王志超,竹萬寬,杜阿朋
(國家林業(yè)局桉樹研究開發(fā)中心,廣東 湛江524022)
尾巨桉旱雨兩季樹干液流特征分析
王志超,竹萬寬,杜阿朋
(國家林業(yè)局桉樹研究開發(fā)中心,廣東 湛江524022)
為正確認(rèn)識桉樹的耗水規(guī)律,為桉樹栽培及撫育提供指導(dǎo),采用熱擴散莖流計(德國,SF-G)對尾巨桉Eucalyptus urophylla×E.grandis樹干液流進行連續(xù)監(jiān)測,分析其旱雨兩季特征差異,并同步測定林分氣象條件,分析旱雨兩季樹干液流與氣象因子之間的相關(guān)性。結(jié)果表明:旱雨兩季樹干液流日變化均呈典型單峰曲線,雨季啟動時間和達到峰值的時間(7:15,11:30)均早于旱季(7:45,13:00),雨季峰值是旱季的1.3倍,維持峰值的時間雨季大于旱季;夜間液流密度及變化幅度旱雨兩季均是前半夜大于后半夜,且雨季夜間液流變化幅度和液流密度均大于旱季;平均日通量和平均月通量雨季(3.99 kg·d-1,122.40 kg·月-1)大于旱季(2.64 kg·d-1,80.00 kg·月-1)。旱雨兩季影響尾巨桉樹干液流密度的主要氣象因子相同,均為水汽壓虧缺、光合有效輻射、空氣濕度和大氣溫度,但雨季樹干液流密度與風(fēng)速呈極顯著正相關(guān)(P<0.01),與降雨量呈顯著負(fù)相關(guān)(P<0.05),而旱季與兩者之間無顯著相關(guān)性。圖1表3參34
森林生態(tài)學(xué);尾巨桉;樹干液流;旱雨兩季;熱擴散式探針法
水分是植物生長的重要影響因子之一。蒸騰作用作為植物吸水的主要動力,耗水占植物根部吸收水分的99%以上,因此,定量研究植物的蒸騰耗水一直是樹木生理生態(tài)學(xué)和生態(tài)水文研究的重要方向[1-3]。熱擴散探針法(thermal dissipation probe,TDP)利用熱電轉(zhuǎn)換原理,對自然生長狀態(tài)下的植物進行連續(xù)樹干液流測定,繼而推算出單株和林分的蒸騰耗水[4],已得到國內(nèi)外很多學(xué)者的認(rèn)可[5-8]。桉樹作為四大速生樹種之一,具有速生豐產(chǎn)、耐貧瘠、干形通直等特點,是中國南方最主要的造林樹種之一[9]。對桉樹耗水的研究一直存在很多爭議[10-11],一種觀點認(rèn)為大面積栽植桉樹會造成水土流失,地下水位下降[12];另一觀點肯定了桉樹對水分和養(yǎng)分的利用率,并論證了建立桉樹生態(tài)林的可能性和可行性[13],因此,研究桉樹的蒸騰耗水具有重大的科學(xué)意義。很多學(xué)者都對此展開研究,張寧南[14]研究了尾葉桉Eucalyptus urophylla液流密度及其耗水特征,VERTESSY等[15]與WULLSCHEGER等[16]研究了王桉Eucalyptus regnans的樹干液流動態(tài),孫振偉等[17]對檸檬桉Corymbia citriodora水分利用特征的季節(jié)動態(tài)進行了研究。其他樹種如柳杉Cryptomeria fortunei[18],杉木Cunninghamia lanceolata[19],楊樹Populus[20]和馬占相思A-cacia mangium[6]等的樹干液流特征及影響因子的研究也較多。尾巨桉Eucalyptus urophylla×E.grandis是桉樹屬最具有代表性的樹種之一,廣泛栽植于廣東、廣西等地,目前對尾巨桉蒸騰耗水的研究停留在階段性觀測上,對樹干液流特征的長期連續(xù)觀測很少,更未有針對中國南方地區(qū)旱雨兩季尾巨桉的液流差異性的分析研究,僅有王文等[21]研究尾巨桉2個月樹干液流特性及影響因子。由于桉樹的栽植區(qū)域大多存在典型的旱季雨季之分,因此,本研究在之前工作的基礎(chǔ)上采用Granier熱擴散探針法對2年生尾巨桉樹干液流連續(xù)觀測,結(jié)合自動氣象觀測站對環(huán)境因子作同步測定,以期揭示尾巨桉旱雨兩季蒸騰耗水特征的差異,為正確認(rèn)識桉樹的耗水問題提供數(shù)據(jù)支持,為桉樹栽培及撫育提供指導(dǎo)。
1.1 研究區(qū)概況
研究區(qū)位于廣東省湛江市桉樹森林生態(tài)系統(tǒng)國家定位觀測站(21°30′N,111°38′E),平地,海拔為80 m,屬熱帶海洋性氣候,年降水量為1 200.0~1 700.0 mm。全年降雨多集中在5-10月,占全年降水量的77%~85%,具有典型旱雨兩季;年平均氣溫為23.0℃左右,最低氣溫0℃以上;太陽年輻射總量4 240 MJ·m-2左右,多年平均相對濕度在80%以上。試驗區(qū)土壤類型主要是玄武巖磚紅壤,土層厚度2.0 m以上,0~80 cm土層內(nèi)平均有機質(zhì)含量16.0 g·kg-1以上,pH 4.5~5.3,土壤肥力屬中等水平。喬木層主要是尾巨桉E.urophylla×E.grandis,少量臺灣相思Acacia confusa;灌木層有鵝掌柴Schefflera octophylla,白背葉Mallotus apelta,馬纓丹Lantana camara等,草本層較為豐富。試驗地造林樹種為尾巨桉無性系32-29,造林密度1 666株·hm-2,造林時間為2012年7月,造林面積為2.0 hm2,造林方式為挖穴造林;其中2年生林分的平均胸徑為8.48 cm,平均樹高為9.78 m,平均冠幅為3.14 m×3.60 m(東西×南北),葉面積指數(shù)平均為4.16。
1.2 研究方法
選取20 m×20 m的試驗樣地,選擇生長狀況良好、樹干通直無擠壓、無病蟲害的標(biāo)準(zhǔn)木3株實施樹干液流連續(xù)監(jiān)測,監(jiān)測時間2014年8月-2015年8月。樣木各項參數(shù)見表1。
樹干液流的測定采用Granier熱擴散法。由于樣樹胸徑較小,莖流傳感器采用2針型探針傳感器(型號SF-G,探針長度33 mm,Ecomatik公司,德國),在1.3 m處安裝,為避免不同方向上的液流差異同時防止日曬的影響,探針均安裝在樹干陰面,且用防輻射鋁箔覆蓋。采用美國Campbell公司的CR3000數(shù)據(jù)采集器采集數(shù)據(jù),采集間隔為30 min。環(huán)境因子通過林外自動氣象觀測場同步測定,且所有氣象數(shù)據(jù)均換算成30 min內(nèi)的平均值,與液流數(shù)據(jù)一一對應(yīng)。
表1 樣木基本情況Table 1 Basic conditions of the sample trees
1.3 數(shù)據(jù)處理
1.3.1 液流密度 液流密度取3株樣木平均值分析作圖,其中液流密度根據(jù)通用的GRANIER[22]液流公式進行計算。Js=0.011 9K1.231×3 600;K=(ΔTmax-ΔT)/ΔT。其中:Js為液流密度,是指單位邊材面積單位時間內(nèi)的液流量(mL·h-1·cm-2);ΔTmax為無液流時加熱探針與參考探針的最大溫差值,ΔT為測定溫差值。
1.3.2 邊材面積 邊材面積無法在樹木生長的情況下直接測量,只能通過生長錐測定胸徑處的邊材厚度,然后量取胸徑和樹皮厚度,來計算邊材面積。為避免生長錐對樣樹的影響,在試驗地隨機選取30株樹木測定,建立起邊材面積與胸徑的關(guān)系方程,來推算樣樹和整個林分的邊材面積。得到方程:As= 0.438D2-2.701D+18.48。其中:As為邊材面積(cm2),D為胸徑(cm),然后通過樣樹胸徑計算樣樹邊材面積(表1)。
1.3.3 樹木的液流通量 (單株尺度) 樹木的液流通量指單位時間樹木的蒸騰耗水量,計算公式為:Fi= Js×As×10-3。Fi為液流通量(kg·h-1),根據(jù)相應(yīng)時間尺度分為日通量(kg·d-1)和月通量(kg·月-1)。
1.4 統(tǒng)計分析
應(yīng)用Excel和SPSS統(tǒng)計軟件對所有數(shù)據(jù)進行分析并作圖。
2.1 尾巨桉旱雨兩季樹干液流變化分析
對旱雨兩季液流密度所有日平均值分析并作圖(圖1)??梢钥闯觯何簿掼駱涓梢毫髅芏瘸尸F(xiàn)“晝高夜低”的變化規(guī)律,白天變化幅度較大,出現(xiàn)典型的寬峰形曲線。液流啟動時間雨季為7:15左右,比旱季啟動時間早0.5 h;從到達峰值時間來看,雨季為11:30,比旱季到達峰值早1.5 h;從峰值來看,雨季為13.69 mL·h-1·cm-2,是旱季的1.30倍;從日平均液流密度看,雨季全年平均值5.75 mL·h-1·cm-2,是旱季的1.43倍;液流迅速下降時間雨季為17:30,比旱季晚1.0 h左右,即雨季峰形要寬于旱季。
圖1 尾巨桉樹干液流旱雨兩季液流變化特征及差異Figure 1 Features and differences of sap flow in daytime during both rainy and dry seasons of E.urophylla×E.grandis
分析夜間液流發(fā)現(xiàn),旱雨兩季夜晚尾巨桉均存在較大的液流現(xiàn)象,且前半夜的液流密度比后半夜要大,變化幅度也較大,后半夜液流密度較小且平穩(wěn)。推測原因可能是后半夜樹干水分接近飽和,夜晚水分補充的時間主要為前半夜。夜間液流現(xiàn)象主要由根壓引起的,白天蒸騰所引起的水分缺失,會導(dǎo)致根壓增大,為保持體內(nèi)水分平衡[23-24],水分會以主動方式吸收進入植物。圖1還顯示夜間樹干液流密度雨季要大于旱季,變化幅度也明顯大于旱季,推測原因可能是白天蒸騰作用雨季大于旱季,造成根壓也是雨季大于旱季,從而導(dǎo)致夜間液流密度雨季大于旱季。
2.2 尾巨桉旱雨兩季日通量與月通量差異分析
對尾巨桉旱雨兩季日通量的分析可以看出(表2),雨季最大日通量5.93 kg·d-1,為旱季的1.30倍;雨季最小日通量為0.66 kg·d-1,是旱季的6.00倍。對旱雨兩季平均日通量計算得知,雨季平均日通量為3.99 kg·d-1,是旱季的1.50倍;平均月通量差異較大,雨季達到122.4 kg·月-1,為旱季的1.53倍。
表2 尾巨桉旱雨兩季日通量與月通量特征Table 2 Daily and month sap flow volume of E.urophylla×E.grandis in both rainy and dry seasons
2.3 尾巨桉旱雨兩季樹干液流影響因子分析
樹干液流密度變化除了受到樹木生物學(xué)結(jié)構(gòu)影響外,還受到周圍氣象因子的制約[25-26]。對雨季和旱季各月份樹干液流密度與各氣象因子指標(biāo)作Pearson相關(guān)分析,結(jié)果如表3。雨季樹干液流密度與大氣溫度、風(fēng)速、光合有效輻射以及水汽壓虧缺呈極顯著正相關(guān)(P<0.01),相關(guān)系數(shù)分別為0.79,0.39,0.91,0.79;與降雨量呈顯著負(fù)相關(guān)(P<0.05),相關(guān)系數(shù)為0.08,而與空氣濕度呈極顯著負(fù)相關(guān)(P<0.01),相關(guān)系數(shù)為0.66,影響因子相關(guān)系數(shù)大小排序為光合有效輻射>水汽壓虧缺、大氣溫度>空氣濕度>風(fēng)速>降水;旱季樹干液流密度與大氣溫度、光合有效輻射和水汽壓虧缺呈極顯著正相關(guān)(P<0.01),相關(guān)系數(shù)分別為0.43,0.91,0.81,與空氣濕度呈極顯著負(fù)相關(guān)(P<0.01),相關(guān)系數(shù)為0.61,各影響因子的相關(guān)系數(shù)大小排序為光合有效輻射>水汽壓虧缺>空氣濕度>大氣溫度,而與風(fēng)速和降水無顯著相關(guān)性,造成差異的原因推測是旱季由于土壤水分供給能力的降低,干擾了部分環(huán)境因子對樹干液流的影響。
表3 尾巨桉旱雨兩季液流密度與各氣象因子的相關(guān)分析Table 3 The analysis of correlation between sap flow density in rainy and dry seasons and meteorological factors of E.urophylla×E.grandis
由此可知:影響尾巨桉旱雨兩季樹干液流密度的主要氣象因子基本相同,分別是水汽壓虧缺、光合有效輻射、空氣濕度和大氣溫度,其中空氣濕度極顯著負(fù)相關(guān),其余為極顯著正相關(guān);旱雨兩季樹干液流與氣象因子間的相關(guān)性也有些許差異,雨季樹干液流密度與風(fēng)速極顯著正相關(guān),與降水量顯著負(fù)相關(guān),但旱季液流密度與兩者之間的相關(guān)性不顯著。
對2~3年生尾巨桉旱雨兩季樹干液流的研究表明:旱雨兩季樹干液流均呈晝高夜低的變化趨勢,其中日變化呈明顯的單峰曲線,這與王文等[21]和任世奇等[27]對尾巨桉的研究結(jié)果一致。旱雨兩季樹干液流特征差異明顯,主要表現(xiàn)在雨季白天啟動時間和到達峰值的時間均早于旱季,液流峰值和維持液流高峰的時間雨季明顯大于旱季。王小菲等[28]對大葉相思Acacia auriculaeformis干濕季樹干液流研究認(rèn)為,濕季光照強,氣溫高,相對濕度高,代謝旺盛且有充分的水分供給,是濕季液流速率平均值和峰值均大于干季的原因;其液流啟動時間、到達峰值時間、液流變慢至低谷的時間表現(xiàn)出的差異性與本研究結(jié)果均一致,分析原因可能是雨季太陽輻射增強時間較早,下降時間晚,且日平均氣溫及日平均輻射強度較大,使得雨季白天蒸騰速率大于旱季。
尾巨桉夜間也存在較大的液流現(xiàn)象,依據(jù)GOLDSTEIN等[29]的理論,此時的液流活動是樹體在存儲水分,以彌補日間蒸騰引起的水分虧缺,研究發(fā)現(xiàn)旱雨兩季夜間液流密度及變化幅度前半夜均大于后半夜,說明前半夜是水分補充的主要時期,這與王艷兵等[30]對華北落葉松夜間液流特征的研究結(jié)果一致;雨季夜晚液流密度、變化幅度均大于旱季,這與王華等[31]對馬占相思Acacia mangium夜間液流變化幅度干季大于濕季的研究結(jié)果不同,原因可能是土壤供水情況和樹木本身的生物學(xué)結(jié)構(gòu)不同。
旱雨兩季液流最大日通量、最小日通量、平均日通量雨季均大于旱季,且雨季平均月通量(122.4 kg·月-1)達到旱季的1.53倍,推測原因是雨季雨熱同期,樹木蒸騰速率較大;這與肖以華等[32]對馬占相思樹旱雨兩季液流特征的研究結(jié)果一致。以上結(jié)果也可以確定雨季尾巨桉生長活躍,耗水量大,是水肥管理的重要時期。
旱雨兩季影響尾巨桉樹干液流密度的影響因子不完全相同,但主要氣象因子相同。王瑞輝等[33]通過對元寶楓Acer truncatum生長旺季樹干液流影響因素的分析發(fā)現(xiàn),邊材液流在不同的觀測時段影響因子不完全相同,但在任何情況下氣溫都是影響液流的主導(dǎo)因子;黃德衛(wèi)等[34]對鼎湖山針闊葉樹種的研究中則有不同觀點,他發(fā)現(xiàn)濕季影響各樹種液流速率的主導(dǎo)環(huán)境因子為光合有效輻射,而干季影響各樹種液流速率的主導(dǎo)環(huán)境因子則是氣溫。由此可見,隨著時空位移的變化,影響樹干液流的環(huán)境因子也會隨季節(jié)變化而變化。
[1] 胡偉,杜峰,徐學(xué)選,等.黃土丘陵區(qū)刺槐樹干液流動態(tài)分析[J].應(yīng)用生態(tài)學(xué)報,2010,21(6):1367-1373. HU Wei,DU Feng,XU Xuexuan,et al.Dynamic changes of Robinia pseudoacacia sap flow in hilly-gully region of Loess Plateau[J].Chin J Appl Ecol,2010,21(6):1367-1373.
[2] 王華田.林木耗水性研究述評[J].世界林業(yè)研究,2003,16(2):23-27. WANG Huatian.Review of tree species water consumption[J].World For Res,2003,16(2):23-27.
[3] 凡超,邱燕萍,李志強,等.荔枝樹干液流速率與氣象因子的關(guān)系[J].生態(tài)學(xué)報,2014,34(9):2401-2410.FAN Chao,QIU Yanping,LI Zhiqiang,et al.Relationships between stem sap flow rate of litchi trees and meteorological parameters[J].Acta Ecol Sin,2014,34(9):2401-2410.
[4] OGUNTUNDE P G.Whole-plant water use and canopy conductance of cassava under limited available soil water and varying evaporative demand[J].Plant Soil,2005,278(1):371-383.
[5] NICOLAS E,TORRECILLAS A,ALARCON J J.Using sap flow measurements to quantify water consumption in apricot trees[J].Acta Hortic,2006,717:37-40
[6] 馬玲,趙平,饒興權(quán),等.馬占相思樹干液流特征及其與環(huán)境因子的關(guān)系[J].生態(tài)學(xué)報,2005,25(9):2145-2151. MA Ling,ZHAO Ping,RAO Xingquan,et al.Effects of environmental factors on sap flow in Acacia mangium[J].Acta Ecol Sin,2005,25(9):2145-2151.
[7] FIORA A,CESCATTI A.Diurnal and seasonal variability in radial distribution of sap flux density:implications for estimating stand transpiration[J].Tree Physiol,2006,26(9):1217-1225.
[8] KUMAGAI T,SAITOH T M,SATO Y,et al.Transpiration,canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak,Borneo:dry spell effects[J].J Hydrol,2004,287(1/4):237-251.
[9] 王志超.不同整地措施對桉樹幼林生長及林地環(huán)境變化的影響[D].北京:中國林業(yè)科學(xué)研究院,2014. WANG Zhichao.The Impact of Different Soil Preparation Measures on the Growth and Environment Change of Young Eucalypt Plantation[D].Beijing:Chinese Academy of Forestry,2014.
[10] CALDER I R.Water use of eucalypts:a review[G]//CALDER I R,HALL R L,ADLARD P G,et al.Growth and Water Use of Forest Plantation.New York:John Wiley and Sons,1992:167-179.
[11] 時忠杰,徐大平,張寧南,等.桉樹人工林水文影響研究進展[J].林業(yè)科學(xué),2009,45(11):135-140. SHI Zhongjie,XU Daping,ZHANG Ningnan,et al.Progress in researches on hydrological effects of Eucalyptus plantation[J].Sci Silv Sin,2009,45(11):135-140.
[12] 于??疲S新會,王克勤,等.桉樹人工林生態(tài)退化與恢復(fù)研究進展[J].中國生態(tài)農(nóng)業(yè)學(xué)報,2009,17(2):393-398. YU Fuke,HUANG Xinhui,WANG Keqin,et al.An overview of ecological degradation and restoration of Eucalyptus plantation[J].Chin J Eco-Agric,2009,17(2):393-398.
[13] FORRESTER D I,THEIVEYANATHAN S,COLLOPY J J,et al.Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation[J].For Ecol Manage,2010,259(9):1761-1770.
[14] 張寧南.廣東桉樹人工林耗水量研究[D].北京:中國林業(yè)科學(xué)研究院,2010. ZHANG Ningnan.Studies on Water Use of Eucalyptus Plantations in Guangdong[D].Beijing:Chinese Academy of Forestry,2010.
[15] VERTESSY R A,HATTON T J,REECE P,et al.Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique[J].Tree Physiol,1997,17(12):747-756.
[16] WULLSCHEGER S D,HANSON P J,TODD D E.Transpiration from a multi-species deciduous forest as estimated by xylem sap flow technique[J].For Ecol Manage,2001,143(1/3):205-213.
[17] 孫振偉,趙平,??》?,等.外來引種樹種大葉相思和檸檬桉樹干液流和蒸騰耗水的季節(jié)變異[J].生態(tài)學(xué)雜志,2014,33(10):2588-2595. SUN Zhenwei,ZHAO Ping,NIU Junfeng,et al.Seasonal variations of sap flow and transpiration water consumption of introduced tree species Acacia auriculaeformis and Eucalyptus citriodora[J].Chin J Ecol,2014,33(10):2588-2595.
[18] 蔣文偉,郭運雪,楊淑貞,等.天目山柳杉古樹的樹干液流速率時空變化[J].浙江農(nóng)林大學(xué)學(xué)報,2012,29(6):859-866. JIANG Wenwei,GUO Yunxue,YANG Shuzhen,et al.Temporal and spatial changes for sap flow velocity of Cryptomeria fortunei stems in National Nature Reserve of Mount Tianmu[J].J Zhejiang A&F Univ,2012,29(6):859-866.
[19] 涂潔,胡良,劉琪璟,等.江西千煙洲杉木生長季樹干液流特征及影響因子[J].浙江農(nóng)林大學(xué)學(xué)報,2015,32(2):257-263. TU Jie,HU Liang,LIU Qijing,et al.Sap flow characteristics during the growing season for Cunninghamia lanceolata in red soil areas of Jiangxi Province[J].J Zhejiang A&F Univ,2015,32(2):257-263.
[20] 劉文國,劉玲,張旭東,等.楊樹人工林樹干液流特征及其與影響因子關(guān)系的研究[J].水土保持學(xué)報,2010,24(2):95-101. LIU Wenguo,LIU Ling,ZHAND Xudong,et al.Characteristics of sap flow and its relation to influencing factors in poplar plantation[J].J Soil&Water Conserv,2010,24(2):95-101.
[21] 王文,朱燁,諸葛緒霞,等.尾巨桉樹干液流特性及其影響因子分析[J].水土保持通報,2013,33(3):159-164. WANG Wen,ZHU Ye,ZHUGE Xuxia,et al.Stem sap flow characters of Eucalyptus urophylla×E.grandis and its influence factors[J].Bull Soil Water Conserv,2013,33(3):159-164.
[22] GRANIER A.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J].Tree Physiol,1987,3(4):309-320.
[23] 蔣文偉,楊廣遠(yuǎn),趙明水,等.天目山柳杉樹干液流的晝夜及季節(jié)變化[J].南京林業(yè)大學(xué)學(xué)報(自然科學(xué)版),2012,36(5):77-80. JIANG Wenwei,YANG Guangyuan,ZHAO Mingshui,et al.Diurnal and seasonal variation of stem sap flow for Cryptomeria fortunei in Mount Tianmu[J].J Nanjing For Univ Nat Sci Ed,2012,36(5):77-80.
[24] 尹立河,黃金廷,王曉勇,等.陜西榆林地區(qū)旱柳和小葉楊夜間樹干液流變化特征分析[J].西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版),2013,41(8):85-90. YIN Lihe,HUANG Jinting,WANG Xiaoyong,et al.Characteristics of night time sap flow of Salix matsudana and Populus simonii in Yulin,Shaanxi[J].J Northwest A&F Univ Nat Sci Ed,2013,41(8):85-90.
[25] 孫鵬森,馬履一,王小平,等.油松樹干液流的時空變異性研究[J].北京林業(yè)大學(xué)學(xué)報,2000,22(5):1-6.SUN Pengsen,MA Lüyi,WANG Xiaoping,et al.Temporal and spacial variation of sap flow of Chinese pine(Pinus tabulaeformis)[J].J Beijing For Univ,2000,22(5):1-6.
[26] 夏永秋,邵明安.黃土高原半干旱區(qū)檸條(Caragana korshinskii)樹干液流動態(tài)及其影響因子[J].生態(tài)學(xué)報,2008,28(4):1376-1382. XIA Yongqiu,SHAO Ming’an.The sap flow dynamics of Caragana korshinskii and the influence of environmental factors in semi-arid region of the Loess Plateau[J].Acta Ecol Sin,2008,28(4):1376-1382.
[27] 任世奇,鄧紫宇,郭東強,等.尾巨桉液流密度動態(tài)及其影響因子分析[J].森林與環(huán)境學(xué)報,2016,36(1):1-7.REN Shiqi,DENG Ziyu,GUO Dongqiang,et al.Dynamics of sap flow density of Eucalyptus urophylla×Eucalyptus grandis and relationship with environmental factors[J].J For Environ,2016,36(1):1-7.
[28] 王小菲,孫永玉,李昆,等.干熱河谷大葉相思樹干液流季節(jié)動態(tài)及其與氣象因子的關(guān)系[J].林業(yè)科學(xué)研究,2013,26(2):145-150. WANG Xiaofei,SUN Yongyu,LI Kun,et al.Stem sap flow characteristics of Acacia auriculaeformis in Dry-hot Valley and their relations to meteorological factors[J].For Res,2013,26(2):145-150.
[29] GOLDSTEIN G,ANDRADE J L,MEINZER F C,et al.Stem water storage and diurnal patterns of water use in tropical forest canopy trees[J].Plant Cell Environ,1998,21(4):397-406.
[30] 王艷兵,德永軍,熊偉,等.華北落葉松夜間樹干液流特征及生長季補水格局[J].生態(tài)學(xué)報,2013,33(5):1375-1385.WANG Yanbing,DE Yongjun,XIONG Wei,et al.The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation[J].Acta Ecol Sin,2013,33(5):1375-1385.
[31] 王華,趙平,王權(quán),等.馬占相思夜間樹干液流特征和水分補充現(xiàn)象的分析[J].生態(tài)學(xué)雜志,2007,26(4):476-482. WANG Hua,ZHAO Ping,WANG Quan,et al.Characteristics of nighttime sap flow and water recharge in Acacia mangium trunk[J].Chin J Ecol,2007,26(4):476-482.
[32] 肖以華,陳步峰,陳嘉杰,等.馬占相思樹干液流的研究[J].林業(yè)科學(xué)研究,2005,18(3):331-335. XIAO Yihua,CHEN Bufeng,CHEN Jiajie,et al.A study on the stem sap flow of Acacia mangium[J].For Res, 2005,18(3):331-335.
[33] 王瑞輝,馬履一,奚如春,等.元寶楓生長旺季樹干液流動態(tài)及影響因素[J].生態(tài)學(xué)雜志,2006,25(3):231-237. WANG Ruihui,MA Lüyi,XI Ruchun,et al.Fluctuation of Acer truncatum sap flow in rapid growth season and relevant variables[J].Chin J Ecol,2006,25(3):231-237.
[34] 黃德衛(wèi),張德強,周國逸,等.鼎湖山針闊葉混交林優(yōu)勢種樹干液流特征及其與環(huán)境因子的關(guān)系[J].應(yīng)用生態(tài)學(xué)報,2012,23(5):1159-1166. HUANG Deiwei,ZHANG Deqiang,ZHOU Guoyi,et al.Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan,Guangdong Province of South China[J].Chin J Appl Ecol,2012,23(5):1159-1166.
Variation in stem sap flow of Eucalyptus urophylla×E.grandis during rainy and dry seasons
WANG Zhichao,ZHU Wankuan,DU Apeng
(China Eucalypt Research Centre,Zhanjiang 524022,Guangdong,China)
To examine water consumption of eucalypt plantation species and to provide guidance for plantation establishment and tending,sap flow of plantation grown Eucalyptus urophylla×Eucalyptus grandis was continuously measured using the thermal diffusion stem flow meter(Germany,SF-G)which allowed analyses of water use characteristics during both dry and rainy seasons.Stand meteorological conditions were determined synchronously to enable a correlation analysis for differences between sap flow and meteorological factors in both dry and rainy seasons.Results showed that diurnal variations of sap flow displayed typical single-peaked curves in both dry and rainy seasons.The start(07:15)and peak(11:30)times for sap flow during the rainy season were earlier than those in the dry season (07:45 and 13:00)with the peak sap flow in the rainy season being 1.3 times more than in the dry season.Time duration for relatively high levels of flow were longer in the rainy season than in the dry.In both dry and rainy seasons,variation and total stem sap flow observed during the first half of the night were significantly greater(P<0.01)than those observed after midnight.Likewise,the variation in total stem sap flow observed during the entire rainy season was significantly greater(P<0.01)than that observed during the dry season.The average daily(3.99 kg·d-1)and monthly(122.4 kg·month-1)fluxes during rainy season were significantly greater(P<0.05)than fluxes in the dry season(daily-2.64 kg·d-1and monthly-80.00 kg·month-1).The main meteorological factors,such as vapor pressure deficit,photosynthetically active radiation (PAR),air humidity,and air temperature,were not correlated to seasonal sap flow of E.urophylla× E.grandis.However,flow density during the rainy season was highly significant(P<0.01)and positively correlated(r=0.39)with wind velocity and significantly(P<0.05)and negatively correlated(r=-0.08)with rainfall.The above results show that the rainy season is a fast growth period of E.urophylla×E.grandis,with high water consumption,also is the important period for water and fertilizer management.[Ch,1 fig.3 tab.34 ref.]
forest ecology;E.urophylla×E.grandis;stem sap flow;rainy and dry season;thermal dissipation probe(TDP)
S718.43
A
2095-0756(2017)02-0319-07
10.11833/j.issn.2095-0756.2017.02.016
2016-03-18;
2016-05-11
國家自然科學(xué)基金青年基金項目(31300383);中央級公益性科研院所基本科研業(yè)務(wù)費專項資金項目(CAFYBB2014QB024);廣東湛江桉樹林生態(tài)系統(tǒng)國家定位觀測研究站運行補助(2016-LYPT-DW-126)
王志超,助理研究員,從事生態(tài)水文研究。E-mail:wzc2254@163.com。通信作者:杜阿朋,副研究員,博士,從事森林生態(tài)學(xué)研究。E-mail:dapzj@163.com