王 萍,石海蓮,吳曉俊
(上海市復(fù)方中藥重點實驗室,教育部中藥標(biāo)準(zhǔn)化重點實驗室,上海中醫(yī)藥大學(xué)中藥研究所,上海 201203)
中藥草豆蔻(Semen Alpinia Katsumadai)為姜科山姜屬植物草豆蔻(Alpinia katsumadaiHayata)的干燥近成熟種子,主產(chǎn)于廣東和廣西等地,自然資源豐富。草豆蔻最早以豆蔻之名載于《名醫(yī)別錄》,其“主溫中,心腹痛,嘔吐,去口氣”,味辛,性溫,無毒,歸脾胃經(jīng),具有良好的燥濕化濁、溫中散寒、行氣消脹之功;多用于寒濕中阻、脾胃氣滯之脘腹脹滿冷痛、噯氣嘔逆、痰飲積、不思飲食、脾胃虛寒夾濕之久瀉等證[1]?,F(xiàn)代藥理學(xué)研究表明,草豆蔻具有保護胃黏膜、抗胃潰瘍、促進腸胃功能[2]、鎮(zhèn)吐[3]、抑菌[4]、抗氧化[5]、抗炎和抗腫瘤[6]等多種藥理作用。隨著對草豆蔻化學(xué)成分及藥理作用研究的深入,特別是草豆蔻良好的抗腫瘤作用及其作用機制的研究,引起了國內(nèi)外學(xué)者越來越多的關(guān)注。本文主要就近年來國內(nèi)外對草豆蔻抗腫瘤活性成分、抗腫瘤作用及其機制的研究進展進行綜述,以期為后續(xù)研究和應(yīng)用提供參考。
自20世紀(jì)以來,國內(nèi)外學(xué)者已從草豆蔻中提取、分離、鑒定出上百種化學(xué)成分,目前已發(fā)現(xiàn)的化學(xué)成分主要有黃酮類、二苯庚烷類和揮發(fā)油類化合物,其次為微量元素等。近年來,對草豆蔻的抗腫瘤作用研究較多。據(jù)報道,草豆蔻對肝癌、胃癌、結(jié)腸癌、膠質(zhì)瘤、肺癌、乳腺癌、骨髓瘤、宮頸癌、胰腺癌、食管鱗狀細(xì)胞癌、卵巢癌、黑色素瘤和前列腺癌等均有一定的抑制作用,其抗腫瘤活性成分主要為黃酮類和萜類化合物。草豆蔻黃酮類化合物主要有山姜素、喬松素、球松素、柚皮素、小豆蔻明、蠟菊
草豆蔻有效成分具有廣譜的抗腫瘤作用,其機制與抑制腫瘤細(xì)胞增殖、誘導(dǎo)腫瘤細(xì)胞凋亡、抑制腫瘤侵襲和轉(zhuǎn)移、調(diào)節(jié)腫瘤細(xì)胞能量代謝和抗炎等密切相關(guān)。
惡性腫瘤細(xì)胞區(qū)別于正常細(xì)胞最突出的特征之一是腫瘤細(xì)胞不受正常生長調(diào)控系統(tǒng)的控制。草豆蔻黃酮類和萜類活性成分能通過調(diào)控細(xì)胞內(nèi)信號轉(zhuǎn)導(dǎo)通路如磷脂酰肌醇3激酶(phosphatidylinositol 3 kinase,PI3K)/蛋白激酶 B(protein kinase B,Akt)、絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、哺乳動物雷帕霉素靶蛋白(mammalian target of Rapamycin,mTOR)和阻滯細(xì)
胞周期等影響腫瘤細(xì)胞增殖。
表1 草豆蔻的主要化學(xué)成分及其抗腫瘤作用
PI3K/Akt通路是癌發(fā)生發(fā)展的關(guān)鍵影響通路。研究表明,草豆蔻抗腫瘤活性成分山姜素、柚皮素[11]、小豆蔻明、1,8-桉葉油素[39]和高良姜素[30]能夠通過調(diào)控PI3K/Akt通路抑制腫瘤細(xì)胞增殖。MAPK信號通路在調(diào)節(jié)細(xì)胞增殖、分化、遷移和細(xì)胞凋亡等方面也具有重要作用。Totta等[12]通過動態(tài)時間點進行臺盼藍(lán)染色計數(shù)活細(xì)胞發(fā)現(xiàn),柚皮素能抑制腫瘤細(xì)胞增殖,但依賴于雌激素受體介導(dǎo)的細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinase,ERK)/MAPK信號通路;同時,柚皮素還能通過激活P38/MAPK信號通路,誘導(dǎo)腫瘤細(xì)胞凋亡。Chen等[52]通過細(xì)胞形態(tài)和密度的觀察及MTT實驗發(fā)現(xiàn),小豆蔻明通過mTOR/NF-κB/白細(xì)胞介素6(interleukin-6,IL-6)途徑調(diào)控腫瘤炎癥,從而抑制正常和脂多糖誘導(dǎo)的卵巢癌細(xì)胞增殖。
草豆蔻揮發(fā)油成分α-蒎烯、1,8-桉葉油素和黃酮類成分山姜素、小豆蔻明、松屬素、蠟菊亭、喬松素、柚皮素、高良姜素和白楊素等能阻滯細(xì)胞周期進而抑制腫瘤細(xì)胞增殖。細(xì)胞周期蛋白、細(xì)胞周期蛋白依賴性激酶(cyclin dependent kinase,CDK)和周期蛋白依賴性激酶抑制劑(cyclin dependent kinase inhibitor,CKI)是參與細(xì)胞周期調(diào)控的主要因子。α-蒎烯可激活一系列細(xì)胞周期相關(guān)蛋白(Chk1,Chk2,Cdc25A,ATM和ATR)中文名稱,增加其磷酸化表達(dá),誘導(dǎo)DNA損傷和激活細(xì)胞周期檢查點,并呈濃度依賴性地阻滯細(xì)胞周期于G2/M期,抑制肝癌細(xì)胞生長[47]。山姜素可特異性靶向尿苷胞苷激酶2,干擾MDM2-P53信號通路,阻滯細(xì)胞周期,抑制結(jié)腸癌細(xì)胞增殖[7]。
此外,α-蒎烯能夠誘導(dǎo)中國倉鼠卵巢癌細(xì)胞基因組不穩(wěn)定性,通過產(chǎn)生活性氧(reactive oxygen species,ROS)而改變細(xì)胞有絲分裂和損傷DNA,影響遺傳信息的穩(wěn)定性,從而抑制卵巢癌細(xì)胞增殖,并誘導(dǎo)腫瘤細(xì)胞凋亡[53]。白楊素可激活Notch1和Hes1表達(dá),進而誘導(dǎo)聚ADP-核糖聚合酶蛋白表達(dá),在體內(nèi)外抑制甲狀腺瘤生長[54]。
草豆蔻活性成分主要通過外源性的死亡受體途徑、內(nèi)源性的線粒體途徑、內(nèi)質(zhì)網(wǎng)應(yīng)激和自噬等誘導(dǎo)腫瘤細(xì)胞凋亡。
2.2.1 死亡受體途徑
外源性死亡受體途徑開始于特異性死亡受體與配體結(jié)合,進而激活胱天蛋白酶8后引發(fā)胱天蛋白酶級聯(lián)反應(yīng)促進細(xì)胞死亡。目前,外源性死亡受體途徑主要有腫瘤壞死因子受體途徑、腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體途徑和Fas/FasL途徑等。(+)-兒茶素、短葉松素、高良姜素[55]、柚皮素[56]和小豆蔻明[17]等可通過腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體介導(dǎo)的死亡受體途徑誘導(dǎo)腫瘤細(xì)胞凋亡;而喬松素[14]和高良姜素[33]則調(diào)控Fas/FasL信號轉(zhuǎn)導(dǎo)途徑,激活下游信號分子胱天蛋白酶3,8和9,進而誘導(dǎo)白血病細(xì)胞凋亡。
2.2.2 線粒體途徑
線粒體途徑是多細(xì)胞生物體發(fā)生調(diào)亡的主要途徑,作為抗腫瘤作用機制的研究更為廣泛。與內(nèi)在凋亡途徑相關(guān)的Bcl-2家族(促進凋亡作用的Bax,Bak和Bim等,抗凋亡作用的Bcl-2,Bcl-xL,Bcl-w和X連鎖凋亡抑制蛋白等)通過胱天蛋白酶的活化或通過調(diào)節(jié)細(xì)胞色素c的釋放對控制細(xì)胞凋亡起關(guān)鍵作用[57]。
山姜素可調(diào)控PI3K/Akt信號通路,抑制Bcl-2,Bcl-xL和XIAP表達(dá),上調(diào)Bax表達(dá),釋放細(xì)胞色素c,活化胱天蛋白酶3,8和9,誘導(dǎo)胰腺癌和肺癌細(xì)胞的凋亡[8]。小豆蔻明下調(diào)Bcl-2基因的表達(dá),上調(diào)Bax和胱天蛋白酶3基因表達(dá),從而誘導(dǎo)人早幼粒白血病HL-60細(xì)胞和骨髓瘤細(xì)胞的凋亡[58-59]。柚皮素通過調(diào)控PI3K/Akt和MAPK信號通路介導(dǎo)內(nèi)源性線粒體凋亡,抑制前列腺癌和白血?。?0-61]。白楊素可通過PI3K/Akt/P70S6K/P90RSK和ERK1/2-JNK-P38 MAPK誘導(dǎo)線粒體途徑介導(dǎo)的細(xì)胞凋亡[25]。
2.2.3 內(nèi)質(zhì)網(wǎng)應(yīng)激途徑
內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)平衡對于維持正常的細(xì)胞功能至關(guān)重要。長時間的內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)將引起細(xì)胞凋亡。高良姜素能誘導(dǎo)ERS,抑制Ca2+泵重攝取細(xì)胞漿Ca2+,并引起線粒體Ca2+過載引發(fā)線粒體介導(dǎo)的細(xì)胞死亡[31]。白楊素通過激活p-ERK、真核起始因子2B、葡萄糖調(diào)節(jié)蛋白78和未折疊蛋白誘導(dǎo)ERS,誘導(dǎo)前列腺癌細(xì)胞凋亡[25]。芳樟醇可調(diào)控沉默信息調(diào)節(jié)因子3-SOD2-ROS途徑誘導(dǎo)膠質(zhì)瘤細(xì)胞凋亡[62]。
2.2.4 自噬
自噬是一個吞噬自身細(xì)胞質(zhì)蛋白或細(xì)胞器,使其包被進入囊泡,并與溶酶體融合形成自噬溶酶體,降解其所包裹的內(nèi)容物的過程,藉此實現(xiàn)細(xì)胞本身的代謝需要和某些細(xì)胞器的更新[63]。自噬調(diào)節(jié)涉及多種信號通路,其中以腺苷單磷酸活化蛋白激 酶(adenosine 5′-monophosphate activated protein kinase,AMPK)及mTOR信號通路為調(diào)控核心。在自噬過程中,微管相關(guān)蛋白1輕鏈3-β(microtubules associated protein 1 light chain 3-β,LC3)的前體形式被修飾為LC3-Ⅰ和LC3-Ⅱ。LC3-Ⅰ位于細(xì)胞溶質(zhì)中,LC3-Ⅱ是膜相關(guān)的,也是自噬體形成的關(guān)鍵標(biāo)志。高良姜素通過PI3K/Akt/mTOR通路上調(diào)喉癌細(xì)胞LC3-Ⅰ,LC3-Ⅱ和Beclin表達(dá)誘導(dǎo)自噬[30],并且可以通過TGF-β/Smad通路誘導(dǎo)HepG2肝癌細(xì)胞自噬[64]。小豆蔻明可調(diào)控P53/JNK通路,促進LC3-Ⅰ和LC3-Ⅱ表達(dá),誘導(dǎo)結(jié)腸癌細(xì)胞自噬[65]。
腫瘤轉(zhuǎn)移是臨床化療失敗和癌癥患者死亡的主要原因之一,控制腫瘤的侵襲和轉(zhuǎn)移是癌癥治療的關(guān)鍵。目前研究表明,草豆蔻活性成分小豆蔻明、柚皮素、白楊素、高良姜素和β-石竹烯具有抑制腫瘤侵襲和轉(zhuǎn)移的作用,主要通過多種生長因子及其受體、蛋白酶、E-鈣黏蛋白和黏著斑激酶(focal adhesion kinase,F(xiàn)AK)及相關(guān)信號轉(zhuǎn)導(dǎo)通路,影響侵襲和轉(zhuǎn)移過程中破壞細(xì)胞外基質(zhì)(extracellular matrix,ECM)屏障、上皮細(xì)胞間充質(zhì)轉(zhuǎn)化(epithelialmesenchymal transition,EMT)及腫瘤血管新生等關(guān)鍵環(huán)節(jié)。
ECM調(diào)節(jié)組織發(fā)育和體內(nèi)平衡,ECM由基底膜和細(xì)胞間基質(zhì)組成,基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMP)家族是降解細(xì)胞間基質(zhì)的重要酶類,能破壞ECM屏障,導(dǎo)致腫瘤細(xì)胞侵襲與轉(zhuǎn)移。表皮生長因子受體(epidermal growth factor receptor,EGFR)信號通路與轉(zhuǎn)移性質(zhì)相關(guān),包括細(xì)胞運動、黏附和侵襲。柚皮素通過抑制EGFR阻斷MAPK/AP-1和PI3K/Akt/NF-κB信號通路,抑制苯二甲酸誘導(dǎo)的MMP-9基因表達(dá),避免其破壞ECM屏障,抑制肝癌和胰腺癌的遷移和侵襲[11]。
EMT是指在發(fā)育過程中,上皮細(xì)胞的特征發(fā)生了巨大變化,上皮細(xì)胞的極性喪失,遷移和運動能力增強,同時上皮表型丟失而逐漸獲得間質(zhì)表型。細(xì)胞黏附能力的下降是腫瘤細(xì)胞轉(zhuǎn)移過程的開端。mTOR及其下游的靶點S6K1可以通過影響細(xì)胞黏附來調(diào)整癌細(xì)胞的侵襲和轉(zhuǎn)移。有研究報道,小豆蔻明能通過mTOR/S6K1[18]和轉(zhuǎn)谷氨酰胺酶-2(Tgase-2)/TGF-β1[66]信號通路,抑制 EMT進而抑制肺癌細(xì)胞的侵襲和轉(zhuǎn)移。另有研究表明,小豆蔻明通過Wnt/β-聯(lián)蛋白信號通路,阻斷EMT從而抑制體內(nèi)外三陰性乳腺癌的轉(zhuǎn)移[19]。白楊素通過抑制PI3K/Akt信號通路抑制MMP-10蛋白表達(dá),抑制EMT〔表現(xiàn)為E-鈣黏蛋白表達(dá)增加,波形蛋白(vimentin)和鋅指轉(zhuǎn)錄因子表達(dá)下降〕,從而抑制人三陰性乳腺癌細(xì)胞的轉(zhuǎn)移[26];而在胃癌細(xì)胞,白楊素通過抑制JNK/c-Jun和ERK/c-Fos信號通路降低MMP-9的表達(dá)而抑制腫瘤侵襲。FAK的活性,在腫瘤向惡性侵襲表型演進的過程中起著關(guān)鍵作用。高良姜素在體內(nèi)外均可降低FAK表達(dá)而抑制B16F10黑素瘤轉(zhuǎn)移[33]。
血管新生在腫瘤的侵襲和轉(zhuǎn)移過程中具有重要作用,通過激活“血管生成轉(zhuǎn)換”,從而導(dǎo)致通常靜止的脈管系統(tǒng)持續(xù)地發(fā)芽新血管,以維持營養(yǎng)物質(zhì)和氧氣的供給,為腫瘤侵襲轉(zhuǎn)移提供有利條件[67]。低氧不僅限于原發(fā)性腫瘤,而且也出現(xiàn)在轉(zhuǎn)移部位,低氧誘導(dǎo)因子-1α(hypoxia inducible factor-1α,HIF-1α)是低氧反應(yīng)的主要調(diào)節(jié)因子。血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)是最有效的血管生成因子之一,在缺氧細(xì)胞中表達(dá)上調(diào),進一步誘導(dǎo)低氧組織中的血管發(fā)生。Xue等[67]通過體外細(xì)胞實驗及體內(nèi)雞胚尿囊模型實驗發(fā)現(xiàn),小豆蔻明可通過抑制mTOR/HIF-1α/VEGF通路,抑制血管生成,發(fā)揮抗腫瘤作用。除了HIF-1α,其他調(diào)節(jié)因子,如信號轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄活化因子3(signal transducers and activators of transcription 3,STAT3),Akt,ERK和NF-kB也可被低氧激活,并參與低氧誘導(dǎo)的VEGF基因表達(dá)。白楊素抑制乳腺癌侵襲和轉(zhuǎn)移除了通過抑制EMT外,還與抑制低氧誘導(dǎo)的STAT3磷酸化而抑制血管生成有關(guān)。此外,α-蒎烯抑制裸鼠體內(nèi)肺癌生長也與通過降低VEGF表達(dá)、趨化因子釋放而抑制血管新生相關(guān)[68]。
柚皮素、小豆蔻明、白楊素、高良姜素和(+)-兒茶素等均能改善胰島素抵抗,調(diào)節(jié)糖代謝。與正常細(xì)胞不同,腫瘤細(xì)胞即便是在有氧環(huán)境中,仍然偏好通過糖酵解途徑提供能量,大量消耗葡萄糖,經(jīng)糖酵解途徑生成大量中間代謝產(chǎn)物和乳酸,滿足腫瘤細(xì)胞快速增殖物質(zhì)合成所需,酸化腫瘤微環(huán)境,促進免疫逃逸和腫瘤細(xì)胞轉(zhuǎn)移。研究表明,白楊素通過抑制己糖激酶2抑制肝癌細(xì)胞糖酵解[27]。柚皮素抑制PI3K/Akt信號通路的活化進而抑制葡萄糖轉(zhuǎn)運蛋白,同時還能抑制ERK/MAPK信號通路的磷酸化進而降低胰島素刺激的葡萄糖攝取,最終抑制乳腺癌細(xì)胞MCF-7增殖[10]。上述結(jié)果提示,草豆蔻活性成分抗腫瘤作用機制也可能與其調(diào)控腫瘤能量代謝有關(guān)。
腫瘤相關(guān)炎癥能夠通過促進腫瘤血管新生、促進腫瘤侵襲和轉(zhuǎn)移、影響腫瘤免疫應(yīng)答及改變腫瘤細(xì)胞對化療藥的敏感性等,促進腫瘤的生長和發(fā)展。白楊素可抑制腎鳥氨酸脫羧酶活性和增殖細(xì)胞核抗原、誘導(dǎo)型一氧化氮合酶、誘導(dǎo)環(huán)氧化酶2和前列腺素E2表達(dá),及促炎細(xì)胞因子IL-6和腫瘤壞死因子α分泌,改善炎癥反應(yīng),抑制N-亞硝基二乙胺和次氮基三乙酸鐵誘導(dǎo)的腎癌發(fā)生[69]。
腫瘤患者的預(yù)后在很大程度上與腫瘤細(xì)胞對化療藥物的敏感性有關(guān),而大部分患者在后續(xù)的化療中逐漸產(chǎn)生繼發(fā)性耐藥,伴有嚴(yán)重的腎毒性,導(dǎo)致化療結(jié)果不理想。順鉑作為一線高效廣譜抗腫瘤藥物,具有較嚴(yán)重的胃腸道、腎和中樞神經(jīng)系統(tǒng)毒性等不良反應(yīng)。小豆蔻明能顯著降低順鉑誘導(dǎo)的腎損傷,同時有效增強順鉑抑制SKOV3細(xì)胞增殖的作用。小豆蔻明聯(lián)合順鉑能夠誘導(dǎo)卵巢癌SKOV3細(xì)胞自噬,阻滯細(xì)胞周期,對耐藥基因谷胱甘肽巰基轉(zhuǎn)移酶-π、多藥耐藥相關(guān)蛋白基因和抗凋亡基因Bcl-2、X連鎖凋亡抑制蛋白及存活蛋白表達(dá)有抑制作用,協(xié)同作用顯著優(yōu)于順鉑單用[70]。山姜素通過抑制多藥耐藥相關(guān)蛋白1和5及P-糖蛋白的表達(dá),增強腫瘤細(xì)胞對順鉑的敏感性[8]。
綜上所述,草豆蔻的多種化學(xué)成分,主要通過抑制腫瘤細(xì)胞增殖、誘導(dǎo)腫瘤細(xì)胞凋亡、抑制血管生成與組織侵襲轉(zhuǎn)移、調(diào)節(jié)能量代謝,抗炎和協(xié)同化療藥物等發(fā)揮抗腫瘤和轉(zhuǎn)移的作用。但是,目前的研究具有顯著的局限性。①目前臨床上抗腫瘤藥物的主要給藥方式為靜脈、口服和腹膜內(nèi)給藥等,而草豆蔻抗腫瘤的主要藥效物質(zhì)為黃酮類和萜類化合物,這2類化合物按上述給藥方式的生物利用度均不高。因此,后續(xù)應(yīng)加強草豆蔻抗腫瘤活性成分藥物制劑改善、或作為先導(dǎo)化合物進行結(jié)構(gòu)修飾以增效減毒并增加生物利用度的研究。②考慮到草豆蔻臨床上應(yīng)用廣泛,歷史悠久,且多以湯劑服藥,而胃腸道是草豆蔻進入機體的首過之處。因此,胃腸道可能是草豆蔻各活性成分轉(zhuǎn)換轉(zhuǎn)化代謝入血的重要場所,而腸道菌群可能在其中扮演重要角色。加強探討腸道菌群參與草豆蔻有效成分在腸道中的分解、代謝、生物轉(zhuǎn)化和活性成分的入血作用,可提高其生物利用度甚至可以獲得經(jīng)代謝或轉(zhuǎn)化途徑產(chǎn)生的具有更高生物活性的新化合物。③目前較多文獻報道表明,一些藥物成分通過調(diào)控腸道菌群(影響腸道菌群的構(gòu)成和多樣性)發(fā)揮抗癌作用,而草豆蔻有效成分是否也具有類似作用途徑尚不清楚,后期可加強此方向研究。④目前草豆蔻抗腫瘤作用的化學(xué)成分研究主要集中在黃酮類和萜類化合物,而對二芳基庚烷類化合物的抗腫瘤作用知之甚少,也值得進一步挖掘其活性。通過對草豆蔻抗腫瘤作用的化學(xué)成分進行深入的機制探討,期待更多的活性化合物可以應(yīng)用于臨床。
參考文獻:
[1] Chinese Pharmacopoeia Commission.Chinese Pharmacopoeia(中華人民共和國藥典)[M].Beijing:China Medical Science Press,2015:238-239.
[2] Wu Z,Chen YS,Du SM ,Wang QB,Tong Q.Effect of volatile oil ofAlpinia katsumadaion gastric ulcer induced by acetic acid in rats[J].Chin Hosp Pharm J(中國醫(yī)院藥學(xué)雜志),2010,30(7):560-563.
[3] Yang Y,Kinoshita K,Koyama K,Takahashi K,Tai T,Nunoura Y,et al.Anti-emetic principles ofAlpinia katsumadaiHayata[J].Nat Prod Sci,1999,5(1):20-24.
[4] Huang WZ,Dai XJ,Liu YQ,Zhang CF,Zhang M,Wang ZT.Studies on antibacterial activity of flavonoids and diarylheptanoids fromAlpinia katsumadai[J].J Plant Resour Environ(植物資源與環(huán)境學(xué)報), 2006,15(1):37-40.
[5] Lee SE,Shin HT,Hwang HJ,Kim JH.Antioxidant activity of extracts fromAlpinia katsumadaiseed[J].Phytother Res,2003,17(9):1041-1047.
[6] Tang J.Studies on chemical constituents ofAlpinia katsumadaiand Curcuma longa(草豆蔻和姜黃的化學(xué)成分研究)[D].Hefei:Anhui University(安徽大學(xué)),2010.
[7] Wang XQ,Yang XJ,Li JS.Studies on chemical constituents ofAlpinia katsumada[iJ].J Chin Med Mater(中藥材),2008,31(6):853-855.
[8] Malami I,Abdul AB,Abdullah R,Kassim NK,Rosli R,Yeap SK,et al.Crude extracts,flavokawain B and alpinetin compounds from the rhizome ofAlpinia muticainduce cell death via UCK2 enzyme inhibition and in turn reduce 18S rRNA biosynthesis in HT-29 cells[J/OL].PLoS One,2017,12(1):e0170233(2017-01-19).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5245823/
[9] Tang B,Du J,Wang J,Tan G,Gao Z,Wang Z,et al.Alpinetin suppresses proliferation of human hepatoma cells by the activation of MKK7 and elevates sensitization to cis-diammined dichloridoplatium[J].Oncol Rep,2012,27(4):1090-1096.
[10] Harmon AW,Patel YM.Naringenin inhibits glucose uptake in MCF-7 breast cancer cells:a mechanism for impaired cellular proliferation[J].Breast Cancer Res Treat,2004,85(2):103-110.
[11] Yen HR,Liu CJ,Yeh CC.Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells[J].Chem Biol Interact,2015,235:1-9.
[12] Totta P,Acconcia F,Leone S,Cardillo I,Marino M.Mechanisms of naringenin-induced apoptotic cascade in cancer cells:involvement of estrogen receptor alpha and beta signaling[J].IUBMB Life,2004,56(8):491-599.
[13] Li YY,Yang L,Wang CH,Chou GX,Wang ZT.Chemical constituents fromAlpinia katsumadaiHayata and their anti-tumor activity[J].Acta Univ Tradit Med Sin Pharmacol Shanghai(上海中醫(yī)藥大學(xué)學(xué)報),2010,24(1):72-75.
[14] Kumar MA, Nair M, Hema PS, Mohan J,Santhoshkumar TR.Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells[J].Mol Carcinog,2007,46(3):231-241.
[15] Rasul A,Millimouno FM,Ali Eltayb W,Ali M,Li J,Li X.Pinocembrin:a novel natural compound with versatile pharmacological and biological activities[J/OL].Biomed Res Int,2013,2013:379850(2013-08-05).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747598/
[16] Patel NK,Jaiswal G,Bhutani KK.A review on biological sources,chemistry and pharmacological activities of pinostrobin[J].Nat Prod Res,2016,30(18):2017-2027.
[17] Yadav VR,Prasad S,Aggarwal BB.Cardamonin sensitizes tumour cells to TRAIL through ROS-and CHOP-mediated up-regulation of death receptors and down-regulation of survival proteins[J].Br J Pharmacol,2012,165(3):741-753.
[18] Niu PG,Zhang YX,Shi DH,Liu Y,Chen YY,Deng J.Cardamonin inhibits metastasis of Lewis lung carcinoma cells by decreasing mTOR activity[J/OL].PLoS One,2015,10(5):e0127778(2015-03-21).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4440626/
[19] Shrivastava S,Jeengar MK,Thummuri D,Koval A,Katanaev VL,Marepally S,et al.Cardamonin,a chalcone,inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition[J].Biofactors,2017,43(2):152-169.
[20] Ho YF,Karsani SA,Yong WK,Abd Malek SN.Induction of apoptosis and cell cycle blockade by helichrysetin in a549 human lung adenocarcinoma cells[J/OL].Evid Based Complement Alternat Med,2013,2013:857257(2013-03-03).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603683/
[21] Xiao XH,Si XX,Tong X,Li GK.Preparation of flavonoids and diarylheptanoid fromAlpinia katsumadaiHayata by microwave-assisted extraction and highspeed counter-current chromatography[J].Sep Purif Technol,2011,81:265-269.
[22] Malek SN,Phang CW,Ibrahim H,Norhanom AW,Sim KS.Phytochemical and cytotoxic investigations ofAlpinia muticarhizomes[J].Molecules,2011,16(1):583-589.
[23] Liu G,Xie W,He AD,Da XW,Liang ML,Yao GQ,et al.Antiplatelet activity of chrysin via inhibiting platelet αIIbβ3-mediated signaling pathway[J].Mol Nutr Food Res,2016,60(9):1984-1993.
[24] Kasala ER,Bodduluru LN,Madana RM,V AK,Gogoi R,Barua CC.Chemopreventive and therapeutic potential of chrysin in cancer:mechanistic perspectives[J].Toxicol Lett,2015,233(2):214-225.
[25] Ryu S,Lim W,Bazer FW,Song G.Chrysin induces death of prostate cancer cells by inducing ROS and ER stress[J].J Cell Physiol,2017,232(12):3786-3797.
[26] Yang B,Huang J,Xiang T,Yin X,Luo X,Huang J,et al.Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10,epithelial to mesenchymal transition,and PI3K/Akt signaling pathway[J].J Appl Toxicol,2014,34(1):105-112.
[27] Xu D,Jin J,Yu H,Zhao Z,Ma D,Zhang C,et al.Chrysin inhibited tumor glycolysis and induced apoptosis in hepatocellular carcinoma by targeting hexokinase-2[J].J Exp Clin Cancer Res,2017,36(1):44(2017-03-20).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5359903/
[28] Lirdprapamongkol K,Sakurai H,Abdelhamed S,Yokoyama S,Maruyama T,Athikomkulchai S,et al.A flavonoid chrysin suppresses hypoxic survival and metastatic growth of mouse breast cancer cells[J].Oncol Rep,2013,30(5):2357-2364.
[29] Xin BR,Ren SJ,Li J.A new flavonone from seeds ofAlpinia katsumadaiand its neuroprotective effect on PC12 cells[J].China J Chin Mater Med(中國中藥雜志),2014,39(14):2674-2678.
[30] Wang HX,Tang C.Galangin suppresses human laryngeal carcinoma via modulation of caspase-3 and AKT signaling pathways[J].Oncol Rep,2017,38(2):703-714.
[31] Su L,Chen X,Wu J,Lin B,Zhang H,Lan L,et al.Galangin inhibits proliferation ofhepatocellular carcinoma cells by inducing endoplasmic reticulum stress[J].Food Chem Toxicol,2013,62:810-816.
[32] Song W,Yan CY,Zhou QQ,Zhen LL.Galangin potentiates human breast cancer to apoptosis induced by TRAIL through activating AMPK[J].Biomed Pharmacother,2017,89:845-856.
[33] Zhang W,Tang B,Huang Q,Hua Z.Galangin inhibits tumor growth and metastasis of B16F10 melanoma[J].J Cell Biochem,2013,114(1):152-161.
[34] Woo JH,Ahn JH,Jang DS,Lee KT,Choi JH.Effect of kumatakenin isolated from cloves on the apoptosis of cancer cells and the alternative activation of tumor-associated macrophages[J].J Agric Food Chem,2017,65(36):7893-7899.
[35] Cong Y,Guo JG,Wang TX,Li M,Li K,Wang JH,et al.Chemical constituents and antitumor activity on leukemia K562 cell ofLeonurus heterophyllus[J].China J Chin Mater Med(中國中藥雜志),2009,34(14):1816-1818.
[36] Jain P,Kumar N,Josyula VR,Jagani HV,Udupa N,Mallikarjuna Rao C,et al.A study on the role of(+)-catechin in suppression of HepG2 proliferation via caspase dependent pathway and enhancement of itsin vitroandin vivocytotoxic potential through liposomal formulation[J].Eur J Pharm Sci,2013,50(3-4):353-365.
[37] Hahm ER,Park S,Yang CH.7,8-Dihydroxyflavanone as an inhibitor for Jun-Fos-DNA complex formation and its cytotoxic effecton cultured human cancer cells[J].Nat Prod Res,2003,17(6):431-436.
[38] Girola N,F(xiàn)igueiredo CR,F(xiàn)arias CF,Azevedo RA,F(xiàn)erreira AK,Teixeira SF,et al.Camphene isolated from essential oil ofPiper cernuum(Piperaceae)induces intrinsic apoptosis in melanoma cells and displays antitumor activityin vivo[J].Biochem Biophys Res Commun,2015,467(4):928-934.
[39] Murata S,Shiragami R,Kosugi C,Tezuka T,Yamazaki M,Hirano A,et al.Antitumor effect of 1,8-cineole against colon cancer[J].Oncol Rep,2013,30(6):2647-2652.
[40] Moteki H,Hibasami H,Yamada Y,Katsuzaki H,Imai K,Komiya T.Specific induction of apoptosis by 1,8-cineole in two human leukemia cell lines,but not a in human stomach cancer cell line[J].Oncol Rep,2002,9(4):757-760.
[41] Jiang DM,Zhu Y,Yu JN,Xu XM.Advances in research of pharmacological effects and formulation studies of linaloo[lJ].China J Chin Mater Med(中國中藥雜志),2015,40(18):3530-3533.
[42] Chang MY,Shen YL.Linalool exhibits cytotoxic effects by activating antitumor immunity[J].Mole?cules,2014,19(5):6694-6706.
[43] Nakayama K,Murata S,Ito H,Iwasaki K,Villareal MO,Zheng YW,et al.Terpinen-4-ol inhibits colorectal cancer growth via reactive oxygen species[J].Oncol Lett,2017,14(2):2015-2024.
[44] Khaw-on P,Banjerdpongchai R.Induction of intrinsic and extrinsic apoptosis pathways in the human leukemic MOLT-4 cell line by terpinen-4-ol[J].Asian Pac J Cancer Prev,2012,13(7):3073-3076.
[45] Banjerdpongchai R,Khaw-On P.Terpinen-4-ol induces autophagic and apoptotic cell death in human leukemic HL-60 cells[J].Asian Pac J Cancer Prev,2013,14(12):7537-7542.
[46] Shapira S,Pleban S,Kazanov D,Tirosh P,Arber N.Terpinen-4-ol:a novel and promising therapeutic agent for human gastrointestinal cancers[J/OL].PLoS One,2016,11(6):e0156540(2016-06-08).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898785/
[47] Chen W,Liu Y,Li M,Mao J,Zhang L,Huang R,et al.Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest[J].J Pharmacol Sci,2015,127(3):332-338.
[48] Zhang Z,Guo S,Liu X,Gao X.Synergistic antitumor effect of α-pinene and β-pinene with paclitaxel against non-small-cell lung carcinoma(NSCLC)[J].Drug Res(Stuttg),2015,65(4):214-218.
[49] Zhao Y,Chen R,Wang Y,Yang Y.α-Pinene inhibits human prostate cancer growth in a mouse xenograft model[J].Chemotherapy,2018,63(1):1-7.
[50] Sain S,Naoghare PK,Devi SS,Daiwile A,Krishnamurthi K,Arrigo P,et al.Beta caryophyllene and caryophyllene oxide,isolated fromAegle marmelos,as the potent anti-inflammatory agents against lymphoma and neuroblastoma cells[J].Antiinflamm Antiallergy Agents Med Chem,2014,13(1):45-55.
[51] Fidyt K,F(xiàn)iedorowicz A,Strzada?a L,Szumny A.β-Caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties[J].Cancer Med,2016,5(10):3007-3017.
[52] Chen HJ.Antiproliferative effects of cardamonin mediated by anti-inflammation via mTOR on ovarian cancer cells(mTOR介導(dǎo)小豆蔻明抗炎作用抑制卵巢癌細(xì)胞增殖的研究)[D].Fuzhou:Fujian Medical University(福建醫(yī)科大學(xué)),2014.
[53] Catanzaro I,Caradonna F,Barbata G,Saverini M,Mauro M,Sciandrello G.Genomic instability induced by α-pinene in Chinese hamster cell line[J].Muta?genesis,2012,27(4):463-469.
[54] Yu XM,Phan T,Patel PN,Jaskula-Sztul R,Chen H.Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinomain vitroandin vivo[J].Cancer,2013,119(4):774-781.
[55] Szliszka E,Sokó?-??towska A,Kucharska AZ,Jaworska D,Czuba ZP,Król W.Ethanolic extract ofpolish propolis:chemical composition and TRAIL-R2 death receptor targeting apoptotic activity against prostate cancer cells[J/OL].Evid Based Complement Alternat Med,2013,2013:757628(2013-11-12).https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845518/
[56] Jin CY,Park C,Hwang HJ,Kim GY,Choi BT,Kim WJ,et al.Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells[J].Mol Nutr Food Res,2011,55(2):300-309.
[57] Lopez J,Tait SW.Mitochondrial apoptosis:killing cancer using the enemy within[J].Br J Cancer,2015,112(6):957-962.
[58] Yang F.The study of cardamomin inducing HL-60 cell apoptosis and its mechanism(小豆蔻明誘導(dǎo)HL-60細(xì)胞凋亡及其機制的研究)[D].Hangzhou:Zhejiang Chinese Medical University(浙江中醫(yī)藥大學(xué)),2013.
[59] Shu XR.Cardamonin induces caspase-dependent apoptosis in human multiple myeloma cells in bone marrow microenvironmen(t小豆蔻明誘導(dǎo)骨髓微環(huán)境中多發(fā)性骨髓瘤細(xì)胞caspase依賴性凋亡)[D].Wuhan:Huazhong University of Science and Technology(華中科技大學(xué)),2013.
[60] Park JH,Jin CY,Lee BK,Kim GY,Choi YH,Jeong YK.Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells[J].Food Chem Toxicol,2008,46(12):3684-3690.
[61] Lim W,Park S,Bazer FW,Song G.Naringenininduced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways[J].J Cell Biochem,2017,118(5):1118-1131.
[62] Cheng Y,Dai C,Zhang J.SIRT3-SOD2-ROS pathway is involved in linalool-induced glioma cell apoptotic death[J].Acta Biochim Pol,2017,64(2):343-350.
[63] Zhao GX,Pan H,Ouyang DY,He XH.The critical molecular interconnections in regulating apoptosis and autophagy[J].Ann Med,2015,47(4):305-315.
[64] Wang Y,Wu J,Lin B,Li X,Zhang H,Ding H,et al.Galangin suppresses HepG2 cell proliferation by activating the TGF-β receptor/Smad pathway[J].Toxicology,2014,326:9-17.
[65] Kim YJ,Kang KS,Choi KC,Ko H.Cardamonin induces autophagy and an antiproliferative effect through JNK activation in human colorectal carcinoma HCT116 cells[J].Bioorg Med Chem Lett,2015,25(12):2559-2564.
[66] Park MK,Jo SH,Lee HJ,Kang JH,Kim YR,Kim HJ,et al.Novel suppressive effects of cardamonin on the activity and expression of transglutaminase-2 lead to blocking the migration and invasion of cancer cells[J].Life Sci,2013,92(2):154-160.
[67] Xue ZG,Niu PG,Shi DH,Liu Y,Deng J,Chen YY.Cardamonin inhibits angiogenesis by mTOR downregulation in SKOV3 Cells[J].Planta Med,2016,82(1-2):70-75.
[68] Magkouta S, Stathopoulos GT, Psallidas I,Papapetropoulos A,Kolisis FN,Roussos C,et al.Protective effects of mastic oil fromPistacia Lentiscusvariationchiaagainst experimental growth of lewis lung carcinoma[J].Nutr Cancer,2009,61(5):640-648.
[69] Rehman MU,Tahir M,Khan AQ,Khan R,Lateef A,Oday-O-Hamiza,et al.Chrysin suppresses renal carcinogenesis via amelioration of hyperproliferation,oxidative stress and inflammation:plausible role of NF-κB[J].Toxicol Lett,2013,216(2-3):146-158.
[70] Zhang XS.Investigation on the antiproliferation effect and its mechanism of cardamonin combined with cisplatin on SKOV3 cells(小豆蔻明聯(lián)合順鉑抑制卵巢癌SKOV3細(xì)胞增殖及其作用機制研究)[D].Fuzhou:Fujian Medical University(福建醫(yī)科大學(xué)),2014.