phosphorus forms and retention in manure-amended soils[J]. Environmental Science & Technology, 2005, 39(17): 6672-6680.
[64]白秀玲, 周云凱, 李斌, 等. 利用31P核磁共振技術(shù)優(yōu)化太 湖沉積物有機(jī)磷的化學(xué)提取方法[J]. 環(huán)境科學(xué)學(xué)報(bào), 2011, 31(5): 996-1003. Bai X L, Zhou Y K, Li B, et al. Optimizing chemical extraction of organic phosphorus from sediment using31P nuclear magnetic resonance spectroscopy[J]. Acta Scientiae Circumstantiae, 2011, 31(5): 996-1003.
[65]Rückamp D, Amelung W, Theisz N, et al. Phosphorus forms in Brazilian termite nests and soils: relevance of feeding guild and ecosystems[J]. Geoderma, 2010, 155(3): 269-279.
[66]Kovalev I V, Kovaleva N O. Organophosphates in agrogray soils with periodic water logging according to the data of31P NMR spectroscopy[J]. Eurasian Soil Science, 2011, 44(1): 29-37.
[67]McDowell R W, Stewart I. Peak assignments for phosphorus-31 nuclear magnetic resonance spectroscopy in pH range 5-13 and their application in environmental samples[J]. Chemistry and Ecology, 2005, 21(4): 211-226.
[68]Shafqat M N, Pierzynski G M, Xia K. Phosphorus source effects on soil organic phosphorus: a31P NMR study[J]. Communications in Soil Science and Plant Analysis, 2009, 40(11-12): 1722-1746.
[69]Turner B L, Newman S, Reddy K R. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry[J]. Environmental Science & Technology, 2006, 40(10):3349-3354.
[70]He Z, Honeycutt C W, Cade-Menun B J, et al. Phosphorus in poultry litter and soil: Enzymatic and nuclear magnetic resonance characterization[J]. Soil Science Society of America Journal, 2008, 72(5): 1425-1433.
[71]Brice?o M, Escudey M, Galindo G, et al. Comparison of extraction procedures used in determination of phosphorus species by31PNMR in chilean volcanic soils[J]. Communications in Soil Science and Plant Analysis, 2006, 37(11-12): 1553-1569.
[72]張文強(qiáng), 單保慶, 張洪, 等. 基于 液相31P核磁共振技術(shù)的 河流沉積物有機(jī)磷提取劑選擇研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2014, 34(1):194-201. Zhang W Q, Shan B Q, Zhang H, et al. Characterization and optimization of the extractants for solution31P-nuclear magnetic resonance analysis of organic phosphorus in river sediments[J]. Acta Scientiae Circumstantiae, 2014, 34(1): 194-201.
[73]Cade-Menun B J, Liu C W, Nunlist R, et al. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Journalof Environmental Quality, 2002, 31(2): 457-465.
[74]陸瑾, 王海文, 郝紅, 等. 環(huán)境磷形態(tài)分析中的磷-31核磁共振技術(shù)[J]. 土壤科學(xué), 2013, 1(3): 15-20. Lu J, Wang H W, Hao H.31P nuclear magnetic resonance in environmental phosphorus analysis[J]. Hans Journal of Soil Science, 2013, 1(3): 15-20.
[75]Cade-Menun B J, Preston C M. A comparison of soil extraction procedures for31P NMR spectroscopy[J]. Soil Science, 1996, 161(11): 770-785.
[76]Cade-Menun B J, Berch S M, Preston C M, et al. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. I. A comparison of two forest types[J]. Canadian Journal of Forest Research, 2000, 30: 1714-1725.
[77]Cade-Menun B J, Berch S M, Preston C M, et al. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. II. The effects of clear-cutting and burning[J]. Canadian Journal of Forest Research, 2000, 30: 1726-1741.
[78]Turner B L. Soil organic phosphorus in tropical forests: an assessment of the NaOH-EDTA extraction procedure for quantitative analysis by solution31P NMR spectroscopy[J]. European Journal of Soil Science, 2008, 59(3): 453-466.
[79]Mclaren T I, Smernik R J, Simpson R J, et al. Spectral sensitivity of solution31P NMR spectroscopy is improved by narrowing the soil to solution ratio to 1∶4 for pasture soils of low organic P content[J]. Geoderma, 2015, (257-258): 48-57.
[80]Hill J E, Cade-Menun B J. Phosphorus-31 nuclear magnetic resonance spectroscopy transect study of poultry operations on the Delmarva Peninsula[J]. Journal of Environmental Quality, 2009, 38(1): 130-138.
[81]McDowell R W, Cade-Menun B, Stewart I. Organic phosphorus speciation and pedogenesis: analysis by solution31P nuclear magnetic resonance spectroscopy[J]. European Journal of Soil Science, 2007, 58(6): 1348-1357.
[82]Cheesman A W, Turner B L, Inglett P W, et al. Phosphorus transformations during decomposition of wetland macrophytes[J]. Environmental Science & Technology, 2010, 44(24): 9265-9271.
[83]Turner B L, Engelbrecht B M J. Soil organic phosphorus in lowland tropical rain forests[J]. Biogeochemistry, 2011, 103(1-3): 297-315.
[84]J?rgensen C, Turner B L, Reitzel K. Identification of inositol hexakisphosphate binding sites in soils by selective extraction and solution31P NMR spectroscopy[J]. Geoderma, 2015, 257: 22-28.
[85]Cade-Menun B J, Navaratnam J A, Walbridge M R. Characterizing dissolved and particulate phosphorus in water with 31P nuclear magnetic resonance spectroscopy[J]. Environmental Science & Technology, 2006, 40(24): 7874-7880.
[86]El-Rifai H, Heerboth M, Gedris T E, et al. NMR and mass spectrometry of phosphorus in wetlands[J]. European Journal of Soil Science, 2008, 59(3): 517-525.
[87]Turrion M, Lafuente F, Aroca M, et al. Characterization of soil phosphorus in a fire-affected forest Cambisol by chemical extractions and31P-NMR spectroscopy analysis[J]. Science of the Total Environment, 2010, 408(16): 3342-3348.
[88]Vestergren J, Vincent A G, Jansson M, et al. High-resolution characterization of organic phosphorus in soil extracts using 2D1H-31P nmr correlation spectroscopy[J]. Environmental Science & Technology, 2012, 46(7): 3950-3956.
[89]McDowell R W, Condron L M, Stewart I, et al. Chemical nature and diversity of phosphorus in New Zealand pasture soils using31P nuclear magnetic resonance spectroscopy and sequential fractionation[J]. Nutrient Cycling in Agroecosystems, 2005, 72(3):241-254.
[90]Smernik R J, Dougherty W J. Identification of phytate in phosphorus-31 nuclear magnetic resonance spectra: The need for spiking[J]. Soil Science Society of America Journal, 2007, 71(3):1045-1050.
[91]Doolette A L, Smernik R J, Dougherty W J. Spiking improved solution phosphorus-31 nuclear magnetic resonance identification of soil phosphorus compounds[J]. Soil Science Society of America Journal, 2009, 73(3): 919-927.
[92]Doolette A L, Smernik R J. Soil organic phosphorus speciation using spectroscopic techniques[A]. Phosphorus in Action[C]. Heidelberg, Berlin: Springer, 2011. 3-36.
[93]Turner B L, Newman S, Cheesman A W, et al. Sample pretreatment and phosphorus speciation in wetland soils[J]. Soil Science Society of America Journal, 2007, 71(5): 1538-1546.
[94]Turner B L, Condron L M, Richardson S J, et al. Soil organic phosphorus transformations during pedogenesis[J]. Ecosystems, 2007, 10(7): 1166-1181.
[95]Murphy P N C, Sims J T. Effects of lime and phosphorus application on phosphorus runoff risk[J]. Water, Air, & Soil Pollution, 2012, 223(8): 5459-5471.
[96]Cheesman A W, Turner B L, Reddy K R. Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland[J]. Soil Science Society of America Journal, 2012, 76(4):1496-1506.
[97]Koopmans G F, Chardon W J, McDowell R W. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications[J]. Journal of Environmental Quality, 2007, 36(1): 305-315.
[98]Dou Z, Ramberg C F, Toth J D, et al. Phosphorus speciation and sorption-desorption characteristics in heavily manured soils[J]. Soil Science Society of America Journal, 2009, 73(1): 93-101.
[99]Ding S, Xu D, Li B, et al. Improvement of31P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples[J]. Environmental Science & Technology, 2010, 44(7): 2555-2561.
[100]McDowell R W, Stewart I, Cade-Menun B J. An examination of spin-lattice relaxation times for analysis of soil and manure extracts by liquid state phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Journal of Environmental Quality, 2006, 35(1):293-302.
[101]Zhang A M, Chen Z H, Zhang G N, et al. Soil phosphorus composition determined by P-31 NMR spectroscopy and relative phosphatase activities influenced by land use[J]. European Journal of Soil Biology, 2012, 52: 73-77.
[102]Hamdan R, El-Rifai H M, Cheesman A W, et al. Linking phosphorus sequestration to carbon humification in wetland soils by31P and13C NMR spectroscopy[J]. Environmental Science & Technology, 2012, 46(9): 4775-4782.
[103]McDowell R W, Koopmans G F. Assessing the bioavailability of dissolved organic phosphorus in pasture and cultivated soils treated with different rates of nitrogen fertiliser[J]. Soil Biology &Biochemistry, 2006, 38(1): 61-70.
[104]Vincent A G, Turner B L, Tanner E V J. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest[J]. European Journal of Soil Science, 2010, 61(1): 48-57.
[105]Vincent A G, Schleucher J, Gr?bner G, et al. Changes in organic phosphorus composition in boreal forest humus soils: The role of iron and alluminium[J]. Biogeochemistry, 2012, 108: 485-499.
[106]Backn?s S, Laine-Kaulio H, Kl?ve B. Phosphorus forms and related soil chemistry in preferential flow paths and the soil matrix of a forested podzolic till soil profile[J]. Geoderma, 2012, 189: 50-64.
[107]Bourke D, Dowding P, Tunney H, et al. The organic phosphorus composition of an Irish grassland soil[C]. Biology & Environment:Proceedings of the Royal Irish Academy. The Royal Irish Academy, 2008, 108(1): 17-28.
[108]Bünemann E K, Smernik R J, Marschner P, et al. Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils[J]. Soil Biology and Biochemistry, 2008, 40(4):932-946.
[109]Leytem A B, Smith D R, Applegate T J, et al. The influence of manure phytic acid on phosphorus solubility in calcareous soils[J]. Soil Science Society of America Journal, 2006, 70(5): 1629-1638.
[110]Li M, Zhang J, Wang G, et al. Organic phosphorus fractionation in wetland soil profiles by chemical extraction and phosphorus-31 nuclear magnetic resonance spectroscopy[J]. Applied Geochemistry, 2013, 33: 213-221.
[111]McDowell R W, Scott J T, Stewart I, et al. Influence of aggregate size on phosphorus changes in a soil cultivated intermittently:analysis by31P nuclear magnetic resonance[J]. Biology and Fertility of Soils, 2007, 43(4): 409-415.
[112]Ohno T, Hiradate S, He Z. Phosphorus solubility of agricultural soils: a surface charge and phosphorus-31 NMR speciation study[J]. Soil Science Society of America Journal, 2011, 75(5): 1704-1711.
[113]Vincent A G, Vestergren J, Gr?bner G, et al. Soil organic phosphorus transformations in a boreal forest chronosequence[J]. Plant and Soil, 2013, 367(1-2): 149-162.
[114]Wang Z D, Li S, Zhu J, et al. Phosphorus partitioning between sediment and water in the riparian wetland in response to the hydrological regimes[J]. Chemosphere, 2013, 90(8): 2288-2296.
[115]Young E O, Ross D S, Cade-Menun B J, et al. Phosphorus speciation in riparian soils: a phosphorus-31 nuclear magnetic resonance spectroscopy and enzyme hydrolysis study[J]. Soil Science Society of America Journal, 2013, 77: 1636-1647.
[116]張廣娜, 陳振華, 陳利軍, 等. 東北地區(qū)三種典型土壤磷組分的31P核磁共振研究及其與土壤磷酸酶活性的關(guān)系[J]. 土壤通報(bào), 2013, 44(3): 617-623. Zhang G N, Chen Z H, Chen L J, et al. Soil phosphorus composition by31P NMR spectroscopy and soil phosphatase activities of three typical soils in Northeast China[J]. Chinese Journal of Soil Science, 2013, 44(3): 617-623.
[117]馬瑞, 方海蘭, 梁晶, 等. 利用31P 核磁共振技術(shù)研究不同磷肥施用方式對(duì)土壤磷形態(tài)的影響[J]. 上海農(nóng)業(yè)學(xué)報(bào), 2013, 29(3):14-19. Ma R, Fang H L, Liang J, et al. Study on effects of different phosphorus fertilizer applications on soil phosphorus forms by31P-magnetic resonance spectroscopy[J]. Acta Agriculturae Shanghai, 2013, 29(3): 14-19.
[118]彭喜玲, 方海蘭, 占新華, 等. 利用31P 核磁共振技術(shù)研究污泥中磷在土壤中的形態(tài)轉(zhuǎn)換[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2009, 28(10):2104-2110. Peng X L, Fang H L, Zhan X H, et al. Transformation of phosphorus forms in soils with application of sewage sludge by using phosphorus-31-nuclear magnetic resonance spectroscopy[J]. Journal of Agro-Environment Science, 2009, 28(10): 2104-2110.
[119]Guggenberger G, Thomas R J, Zech W. Soil organic matter within earthworm casts of an anecic-endogeic tropical pasture community, Colombia[J]. Applied Soil Ecology, 1996, 3(3): 263-274.
[120]Makarov M, Haumaier L, Zech W. The nature and origins of diester phosphates in soils: a31P-NMR study[J]. Biology and Fertility of Soils, 2002, 35(2): 136-146.
[121]Mahieu N, Olk D C, Randall E W. Analysis of phosphorus in two humic acid fractions of intensively cropped lowland rice soils by31P NMR[J]. European Journal of Soil Science, 2000, 51: 391-402.
[122]He Z Q, Olk D C, Cade-Menun B J. Forms and liability of phosphorus in humic acid fractions of Hord silt loam soil[J]. Soil Science Society of America Journal, 2011, 75: 1712-1722.
[123]邢璐, 王火焰, 陳玉東, 周健民. 施加糞肥對(duì)潮土有機(jī)磷形態(tài)轉(zhuǎn)化的影響[J].土壤, 2013, 45(5): 845-849. Xing L, Wang H Y, Chen Y D, Zhou J M. Transformation of phosphorus forms in calcareous soils with manure application[J]. Soils, 2013, 45(5): 845-849.
[124]Schneider K D, Cade-Menun B J, Lynch D H, et al. Soil phosphorus forms from organic and conventional forage fields[J]. Soil Science Society of America Journal, 2016, 80(2): 328-340.
[125]Giles C D, Lee L G, Cade-Menun B J, et al. Characterization of organic phosphorus form and bioavailability in lake sediments using P nuclear magnetic resonance and enzymatic hydrolysis[J]. Journal of Environmental Quality, 2015, 44(3): 882-894.
[126]Annaheim K E, Doolette A L, Smernik R J, et al. Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by31P NMR spectroscopy and enzyme additions[J]. Geoderma, 2015, 257: 67-77.
[127]Abdi D, Cade-Menun B J, Ziadi N, et al. Long-term impact of tillage practices and phosphorus fertilization on soil phosphorus forms as determined by P nuclear magnetic resonance spectroscopy[J]. Journal of Environmental Quality, 2014, 43(4):1431-1441.
[128]Wei K, Chen Z H, Zhu A N, et al. Application of31P NMR spectroscopy in determining phosphatase activities and P composition in soil aggregates influenced by tillage and residue management practices[J]. Soil & Tillage Research, 2014, 138:35-43.
[129]Petzold K, Olofsson A, Arnqvist A, et al. Semiconstant-time P, HCOSY NMR: analysis of complex mixtures of phospholipids originating from Helicobacter pylori[J]. Journal of the American Chemical Society, 2009, 131(40): 14150-14151.
Research advance in soil phosphorus fractionations and their characterization by chemical sequential methods and31P-NMR techniques
WANG Hong, SONG Shu-hui, ZHANG Jin-yao, LIU Yun-xia
( National Engineering Laboratory for Improving Quality of Arable Land/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China )
Transformation of soil phosphorus (P) is an important part in P cycle in ecological system, which influences soil P availability for crops. Soil total P includes organic and inorganic P. Chemical sequential fractionation (CSF) methods with different chemical extraction solvents are often used to determine different forms of P in soils. Despite the extensive use of these CSF procedures, there are obvious shortcomings, e.g. less accurately distinguishing inorganic and organic forms of P. Nuclear magnetic resonance (NMR) can be used to identify exactly molecular forms of P in soils. Some reports of31P-NMR technique to study soil P forms and transformation were reviewed in this paper, and advances in the preparation process of soil samples and31P-NMR analysis parameters were summarized. Two-dimensional31P-NMR spectroscopy will be developed to improve P fractionation in quantification in soils.
soil phosphorus forms; chemical sequential fractionation; soil phosphorus fractions;
2016-02-23 接受日期:2016-08-11
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃) 項(xiàng)目(2013CB127402)資助。
汪洪(1970—),男,安徽桐城人,博士,研究員,主要從事植物微量元素營(yíng)養(yǎng)、土壤磷與農(nóng)化測(cè)試技術(shù)研究工作。
Tel:010-82105021;E-mail:wanghong01@caas.cn