王榮+魏夢苒+趙大球
摘要:色澤是影響植物外觀品質(zhì)及其商品價(jià)值的重要因素,目前關(guān)于植物色澤的研究主要集中于生理生化及轉(zhuǎn)錄水平上,而在轉(zhuǎn)錄后水平上報(bào)道較少。microRNA(miRNA)是一類在真核生物中廣泛存在的非編碼單鏈RNA分子,它可以通過對靶標(biāo)mRNA的互補(bǔ)配對而降解或抑制mRNA的翻譯,從而在轉(zhuǎn)錄后水平上對基因的表達(dá)進(jìn)行負(fù)調(diào)控。簡述了miRNA的作用機(jī)理,并對近幾年miRNA在植物色澤調(diào)控中的研究進(jìn)展進(jìn)行了綜述,以期為植物色澤在轉(zhuǎn)錄后水平上的調(diào)控奠定基礎(chǔ)。
關(guān)鍵詞:色澤;miRNA;花青素;類胡蘿卜素
中圖分類號:Q943.2 文獻(xiàn)標(biāo)識碼:A 文章編號:0439-8114(2017)06-1001-05
DOI:10.14088/j.cnki.issn0439-8114.2017.06.001
Abstract: Color is an important factor that influences the appearance quality of plants and their commodity value. Current studies on plant color are mainly focused on the physiological, biochemical and transcription level, while the post-transcriptional level is rarely reported. MicroRNAs (miRNAs) are short regulatory non-coding RNAs that guide gene silencing in most eukaryotes. They regulate gene expression by triggering sequence-specific cleavage or translational repression of target transcripts. This review briefly describes the mechanism of miRNA, and summarizes the advances on miRNAs in plant colors regulation, which would lay the foundation for the regulation of plant color in the post-transcriptional level.
Key words: color; miRNA; anthocyanin; carotenoid
色澤對于植物而言至關(guān)重要,它不但影響植株的外觀品質(zhì),而且直接關(guān)系到其商品價(jià)值[1]。植物色澤是由多種因素共同作用形成的,其中色素的種類及其含量最為重要[2],主要包括葉綠素、類黃酮、類胡蘿卜素和生物堿等四大類物質(zhì)[3]。在這些物質(zhì)中,類黃酮是最重要的色素類群,產(chǎn)生的顏色范圍最廣,可以從淺黃色到藍(lán)紫色,是眾多觀賞植物的主要呈色色素。作為類黃酮色素群的主要種類,花青素在植物色澤形成中起著不可替代的作用,其呈色范圍很廣,并且相較于其他色素而言研究得較為透徹[4]。
目前,對于植物色澤的研究主要集中在轉(zhuǎn)錄水平上。以調(diào)控花青素來影響植物色澤為例[5,6],通過相關(guān)研究目前已經(jīng)明確植物花青素的生物合成途徑,主要受到結(jié)構(gòu)基因和調(diào)節(jié)基因共同調(diào)控[7]。其中,結(jié)構(gòu)基因直接通過編碼相關(guān)酶來調(diào)控花青素的合成,而調(diào)節(jié)基因是通過轉(zhuǎn)錄因子(MYB蛋白、bHLH蛋白和WD40蛋白[8])調(diào)節(jié)結(jié)構(gòu)基因的表達(dá)來影響色澤[9]。關(guān)于這方面的研究進(jìn)展在很多綜述中均已被提及[10,11]。隨著現(xiàn)代分子生物學(xué)技術(shù)的快速發(fā)展,人們發(fā)現(xiàn)在轉(zhuǎn)錄后水平上microRNA(miRNA)對植物色澤形成具有不可替代的調(diào)控作用[12],尤其是在花青素的生物合成方面,它通過負(fù)調(diào)控與花青素合成有關(guān)的轉(zhuǎn)錄因子等的轉(zhuǎn)錄或翻譯,抑制靶基因的表達(dá),進(jìn)而調(diào)控植物色澤[13]。目前,關(guān)于miRNA在植物色澤調(diào)控方面的研究進(jìn)展一直未見報(bào)道,為此,本研究擬以花青素為突破口,對miRNA調(diào)控植物色澤的相關(guān)研究進(jìn)行綜述,以期為植物色澤在轉(zhuǎn)錄后水平上的調(diào)控奠定基礎(chǔ)。
1 miRNA的作用機(jī)理
miRNA是生物體內(nèi)長度為21或22個(gè)核苷酸的非編碼單鏈RNA,其主要和轉(zhuǎn)錄因子通過相互協(xié)作來調(diào)節(jié)下游目標(biāo)基因的表達(dá)[14],在調(diào)節(jié)基因表達(dá)轉(zhuǎn)錄后水平和植物開發(fā)中起著重要的作用[15]。目前miRNA在許多生物過程都發(fā)揮著重要作用,特別是在癌癥診斷和治療方面,被人們認(rèn)為是潛在的目標(biāo)和生物標(biāo)志物[16]。而與人體、動物相比,植物miRNA研究相對較少,主要集中于擬南芥、水稻等已經(jīng)完成全基因組測序的模式植物上[17],而研究方向也多集中于植物抗逆方面[18,19]。與動物有所不同,植物miRNA與靶位點(diǎn)的匹配程度更高,因此不僅可以通過阻止核糖體在mRNA上移動來抑制基因表達(dá),還可以通過對mRNA進(jìn)行降解、阻止mRNA的翻譯來調(diào)控基因的表達(dá)。研究表明,一個(gè)miRNA可以調(diào)控上百個(gè)靶基因[20-23],并且已知的植物miRNA顯示了很強(qiáng)的靶向轉(zhuǎn)錄因子家族成員或其他控制發(fā)育基因的偏性[24-26],其在植物生長發(fā)育、生殖分化和抵抗逆境脅迫中都發(fā)揮著顯著作用。此外,miRNA的表達(dá)還存在著基因型和組織部位的差異性[27],不同的miRNA在植物根[28,29]、莖葉[30-35]、花發(fā)育[36-39]以及器官極性與分化[40-43]中的作用并不一致。
2 miRNA對花青素合成的調(diào)控
研究表明,miRNA對于植物色澤具有一定的調(diào)控作用,并且相關(guān)研究主要集中于花青素生物合成調(diào)控,目前已報(bào)道的miRNA家族有miR156、miR828、miR858、miR165/166和miR778,并且不同家族對花青素生物合成的調(diào)控機(jī)制各異[23,44-48]。miR156通過靶向SPL轉(zhuǎn)錄因子對花青素的生物合成起著負(fù)調(diào)控作用[44];miR828通過介導(dǎo)調(diào)控靶基因TAS4,在缺磷條件下對PAP1/MYB75、PAP2/MYB90和MYB113的表達(dá)進(jìn)行調(diào)控,進(jìn)而影響花青素的積累[45];miR858通過靶向MYB12參與花青素合成的調(diào)控[46];miR165/166對花青素的合成具有負(fù)向調(diào)控的作用[47];過量表達(dá)的miR778在缺磷條件下會促進(jìn)花青素的積累[48]。下面著重對這幾類miRNA家族進(jìn)行重點(diǎn)綜述,以利于今后對植物色澤的研究。
2.1 miR156
miR156長度為20個(gè)核苷酸,最早在擬南芥中被發(fā)現(xiàn)[23],它被認(rèn)定為是最保守的miRNA,在單子葉植物、雙子葉植物、蕨類植物和苔蘚植物中均存在[49]。miR156的靶基因?yàn)镾PL轉(zhuǎn)錄因子[50],在擬南芥中共發(fā)現(xiàn)17個(gè)SPL轉(zhuǎn)錄因子成員,其中11個(gè)是miR156的靶基因[51,52]。Gou等[44]研究發(fā)現(xiàn)在擬南芥中miR156的靶向基因SPL9負(fù)向調(diào)控花青素的合成,SPL9與PAP1蛋白相互作用,進(jìn)而影響MYB-bHLH-WD40復(fù)合體的轉(zhuǎn)錄激活活性,從而抑制了花青素生物合成基因ANS和DFR等的表達(dá)[53]。Yan等[54]研究發(fā)現(xiàn)miR156通過靶向SPL9轉(zhuǎn)錄因子對MYB基因進(jìn)行負(fù)調(diào)控,從而阻止了花青素的積累。此外,F(xiàn)ranco-Zorrilla等[55]和Gou等[44]分別通過構(gòu)建miR156過量表達(dá)載體和沉默表達(dá)載體轉(zhuǎn)化擬南芥植株來研究miR156在花青素合成中的功能。結(jié)果顯示,過量表達(dá)植株的花青素含量提高了4倍,而沉默表達(dá)植株的花青素含量僅為對照的1/10,這充分表明miR156可以通過調(diào)控花青素含量的積累來影響植物色澤。
2.2 miR828
外芥糖誘導(dǎo)花青素合成異常的突變體的 miR828是最初通過深度測序在擬南芥中發(fā)現(xiàn)的新miRNA[56,57],目前在楊樹、大戟科植物中都有發(fā)現(xiàn)[58]。目前有關(guān)miR828生物學(xué)功能方面的研究雖然剛剛起步,但miR828在調(diào)控植物花青素合成方面的功能已經(jīng)明確。在擬南芥中,miR828介導(dǎo)調(diào)控的靶基因TAS4與花青素合成有關(guān),miR828能夠誘發(fā)TAS4轉(zhuǎn)錄本的剪切,進(jìn)而調(diào)控下游靶基因所編碼的MYB轉(zhuǎn)錄因子以調(diào)控花青素的合成[57,59]。Yang等[60]研究發(fā)現(xiàn)野生擬南芥植株中花青素含量比miR828轉(zhuǎn)基因植物高2.5倍,這表明miR828抑制體內(nèi)花青素的合成。謝燁等[61]發(fā)現(xiàn)miR828過表達(dá)擬南芥植株中蔗糖誘導(dǎo)的花青素積累比野生型少,其作用效果與miR828的靶基因TAS4導(dǎo)致花青素積累量高的結(jié)果一致,miR828負(fù)調(diào)控花青素合成。Luo等[62]通過蔗糖誘導(dǎo)花青素合成表型,建立了一種篩選擬南芥糖誘導(dǎo)花青素合成異常突變體的方法,從T-DNA插入突變體庫中篩選出一個(gè)新的miR828功能缺失的突變體,并通過構(gòu)建miR828過表達(dá)株系證明miR828能夠在蔗糖誘導(dǎo)下負(fù)調(diào)控花青素的合成。此外,賈小云等[63]從模式植物擬南芥中分離到pri-miR828基因,在番茄植株過表達(dá)導(dǎo)致其靶基因myb-like1轉(zhuǎn)錄因子表達(dá)量和花青素含量降低,表明miR828可能通過類似的機(jī)制參與擬南芥和番茄植株體內(nèi)花青素合成途徑的調(diào)控。
2.3 miR858
miR858也是近來發(fā)現(xiàn)生物功能還未完全探究的miRNA[64],同時(shí)在番茄、葡萄和擬南芥中均獲得了其靶基因MYB12,而MYB12對花青素的合成具有重要調(diào)控作用[65-67]。在番茄中,Ballester等[68]通過病毒介導(dǎo)的MYB12基因沉默使果實(shí)變?yōu)榉奂t色,結(jié)果顯示在果皮中的MYB12表達(dá)量與所有類黃酮物質(zhì)的表達(dá)量均相關(guān)。在葡萄中,Matus等[69]發(fā)現(xiàn)MYB12基因表達(dá)量的下降直接導(dǎo)致黃酮醇含量的減少。而在擬南芥中,Mehrtens等[67]使用高效液相色譜法比較分析了MYB12過量表達(dá)植株和MYB12缺失表達(dá)植株,發(fā)現(xiàn)MYB12過量表達(dá)植株中類黃酮物質(zhì)含量較高,而MYB12功能缺失突變體的植株中類黃酮物質(zhì)含量較少,通過進(jìn)一步的研究表明,MYB12是調(diào)控CHS和FLS的轉(zhuǎn)錄調(diào)控因子,而這兩個(gè)基因?qū)S酮醇合成起著不可或缺的作用,由此可以推測,miR858可以通過調(diào)控黃酮醇的合成來影響花青素的含量,進(jìn)而影響色澤。此外,沈潔[64]對T1代miR858減低表達(dá)轉(zhuǎn)基因番茄植株進(jìn)行了研究,結(jié)果顯示,miR858較對照野生型下調(diào)表達(dá)的同時(shí),其靶基因MYB12和Sly-myb-like上調(diào)表達(dá),與花青素合成有關(guān)的酶基因也均上調(diào)表達(dá),花青素含量增加。
2.4 miR165/166
與miR828家族類似,miR165/166也是通過其靶基因調(diào)控花青素代謝中的關(guān)鍵酶基因來影響花青素的合成。而目前研究miR165/166家族對花青素的調(diào)控作用主要是利用STTM(Short tandem target mimic)技術(shù)構(gòu)建miRNA功能缺失突變體來進(jìn)行。這種技術(shù)是在TM(Target mimic)技術(shù)的基礎(chǔ)上,將miRNA sponge和同源性競爭RNA相結(jié)合創(chuàng)立的一種新技術(shù),其能夠有效抑制miRNA活性,使miRNA的沉默效率達(dá)到95%以上[70]。Tang等[47]通過STTM技術(shù)沉默了擬南芥葉片內(nèi)源的miR165/166,發(fā)現(xiàn)與花青素生物合成有關(guān)的一些基因大量表達(dá),從而引起植株體內(nèi)的花青素含量顯著增加,色澤發(fā)生改變。這表明miR165/166基因主要是通過負(fù)向調(diào)控花青素的生物合成來影響植物色澤。
2.5 miR778
miR778同樣是在擬南芥中通過高通量測序被確定的[71,72],Hsieh等[45]利用小RNA深度測序的方法研究發(fā)現(xiàn)在擬南芥中miR778在低磷脅迫下上調(diào)表達(dá)。此外,Wang等[48]發(fā)現(xiàn)在缺磷條件下,miR778不僅能夠適度增強(qiáng)主根和側(cè)根的生長,還能促進(jìn)花青素的積累,轉(zhuǎn)miR778擬南芥植株中積累的花青素含量比野生型株高1.9倍,相反地,構(gòu)建使miR778沉默表達(dá)的MIM778轉(zhuǎn)基因擬南芥植株積累的花青素含量與野生型植株并無差別,這也證明了在磷不足的條件下,過量表達(dá)的miR778能夠促進(jìn)花青素的積累。
3 miRNA對其他色素合成的調(diào)控
與調(diào)控花青素的合成相比,miRNA在調(diào)控其他色素合成上的研究較少。Xu等[73]通過使用Illumina公司測序方法來識別和定量紅色果肉甜橙突變體及其野生型miRNA,發(fā)現(xiàn)51個(gè)與甜橙轉(zhuǎn)錄調(diào)控、蛋白質(zhì)修飾和光合作用相關(guān)的miRNA顯著調(diào)節(jié)番茄紅素等類胡蘿卜素含量,其中miR1857的差異表達(dá)可能是引起突變體中番茄紅素的異常積累,從而改變了果肉的顏色。此外,He等[74]發(fā)現(xiàn)擬南芥在低氮環(huán)境條件下,miR826和miR5090高表達(dá)植株生長更快,能夠積累更多的葉綠素。
4 展望
色澤作為植物的一個(gè)重要性狀,目前關(guān)于其形成機(jī)理研究在生理生化和轉(zhuǎn)錄水平上已經(jīng)較為透徹,而在轉(zhuǎn)錄后水平上探知較少。隨著現(xiàn)代基因工程技術(shù)的快速發(fā)展,利用miRNA調(diào)控植物色澤已成為一個(gè)研究熱點(diǎn)。經(jīng)過研究者的不懈努力,在miRNA調(diào)控植物色澤上雖然取得了一定的成果,但這些研究主要集中于擬南芥等模式植物上,而針對觀賞植物開展的研究并不多見,因此miRNA調(diào)控觀賞植物色澤方面的研究還有待加強(qiáng)。與此同時(shí),隨著miRNA在植物上的研究越來越多,很多問題也接踵而至。例如,miRNA與靶基因兩者之間并不是完全互補(bǔ)匹配,因此對預(yù)測的靶基因需要開展一系列的驗(yàn)證工作。此外,雖然植物miRNA相比動物而言更具保守性,但不同植物中存在大量自身特異的miRNA,這些miRNA急待被發(fā)現(xiàn),而這都將依賴于日后更為深入的研究。
綜上所述,利用miRNA調(diào)控植物色澤的研究方興未艾,層出不窮的新方法、新手段將為今后深入研究提供可靠的技術(shù)支撐。前人在模式植物上開展的miRNA調(diào)控色澤研究為今后在觀賞植物上的研究提供了大量參考。相信在不久的將來,利用miRNA技術(shù)在轉(zhuǎn)錄后水平上定向地改造植物的色澤、甚至創(chuàng)造出自然界中不存在的珍稀色澤品種都將成為可能。
參考文獻(xiàn):
[1] 李秀芳,楊拉弟,韓 葉,等.溫度對采后‘紅富士蘋果果皮色澤、色素及其相關(guān)酶活性變化的影響[J].西北農(nóng)業(yè)學(xué)報(bào),2014, 23(5):97-103.
[2] 戴思蘭.園林植物遺傳學(xué)[M].北京:中國林業(yè)出版社,2005.
[3] TANAKA Y,BRUGLIERA F. Flower colour and cytochromes P450[J].Philosophical Transactions of the Royal Society Biological Sciences,2013,368(1612):1-14.
[4] 白新祥,胡 可,戴思蘭,等.不同花色菊花品種花色素成分的初步分析[J].北京林業(yè)大學(xué)學(xué)報(bào),2006,28(5):84-89.
[5] 張 玲,徐宗大,湯騰飛,等.‘紫枝玫瑰開花過程花青素相關(guān)化合物及代謝途徑分析[J].中國農(nóng)業(yè)科學(xué),2015,48(13):2600-2611.
[6] TANAKA Y,OHMIYA A. Seeing is believing:Engineering anthocyanin and carotenoid biosynthetic pathways[J].Current Opinion in Biotechnology,2008,19:190-197.
[7] HOLTON T A,CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis[J].Plant Cell,1995,7(7):1071-1083.
[8] 于志芹.花青素相關(guān)microRNAs載體的構(gòu)建及番茄的轉(zhuǎn)化[D].山西晉中:山西農(nóng)業(yè)大學(xué), 2013.
[9] RAMSAY N A,GLOVER B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J].Trends in Plant Science,2005,10(2):63-70.
[10] ROUHOLAMIN S,ZAHEDI B,NAZARIAN F F,et al. Expression analysis of anthocyanin biosynthesis key regulatory genes involved in pomegranate[J].Scientia Horticulturae,2015,186:84-88.
[11] SHI M Z,XIE D Y. Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana[J].Recent Patents on Biotechnology,2014,8(1):47-60.
[12] 高燕會,黃春紅,朱玉球,等.植物花青素苷生物合成及調(diào)控的研究進(jìn)展[J].中國生物工程雜志,2012,32(8):94-99.
[13] 楊 琳,王 宇,楊劍飛,等.花青素積累相關(guān)負(fù)調(diào)控因子的研究進(jìn)展[J].園藝學(xué)報(bào),2014,41(9):1873-1884.
[14] ZHANG J,LE T D,LIU L,et al. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions[J].Gene,2015,1(577):55-64.
[15] SWATI C,REHANA K,ASHUTOSH P,et al.Dme-miR-314-3p modulation in Cr(VI)exposed Drosophila affects DNA damage repair by targeting mus309[J].Journal of Hazardous Materials,2016,304:360-369.
[16] LI W,HOU T,WU M,et al. Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide[J].Talanta,2016,148:116-121.
[17] 張 斌.番茄miRNA的生物信息學(xué)預(yù)測及實(shí)驗(yàn)驗(yàn)證[D].陜西楊凌:西北農(nóng)林科技大學(xué),2008.
[18] LI C H,LI Y S,BAI L Q,et al.MicroRNA and target gene responses to salt stress in grafted cucumber seedlings[J]. Acta Physiologiae Plantarum,2016,38:42.
[19] CUI L G,SHAN J X,SHI M,et al. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants[J].Plant Journal,2014,80(6):1108-1117.
[20] BONNET E,WUYTS J,ROUZE P,et al. Evidence that microRNA precursors,unlike other non-coding RNAs,have lower folding free energies than random sequences[J].Informatics,2004,20(17):2911-2917.
[21] JONES-RHOADES,BARTEL. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA[J]. Molecular Cell,2004,6(14):787-799.
[22] 張?jiān)品?,?勤,楊 清,等.植物miRNA在植物生長發(fā)育中的作用研究[J].安徽農(nóng)業(yè)科學(xué),2007,35(31):9834-9836.
[23] REINHART B J, WEINSTEIN E G, RHOADES M W, et al.MicroRNAs in plants[J].Genes,2002,16(13):1616-1626.
[24] BARTEL D P. MicroRNAs:Genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2):281-297.
[25] JONES-RHAADES,MATTHEW W,BARTEL,et al. MicroRNAs and their regulatory roles in plants[J].Annual Review of Plant Biology,2006,57:19-53.
[26] ZHANG LVF,CHIA J M,KUMARI S,et al. A Genome-wide characterization of MicroRNA genes in maize[J].Plos Genetics,2009,5(11):1-16.
[27] 博維平.木薯耐寒相關(guān)microRNA的差異表達(dá)分析[D].??冢汉D洗髮W(xué),2010.
[28] WANG J W,WANG L J,MAO Y B,et al.Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis[J].Plant Cell,2005,17:2204-2216.
[29] GUO H S,XIE Q,F(xiàn)EI J F,et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development[J]. Plant Cell,2005,17:1376-1386.
[30] LAUTER N,KAMPANI A,CARLSON S,et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J].Proc Natl Acad Sci USA,2005,102:9412-9417.
[31] YU I,YU X,SHEN R,et al. HYL1 gene maintains venation and polarity of leaves[J]. Plants,2005,221:231-242.
[32] MCHALE N A,KONING R E.MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular carbiunand structure of apical meristems[J]. P1ant Cell,2004,16:1730-1740.
[33] HENDELMAN A,BUXDORF K,STAV R,et al. Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10(SlARF10) derepression[J].Plant Molecular Biology,2012,78:561-576.
[34] 董 云.油菜(Brassica napus)miRNA的鑒定及Bna-miR1140表達(dá)調(diào)控機(jī)制研究[D].新疆石河子:石河子大學(xué),2013.
[35] 劉擁海,俞 樂,丁君輝,等.植物激素對分枝發(fā)育的協(xié)同調(diào)控作用研究進(jìn)展[J].植物生理學(xué)報(bào),2012,48(10):941-948.
[36] AUKEMAN M L,SAKAI H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J].Plant Cell,2003,15:2730-2741.
[37] SCHMID M,UHLENHAUT N H, GODARDF,et al.Dissection of floral induction path-ways using global expression analysis[J].Development,2003,130:6001-6012.
[38] MILLAR A, GUBLER F.The Arabidopsis CAMYB-like genes,MYB33 and MYB65 are micro RNA-regulated genes that redundantly facilitate anther development[J].Plant Cell,2005,17:705-721.
[39] ACHARD P,HERR A,BAULCOMBE D C,et al. Modulation of floral development by a gibberellin regulated microRNA[J]. Development,2004,131:3357-3365.
[40] EMERY J F,F(xiàn)LOYD S K,ALVAREZ J,et al. Radial patterning of Arabidopsis shoot by c1assIlIHD-ZIP and KANADI genes[J]. Current Biology,2003,13:1768-1774.
[41] KIDNER C A,MARTIENSSEN R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1[J]. Nature,2004,42:881-884.
[42] KIM J, JUNG J H, REYES J L,et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems[J].Plant,2005,42:84-94.
[43] MALLORY A C,DUGAS D U,BARTEL D P,et al. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic vegetative, and floral organs[J].Curr Biol,2004,14:1035-1046.
[44] GOU J Y,F(xiàn)ELIPE F,F(xiàn)ELIPPES,et al.Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by miR156-Targeted SPL Transcription Factor[J].Plant Cell,2011,23:1512-1522.
[45] HSTEH LC,SHU I L,CHUN C S,et al.Uncoveringsmall RNA- mediated responses to phosphate deficiency in Arabidopsis by deep sequencing[J].Plant Physiology,2009,151:2120-2132.
[46] JAILLON O,AURY J M,NOEL B,et al.The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature,2007,449:463-467.
[47] TANG G,JUN Y,Gu Y,et al. Effective Small RNA Destruction by the expression of a short Tandem Target Mimic in Arabidopsis[J]. The Plant Cell,2012,24:1-13.
[48] WANG L,ZENG H Q,SONG J,et al. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis[J].Plant Science,2015,238:273-285.
[49] AXTELL M J,BOWMAN J L. Evolution of plant microRNAs and their targets[J].Trends Plant Sci,2008,13:343-349.
[50] RHOADES M W,REINHART B J,LIM L P,et al. Prediction of plant microRNA targets[J]. Cell,2002,110:513-520.
[51] KLEIN J, SAEDLER H, HUIJSER P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Mol Gen Genet,1996,250:7-16.
[52] GANDIKOTA M, BIRKENBIHL R P, HOHMANN S, et al. The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J].Plant J,2007,49:683-693.
[53] WANG J W, BENJAMIN C,DETLEF W. miR156- RegulatedSPL transcription factors define an endogenous flowing pathway inarabidopdid[J]. Plant Cell,2011,23(1):1-11.
[54] YAN L,GUO Z,LI L.Evolutionary conservation of microRNA regulatory programs in plant flower development[J].Develomental Biology,2013,380(2):133-144.
[55] FRANCO-ZORRILLA,MANUEL J,VALLI A,et al.Target mimicry provides a new mechanism for regulation of microRNA activity [J].Nature Genetics,2007,39(8):1033-1037.
[56] RAJAGOPALAN R, VAUCHERET H, TREJO J, et al. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana[J].Gene Dev,2006,20:3407-3425.
[57] HSIEH L C, LIN S I, SHIH A C C,et al.Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing[J].Plant Physiol,2009,151:2120-2132.
[58] XIA R,ZHU H,AN Y Q,et al. Apple miRNAs and tasiRNAs with novel regulatory networks[J].Genome Biol,2012,13(6):47.
[59] CHEN H M,CHEN L T,PATEL K,et al.22-nucleotide RNAs trigger secondary siRNA biogenesis in plants[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107:15269-15274.
[60] YANG F, CAI J, YANG Y,et al.Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis[J]. Plant Cell Tissue and Organ Culture,2013,2(115):159-167.
[61] 謝 燁,孫 毅,李淡寧,等.擬南芥MicroRNA828負(fù)調(diào)控蔗糖誘導(dǎo)的花青素合成[J].植物生理學(xué)報(bào),2013,49(2):188-194.
[62] LUO Q J,MITTAL A,F(xiàn)AN A,et al.An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis[J].Plant Molecular Biology,2012,80(1):117-129.
[63] 賈小云,于治芹,梁建萍,等.擬南芥At-pri-miR828基因的克隆及其對番茄的遺傳轉(zhuǎn)化[J].園藝學(xué)報(bào),2013,40(12):2419-2428.
[64] 沈 潔.番茄miR858的克隆和干旱應(yīng)答及其對花青素生物合成的負(fù)調(diào)控機(jī)制研究[D].山西晉中:山西農(nóng)業(yè)大學(xué),2015.
[65] VELASCO R,ZHARKIKH A,TROGGIO M,et al.A high quality draft consensus sequence of the genome of a heterozygous grapevine variety[J].PloS One,2007,2:13-26.
[66] MITSUDA N,OHME-TAKAGI M.Functional Analysis of Transcription Factors in Arabidopsis Plant[J].Cell Physical,2009, 50(7):1232-1248.
[67] MEHRTENS F,KRANZ H,BEDNAREK P,et al.The Arabidopsis transcription factor MYB12 is a flavonol-specific regulation of phenylpropanoid biosynthesis[J].Plant Physiology,2005,138:1083-1096.
[68] BALLESTER A R,MOLTHOFF J,DE-VOS R,et al. Biochemical and molecular analysis of pink tomatoes: Deregulated expression of the gene encoding transcription factor S1MYB12 leads to pink tomato fruit color[J]. Plant Physiology,2010, 152(1):71-84.
[69] MATUS J L,LOYOLA R,VEGA A,et al.Post-veraison sunlight exposure induces MYB-mediated transcription regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera[J]. Journal of Experimental Botany,2009,60(3):853-867.
[70] TANG,CHEN X M,TANG G L. Effective small RNA destruction by the expression of a short tandem target mimic in arabidopsis[J]. Plant Cell,2012,24(2):415-427.
[71] FAHLGREN N,HOWELL M D,KASSCHAU K D,et al.High-throughput sequencing of Arabidopsis microRNAs:Evidence for frequent birth and death of MIRNA genes[J].PloS One,2007, 2(2):219.
[72] LU C,KULKARNI K,SOURET F F,et al.MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant[J].Genome Res,2006,16:1276-1288.
[73] XU Q,LIU Y,ZHU A,et al.Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type[J]. BMC Genomics,2010,11(1):246.
[74] HE H,LIANG G,LI Y,et al.Two young microRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in arabidopsis thaliana [J].Plant Physiology,2014,164(2):853-865.